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Abstract: Sex trafficking victims are often advertised through online escort sites. These ads can
be publicly accessed, but law enforcement lacks the resources to comb through hundreds of ads to
identify those that may feature sex-trafficked individuals. The purpose of this study was to implement
and test multi-input, deep learning (DL) binary classification models to predict the probability of
an online escort ad being associated with sex trafficking (ST) activity and aid in the detection and
investigation of ST. Data from 12,350 scraped and classified ads were split into training and test sets
(80% and 20%, respectively). Multi-input models that included recurrent neural networks (RNN) for
text classification, convolutional neural networks (CNN, specifically EfficientNetB6 or ENET) for
image/emoji classification, and neural networks (NN) for feature classification were trained and used
to classify the 20% test set. The best-performing DL model included text and imagery inputs, resulting
in an accuracy of 0.82 and an F1 score of 0.70. More importantly, the best classifier (RNN + ENET)
correctly identified 14 of 14 sites that had classification probability estimates of 0.845 or greater
(1.0 precision); precision was 96% for the multi-input model (NN + RNN + ENET) when only the ads
associated with the highest positive classification probabilities (>0.90) were considered (n = 202 ads).
The models developed could be productionalized and piloted with criminal investigators, as they
could potentially increase their efficiency in identifying potential ST victims.

Keywords: sex trafficking; deep learning; multi-input models; natural language processing; (convolutional)
neural networks

1. Introduction

Trafficking in persons is one of the most harmful criminal industries internationally. Its
prevalence continues to rise each year and it is currently identified as the second-most prof-
itable illegal trade, after drug trafficking [1]. According to the U.S. Department of State’s
2022 Trafficking in Persons Report [2], 1111 federal (or joint federal-local/state) investiga-
tions of human trafficking were opened during the fiscal year 2021, with the Department of
Justice initiating prosecution in 228 cases, the majority of which (221) concerned sex—as
opposed to labor—trafficking. At the local/state level, 2203 human trafficking offenses
were reported by participating jurisdictions (U.S. Department of State 2022). These figures,
however, are thought to grossly underestimate the true extent of the problem. For instance,
11,500 cases of human trafficking were reported to the National Human Trafficking Hotline
during 2019 [3]. These calls led to the identification of 22,326 victims and survivors, of
whom 14,597 (65%) had been sex trafficked, with an additional 1048 (5%) having been
subjected to both sex and labor trafficking.

Federal law defines sex trafficking as “the recruitment, harboring, transporting, pro-
vision, obtaining, patronizing or soliciting of a person for the purposes of a commercial
sex act, in which the commercial sex act is induced, through the use of force, fraud, or
coercion, or in which the person induced to perform such an act has not attained 18 years
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of age”. This means that, if the victim is under the age of 18, force, fraud, or coercion
are not required to prove trafficking. Human trafficking is often conflated with human
smuggling, but smuggling requires the movement of an individual across international
borders. “Trafficking” in this sense refers to the illegal commodification of an individual
and their entrance into the stream of commerce, akin to weapons or drug trafficking, as
opposed to the movement of a commodity.

Sex trafficking (ST) can be promulgated through information and communications tech-
nologies (ICT) such as the Internet and, more specifically, online escort advertisements [4–6].
These ads are typically very brief and contain a provocative photo, a description of the
seller/victim, and language to describe or indicate the advertisement is for commercial
sex [7]. However, thinly coded terms and/or other characteristics may be indicative of
commercial exploitation. For example, a phrase such as “new in town” may indicate
victims being moved around (often an indication of sex trafficking), a crown emoji or image
may signify services managed by a pimp, and emojis displaying a growing heart, a cherry,
or a cherry blossom emoji may signify a minor in the ad [8,9]. The ads usually appear
to be posted by the individual in the ad, but traffickers often post and pay for the ads
themselves [7].

While easily accessible to both the public and law enforcement, the sheer volume
of ads, the frequency with which the posting location changes, along with the use of
obfuscation tactics by those posting and hosting the advertisements, make it difficult for
law enforcement to identify, react, and respond [8]. Traffickers and buyers, along with
the technology used itself, evolve at a rapid rate, and this demands that law enforcement,
prosecutors, and legislatures come up with creative responses to combat the advances
in technology (which is inherent to the covert nature of the crime itself). Thus, these
stakeholders require accurate, productionalized, and cost-free methods for classifying
websites likely engaged in illicit ST to target enforcement [10].

Machine learning (ML) has shown promise in the automated classification of websites—
both escort and third-party review sites—that facilitate sex trafficking. Tong and colleagues
(2017) were one of the first to apply these classification-supervised learning methods to
online escort ads, with the goal of identifying likely sex trafficking activity [11]. They
collaborated with law enforcement officials to annotate more than 10,000 escort ads from
Backpage (a dominant escort advertisement site that is no longer active) along a seven-point
Likert scale to indicate their likely involvement in sex trafficking activity. Based on these,
the authors developed a deep model that considered the text, emojis, and images in the
ads. This model outperformed all baselines considered (e.g., keywords, bag of words,
random forest, logistic regression, and linear support vector machine, or SVM, models) in
identifying those ads suspected of being associated with sex trafficking, highlighting the
value of the methodology.

Since then, other studies have followed that have employed the Trafficking-10k and
other datasets. For example, Alvari et al. [12] also used law enforcement experts to man-
ually label a large portion of crawled data from Backpage. They extended the existing
Laplacian SVM model by adding a regularization term to the optimization equation and ul-
timately reported that their approach had the highest F1 scores (91). In a separate study, an
ordinal regression neural network approach yielded a model that outperformed previous
conventional regression models [13].

Esfahani and colleagues [14] developed a centralized, semi-automatic tool that uti-
lized natural language processing (NLP) techniques, among others, to identify trafficking
ads—the classifiers developed had a significantly better performance than any single
feature/variable set alone. The full model utilizing the full feature set (under U-BERT) pro-
vided 26% recall improvement over the three individual ones (e.g., 69% vs. 28–42%; recall,
or sensitivity, is the model’s true positive rate) when precision (positive predictive value)
was set to 85%. Zhu et al. [15], using the Trafficking-10k dataset, developed a language
selection model and showed improvement against Tong et al.’s human trafficking deep
network (HTDN) model [11], with a precision of 66.2% and recall of 73.4%. The application
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of the model went further than prior research by using the model to identify unknown
trafficking organizations and assign a risk score. However, this model only examined the
text of the ads (and not the emojis or images).

Convolutional neural networks (CNN) have become a commonplace approach for
image (and other) analyses. Granizo et al. compared SVM and CNN models to estimate
the gender and age of individuals on a known public repository where sex services were
advertised [16]. The training data set consisted of labeled images (n = 4096 posts). Accuracy
rates for age classification were 80.6% (SVM) vs. 97.3% (CNN) for faces and 82.1% (SVM)
vs. 51.4% (CNN) for upper body images.

More recently, Wiriyakun and Kurutach [17,18] utilized a feature selection approach
and compared three updated ML models against the original work of Tong et al. [11] with
the Trafficking-10k dataset, namely random forest, logistic regression, and linear SVM.
These models significantly outperformed Tong et al.’s [11] bag of words approach, with F1
scores of 63.3%, 64.8%, and 61.3%, respectively, as compared to 24.5%. These results are
relevant because the authors dichotomized the labels in the Trafficking-10k dataset, which
is the approach adopted in the present study. Table 1 provides a summary of the results
from related work.

Table 1. Summary of results from related work.

Source Data Analysis Findings

Tong et al. (2017) [11]

Trafficking-10k dataset
(12,350 escort ads from
Backpage rated by subject
experts on 7-point scale)

Human trafficking deep
network (HTDN), a deep
multimodal model applied to
both text and images

HTDN achieved 0.80 accuracy,
0.71 precision, and an F1 score of 0.67,
and outperformed several baselines
with different inputs.

Alvari et al. (2017) [12]

20,000+ scraped Backpage
escort ads; final unfiltered
sample was 3543 (of these,
200 were rated as likely
associated with ST
by expert)

Semi-supervised Laplacian
support vector machine (SVM)
of unfiltered online escort ads
(ads were filtered out if none of
12 ST indicators were present)

Extended S3VM—R model yielded
better precision (0.91 vs. 0.86 for
positive cases, 0.92 vs. 0.89 for
negative cases), recall (0.91 vs. 0.88
for positive cases, 0.93 vs. 0.90 for
negative cases), and F1 scores
(0.91 vs. 0.87 for positive cases,
0.92 vs. 0.88 for negative cases) than
the original Laplacian SVM.

Wang et al. (2019) [13] Trafficking-10k dataset Ordinal regression
neural network

Accuracy of 0.82, as compared to
HTDN’s 0.80. No recall or F1
scores reported.

Esfahani et al. (2019) [14]

10,000 online escort ads
from Backpage and
Eroticmugshots, with
4385 ads flagged as positive
by cross-referencing with
list of ST-related
phone numbers

Deep learning latent Dirichlet
allocation (LDA) model with
average word vector (AWV)
and bidirectional encoder
representation from
transformers (BERT)

The LDA+AWD+BERT model
outperformed simpler variations of
the model (e.g., recall was 0.69 vs.
0.28–0.42) at 85% precision.

Zhu et al. (2019) [15] Trafficking-10k dataset Language selection model Precision was 0.66 and recall 0.73.

Granizo et al. (2020) [16]

Twitter posts with hashtags
related to minors and
potential illicit (sexual)
activity (n = 4096)

SVM vs. convolutional neural
networks (CNN)

Detection of age in posts advertising
sex yielded accuracy of 80.6% (SVM)
vs. 97.3% (CNN) for faces, and 82.1%
(SVM) vs. 51.4% (CNN) for upper
body images.

Wiriyakun and Kurutach
(2021, 2022) [17]

Trafficking-10k dataset with
outcome in binary form
(collapsed original 7 labels)

Feature selection approach

Reported 0.77 accuracy in
best-performing model and F1 scores
of 63.3% for random forest model,
64.8% logistic regression, and 61.3%
linear SVM.
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As ML methods advance and classification modeling improves, the need to determine
the extent to which these higher-performance models apply in different contexts arises.
This study attempts to improve on earlier methods via the provision of a high-performance
deep learning model that includes text and imagery inputs. This has the potential to
alleviate resource constraints placed on law enforcement by creating a model that can
identify sex trafficking-related online escort ads with both high accuracy and precision,
thus maximizing the efficiency of criminal investigators.

2. Materials and Methods
2.1. Data, Software, and Hardware

For this study, 12,350 escort ads were obtained from a user agreement with Marinus
Analytics. This agreement provided access to the Trafficking-10k dataset [11]. The data
included an identification, a classification label (more on this later), a title text, and a body
text. The title and body were further concatenated for use. Observations included emojis

(images, e.g.,
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Figure 1. The first five observations of the data.

The Anaconda distribution of Python 3.8 [19] was used for all models. The TensorFlow
library [20] provided support for the machine learning algorithms. Programming code is
freely available in Supplementary Materials. For this preliminary study, processing was
performed on a high-end computer with a 14-core Intel i9-12900K Central Processing Unit
(CPU) operating at 2.5 GHz, 64 GB of random access memory (RAM), and a single NVIDIA
GeForce RTX 3080 Super Graphical Processing Unit (GPU).

2.2. Training, Validation, & Test Sets

Data were split randomly into an 80% training set with 9880 observations and a 20%
test set with 2470 observations. The training set was further split for hyperparameter tuning,
with 80% (7904) used for training and 20% (1976) used for validation. After estimating
optimal hyperparameters, the entire training set was used for model fitting.

2.3. Image Creation

Marinus Analytics was unable to provide the original images used in the initial study.
To investigate the utility of multi-input models that include image components, Unicode
emojis from the concatenated title and body were converted to color images for use in
investigating CNNs using spaCy [21]. The extracted emojis for each observation were
arranged into a square grid just large enough to contain each sequential image. For example,
if there were 100 emojis in the combined text, then the grid was 10 by 10. This grid was
then converted to a 224 by 224 image using OpenCV [22] and the Segoe UI Emoji True Type
Font. Figure 2 shows the image generation for a single observation.
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Figure 2. Example of image generation.

2.4. Text Preprocessing

The title and body text were concatenated for use in natural language processing. Text
was converted to lowercase, numbers were converted to text, and additional. html tags
remaining in the dataset were removed using the “re” library. Emoticons and emojis were
mapped to text using the “emot” library. Punctuation was identified by the “string” library
in Python and removed. Common English stop words were removed, and text was lem-
matized (to account for parts of speech), tokenized (to convert from text to numbers), and
padded to the maximum sentence length using the Natural Language Tool Kit (NLTK) [23].
Figure 3 shows four examples of pre-processed vs. original images before lemmatization,
tokenization, and padding.
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In Figure 3, “both” reflects the original concatenated title and body. In observation 0,
there are numbers and. html tags that are removed (along with punctuation and capitaliza-
tion) in the transformed columns “title” and “body”. In observations 3 and 4, the emojis
are converted to text. Doing so supports text-based modeling.
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2.5. Feature Creation

Eight features were extracted from the data. Title and body emojis were counted and
used as separate variables. Derivations of the word “sex” were counted separately for the
body and text as well. Proportions of emojis and derivations of the word “sex” were also
calculated for the title and the body. These eight variables were included in a four-layer
neural network model (64 neurons, 50% dropout, 32 neurons, and 20% dropout with linear
activation functions) after min-max scaling. Min-max scaling uses the range of the variable
as the denominator and the difference between each observation and the minimum of the
variable as the numerator, effectively providing each observation a location within the
distribution as a percentage. Neural networks (NN) require scaling to facilitate convergence
and improve computational performance as well as accuracy [24].

2.6. Label Definition & Processing

The dependent variable for this study was based on the original question from the
Tong et al. study [11]. “In your opinion, would you consider this advertisement suspicious
of human trafficking?” The possible responses were “Certainly no”, “Likely no”, “Weakly
no”, “Unsure”, “Weakly yes”, “Likely yes”, and “Certainly yes”. Classification decisions
were made by three raters with many years of combined experience in the field of human
trafficking. Pairwise agreement among the raters was 83%. The original dataset included
images; however, these are no longer available. The best F1 score from the original study
was 66.5% with a deep network approach [11].

For this study, the label was collapsed from seven levels to binary, as follows: “Cer-
tainly no”, “Likely no”, “Weakly no”, and “Unsure” were combined into the category “Not
likely or unsure”. The remaining categories were collapsed into “More likely than not”.
This type of binary coding allows for probabilistic mapping between the classification
algorithm and the raters’ assessments. Dichotomization of the labels in the Trafficking-10k
dataset has been proven to be adequate by previous studies [17,18].

2.7. Models

Seven models were evaluated to assess the value of the engineered features, the title
and body content, the generated images, and combinations of the three as a design of ex-
periments (see [25]), as it seeks to identify the marginal and additive contributions towards
the classification metrics by modifying the architecture. Classification based on engineered
features leverages neural network architecture, a common machine learning approach. Text
classification (natural language processing, or NLP) uses stacked bidirectional long short-
term memory (LSTM) [26] recurrent neural networks (RNN) [27]. Bidirectional LSTMs have
proven to be powerful in classifying textual content [28]. Classification models leveraging
imagery were based on convolutional neural network (CNN) architecture, specifically the
EfficientNetB6 or ENET [29]. Efficient-Net has proven to be a highly accurate architecture
for handling image classification tasks [30]. Multi-input models were combined with the
same neural network scaffolding. These types of models have proven to be highly effective
in prediction [30,31]. The seven models of this study include (see Table 2): Model 1, a
neural network with decreasing nodes and dropout (64 nodes→ 50% dropout→ 32 nodes
→ 20% dropout, linear activation functions); Model 2, a CNN (EfficientNetB6 or ENET)
flattened with decreasing nodes and dropout (128 nodes→ 50% dropout→ 64 nodes→
20% dropout); Model 3, an RNN with a size 512 embedding layer and two-layer bidirec-
tional LSTMs; and Models 4 through 7, every combination of these three layers. Table 2
provides the definitions and abbreviations for all seven models. All these individual models
were joined (or concatenated for multi-input models) with the final architecture, a neural
network (16 nodes (relu activation function)→ 10% dropout→ 8 nodes (relu activation
function)→ 1 sigmoidal node). Figure 4 is the TensorFlow architecture display for the full
model: NN, RNN, and ENET.
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Table 2. Models and abbreviations.

Model # Model Type Abbreviation

1 Neural Network (NN) NN
2 EfficientNetB6 (ENET) ENET
3 Recurrent Neural Network (RNN) RNN
4 Multi-Input: ENET and NN ENET + NN
5 Multi-Input: ENET and RNN ENET + RNN
6 Multi-Input: NN and RNN NN + RNN
7 Multi-Input: NN, ENET, and RNN ENET + RNN + NN

2.8. Hyperparameter Tuning and Loss Metric

The number of epochs for each separate model was set based on training/validation
split performance. The optimizer used was “adam” [32], although many others were
investigated and often switched during performance testing. Batch size for mini-batch
metrics was 32. The loss metric for optimizing model weights (and filters) was binary
cross-entropy or log loss, appropriate for binary classification.

3. Results
3.1. Descriptive Statistics: Dependent Variable (Label)

The distribution of online escort ads across the classification label (dependent variable)
categories is shown in Figure 5. After recoding, 4054 observations (32.8%) were coded as
likely sex trafficking, with the remaining 8296 (67.2%) coded as not likely or unknown.
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3.2. Descriptive Statistics: Features

Eight features were generated for inclusion in the classification models. Table 3 pro-
vides descriptive statistics for those features. The “average” observation had 20.3 emojis in
the title (30.8% of the words) and 113.7 emojis in the body (24.1% of the words). This “aver-
age” observation also had 0.2 derivatives of the word “sex” in the title (0.3% of the words)
with an additional 0.7 in the body (0.1% of the words). The distribution of these variables is
right-skewed, as they are left-censored at zero. The standard deviation of the emojis in the
title and the body show high variability (standard deviation and range), something that
ostensibly might be valuable for algorithmic learning of the classification status.
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Table 3. Feature descriptive statistics.

Variable Mean Median SD Skew Range Min Max

# Title Emojis 20.3 18.0 13.3 1.5 162.0 1.0 163.0
# Body Emojis 113.7 96.0 155.8 8.6 2373.0 1.0 2374.0
# “Sex” in Title 0.2 0.0 0.4 2.2 4.0 0.0 4.0
# “Sex” in Body 0.7 0.0 3.0 10.9 71.0 0.0 71.0
% Title Emojis 0.3 0.3 0.1 1.2 0.9 <0.1 0.9
% Body Emojis 0.2 0.23 0.1 2.7 0.9 <0.1 1.0
% “Sex” in Title <0.1 0.0 <0.1 3.6 0.1 0.0 0.1
% “Sex” in Body <0.1 0.0 <0.1 4.8 <0.1 0.0 <0.1

3.3. Model Comparison

The focal point of this study is the ability to provide law enforcement tools to efficiently
identify those advertisements that are likely to be associated with sex trafficking (ST).
To evaluate model performance, five measures were used: sensitivity (also known as
recall), specificity, accuracy, precision (positive predictive value), and the F1 score. In
terms of probability, these measures provide different types of information. Sensitivity
or recall, P(identified as positive|truly ST), tells us the ability of the classifier to identify
sex trafficking (i.e., true positive rate), but if the classifier suggested that all observations
are positive, then sensitivity would be a perfect 1.0, while the specificity, P(identified as
negative | truly not ST) (i.e., true negative rate), would be a worst-possible 0.0, so the
model would not be informative. Accuracy combines both in its calculation and equals
the proportion of cases that were accurately classified (i.e., true positives + true negatives)
over the full sample (i.e., true positives + true negatives + false positives + false negatives).
A model that correctly classifies most of the true positives and true negatives may still
be problematic in terms of precision, which is the positive predictive value, or P(truly
ST|identified as positive), as lower precision means that many identified positives are
likely not to represent ST (i.e., there would be too many false positives). Finally, the F1
score provides a mixture of precision and recall (sensitivity) scaled between 0 and 1 and is
calculated as 2 × Precision × Recall/(Precision + Recall).

In the original model from Tong et al. [11], the best model achieved 80% accuracy
with an F1 score of 0.67. Comparative metrics for all models from the present study, as
well as the Tong et al. model [11], are shown in Table 4. The best-performing models in
terms of accuracy are Models 5, 6, and 7. For recall (sensitivity), the NN + RNN (Model 6)
slightly outperforms Model 5 (ENET+RNN). The most precise model is Model 3, the RNN
model. Model 1 (NN) and Model 2 (ENET) are not robust enough for classification, as
both have recall measures below 0.50 and F1 scores below 0.51. Building on the work
of Tong et al. [11], we were able to improve accuracy (by 2 percentage points), precision
(7 points), and the F1 score (3 points) by using the ENET-RNN model alone without having
the original imagery. The ENET-RNN-NN model improved accuracy by 2 percentage
points and precision by 6. Model estimation time ranged from 1.333 min (NN) to 32.95 min
(ENET + RNN + NN).

Table 5 provides the confusion matrix for the complete model (Model 7). The precision,
recall, and accuracy metrics suggest a reasonable model.

The precision of models is important for law enforcement, as a lack of precision is
associated with wasted effort since precision is calculated as the proportion of cases identi-
fied as positive that truly are associated with ST. Thus, we sorted the model predictions
by probability (rounded to three decimal places) in descending order, so that the highest
estimated probability of ST was ranked first, the second highest was ranked second, etc. We
then evaluated the performance of all models at these two hinge points: the highest-ranked
probabilities for at least 10 observations and then again at the highest-ranked probabilities
for at least 50 observations. (Many classification probabilities occur more than once, so
the exact number of samples within each group differs.) For law enforcement officers,
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time is limited. Targeting all potential sites simultaneously is infeasible, so some sort of
prioritization is required.

Table 4. Comparison of all models against the base.

Model Abbreviation Epochs Minutes per
Epoch

Total
Minutes Accuracy Recall Specificity Precision F1 Score

1 NN 20 0.067 1.333 0.73 0.35 0.91 0.67 0.46
2 ENET 10 2.933 29.333 0.74 0.42 0.89 0.66 0.51
3 RNN 2 3.000 6.000 0.81 0.57 0.93 0.80 0.67
4 ENET + NN 10 2.700 27.000 0.73 0.44 0.88 0.63 0.52
5 ENET + RNN 2 10.000 20.000 0.82 0.63 0.91 0.78 0.70
6 NN + RNN 4 3.250 13.000 0.82 0.65 0.90 0.76 0.70
7 ENET + RNN + NN 3 10.983 32.950 0.82 0.62 0.91 0.77 0.69

Base Tong et al. (2017) [11] NR NR NR 0.80 0.62 NR 0.71 0.67

NN = neural network; RNN = recurrent neural network; ENET = EfficientNetB6; NR = not reported.

Table 5. Confusion matrix for Model 7 (ENET + RNN + NN).

Predicted

Not ST ST Total

Actual
Not ST 1509 149 1658

ST 298 514 812

Total 1807 663 2470

Precision 78% Specificity 91%
Recall 63% Accuracy 82%

NN = neural network; RNN = recurrent neural network; ENET = EfficientNetB6; ST = sex trafficking.

The results in Table 6 show that the best model, the ENET + RNN multi-input model,
was able to correctly identify all 14 of the observations associated with the estimated
probability of 0.845 or greater (1.00 precision). The second-best model, the NN + RNN,
achieved 96% precision on 23 observations based on a model probability estimate of 0.976
or higher. The complete model (NN + RNN + ENET) achieved 0.9554 precision with
202 observations (a model classification probability estimate of 0.90 or better).

Table 6. Model metrics.

Model Hinge Classification
Probability N True

Positives
False

Positives Precision

NN 10 0.770 11 9 2 0.8182
NN 50 0.700 102 84 18 0.8235

RNN 10 0.960 10 9 1 0.9000
RNN 50 0.900 99 94 5 0.9495

ENET 10 0.990 11 8 3 0.7273
ENET 50 0.950 98 82 16 0.8367

NN + RNN 10 0.976 23 22 1 0.9565
NN + RNN 50 0.950 275 255 20 0.9273

NN + ENET 10 0.998 13 11 2 0.8462
NN + ENET 50 0.950 99 79 20 0.7980

ENET + RNN 10 0.845 14 14 0 1.0000
ENET + RNN 50 0.800 54 50 4 0.9259

NN + RNN +ENET 10 0.960 11 9 2 0.8182
NN + RNN + ENET 50 0.900 202 193 9 0.9554

NN = neural network; RNN = recurrent neural network; ENET = EfficientNetB6.
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4. Discussion

This study has shown that recent advances in deep learning for classification allow
us to more accurately and precisely identify online escort ads that may be associated with
sex trafficking activity. High-precision models are particularly favored in that wasted
effort by investigators with limited time resources should be avoided; the complete multi-
input model (NN + RNN + ENET) developed here achieved 77% precision (as compared
to the original 71% precision reported by Tong et al. [11]), and this increased to almost
96% when only the ads associated with the highest positive classification probabilities
(>0.90) were considered. Other model metrics for this complete model were comparable to
Tong et al.’s [11], demonstrating the increased precision was not associated with a trade-off
deterioration in other metrics.

These results are based on the analysis of texts, emoticons, and emojis. Unfortunately,
the advertisements’ photographic images could not be accessed and incorporated into the
model. It is, therefore, possible (if not likely) that even better results could be obtained if
the images of the ads were available for analysis.

As with any other research study, this one suffered from certain shortcomings. The
Trafficking-10k dataset is aging, so the results reported here would need to be replicated
using newly harvested data. While manually labeling ads can be time consuming and
expensive, automatic classification based on widely accepted indicators of sex trafficking
activity (e.g., movement of sex providers, apparently minor providers) may be performed
in its place (see [9]). Further, the multi-input model developed was complex, which yielded
greater accuracy but obscured its theoretical underpinnings. Future research could develop
and test a more theoretically sound model, then fit neural nets to the residuals to increase
the model’s accuracy, using expert ratings to annotate the ads.

Although the binary reclassification of the original outcome labels in Tong et al.’s [11]
Trafficking-10k dataset could be perceived as a disadvantage, as it would arguably lead
to a loss in granularity, our best accuracy score was comparable to those reported by [13],
who applied ordinal regression neural network (ORNN) models to this same dataset. The
advantage of our binary outcome model is that it estimates the probability of a given online
escort ad being associated with ST, which is much easier to interpret than coefficients
or estimates from an ordinal model. Such functionality could then be productionalized
to allow criminal investigators to identify the ads with the highest probability values.
This would allow law enforcement to prioritize such ads, which we have shown to have
precision scores as high as 96–100%.

5. Conclusions

Deep learning binary classification models hold much promise in increasing the
efficacy with which law enforcement could identify online escort ads that are potentially
associated with ST. Any increase in model performance can translate into a more efficient
use of limited public safety resources. By optimizing identification and investigation efforts
and integrating a low-cost strategy approach, increasing productionalized tool accessibility
can be achieved. Multi-input models benefit from the collective strength of each respective
model from which they are composed while mitigating individual weaknesses.

Supplementary Materials: The supporting information can be downloaded at: https://github.
comdustoff06/ST (accessed on 3 May 2023).
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