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Abstract: In this article, we propose a tree-structured method for either complete or partial rank data
that incorporates covariate information into the analysis. We use conditional independence tests
based on hierarchical log-linear models for three-way contingency tables to select split variables and
cut points, and apply a simple Bonferroni rule to declare whether a node worths splitting or not.
Through simulations, we also demonstrate that the proposed method is unbiased and effective in
selecting informative split variables. Our proposed method can be applied across various fields to
provide a flexible and robust framework for analyzing rank data and understanding how various
factors affect individual judgments on ranking. This can help improve the quality of products or
services and assist with informed decision making.
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1. Introduction

Tree-structured methods, such as classification and regression trees, are important
techniques in machine learning and data mining [1–3]. They are widely used in various
applications, including image and speech recognition, natural language processing, and
medical diagnosis. One of the main reasons for their popularity is their ability to handle
complex data and extract meaningful insights from it. Classification trees are used to
predict the class of a new observation based on its features or attributes. They work by
recursively partitioning the data into smaller and more homogeneous groups based on the
values of the features. The resulting tree can be interpreted to understand which features
are most important in determining the class of the observation. This is useful in many
applications, such as credit risk assessment, where the goal is to predict whether a borrower
will default on a loan. Regression trees, on the other hand, are used to predict a continuous
variable, such as the price of a house or the stock price of a company, based on a set of
predictor variables. They work by recursively partitioning the data into smaller groups
based on the values of the predictors. The resulting tree can be interpreted to understand
how the predictor variables affect the outcome variable. This is useful in many applications,
such as financial forecasting, where the goal is to predict future prices based on historical
data. Tree-based methods are also important because they are non-parametric, meaning
they do not make assumptions about the underlying distribution of the data. This makes
them robust to outliers and noise in the data. Additionally, they can handle both categorical
and continuous variables, as well as missing values.

Rank data are frequently collected in various fields, such as education [4], psychology [5],
health care [6], quality of life [7], sociology [8], and marketing [9], with the main motivation
being to understand how people perceive and evaluate a set of items or alternatives. This
information can be used to make informed decisions and improve the quality of products
or services. However, in some cases, the complete rank of the items may not be available,
and only the top-k ranking outcomes are observed. This poses a challenge for data analysis,
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as traditional statistical methods are not suitable for dealing with rank data. In addition,
some related covariates are also collected to understand how these variables affect the
judgment of each individual on ranking [10,11]. The goal of the research presented in
the article is to develop statistical methods for analyzing top-k rank data and related
covariates. The focus is on understanding how various factors affect the judgment of
each individual on ranking. For instance, in marketing, understanding how demographic
variables such as age, gender, and income affect consumer preferences can help companies
tailor their products to specific target markets, while in healthcare, understanding how
patient characteristics such as age, gender, and health status affect their perception of the
quality of care can help improve healthcare services. The research also aims to address
some of the challenges associated with analyzing rank data, such as how to handle ties
and missing data, and how to incorporate covariate information into the analysis. The
ultimate goal is to provide a flexible and robust framework for analyzing rank data that
can be applied across various fields.

Lee and Yu [12], Yu et al. [13], and Plaia [14] proposed decision tree models for rank
data. In their tree models, the exhaustive search principle of CART [1] based on either
some distance-based models [12] or impurity measures [15] is applied to select splits. The
pruning method is later applied to select the right-sized tree. Only the method based on
impurity measures can handle either complete or partial rank data ([12]). Cheng et al. [16]
also proposed a tree induction method using the same exhaustive search principle for either
type of rank data, but only numerical covariates are allowed. A direct stopping rule is then
applied to select the final tree. Kung et al. [17] show that the distance-based tree models
tend to select variables with more split points. They propose a relatively unbiased selection
method which utilizes the conditional independence tests based on log-linear models for
contingency tables. However, complete ranks are required in their paper.

In this paper, we propose a tree-structured method for either complete or partial rank
data. The method relies on the observation that if the response variable is not related
to its covariates, then the item numbers become independent of the covariates given the
corresponding ranks. We leverage this fact by using conditional independence tests based
on hierarchical log-linear models for three-way contingency tables [18] to choose the split
variables and cut points. We use Pearson’s chi-squared tests of independence to guide split
variables and points selection. A Bonferroni type stopping rule is applied to declare a node
terminal. Through simulation, our method is shown to be relatively unbiased and more
effective in selecting the informative split variables.

2. Materials and Methods
2.1. Dataset

The European Values Study (EVS) is a large-scale survey conducted every nine years to
examine the attitudes, beliefs, and values of people in various countries across Europe. The
time span for each survey may vary, and the collected data may cover different themes and
questions. The countries included in the EVS survey also vary depending on the edition of
the study, but generally, they cover a wide range of European countries. We would apply
our tree method to analyzing a sample of the 1999 EVS data containing an assessment of
materialism/postmaterialism in 3584 respondents from 32 countries. We follow the suggestion
from Vermunt [19] and divide the countries into four groups for the 1999 EVS data. The
main reason for dividing the countries into four regions is to account for potential cultural
and contextual differences between them. By controlling for the potential impact of regional
differences, survey data can be analyzed more accurately. The respondents were asked to
pick the most important and the second most important goals for their Government from
the following four alternatives: (A) Maintain order in nation; (B) Give people more say in
government decisions; (C) Fight rising prices; and (D) Protect freedom of speech. Eight
covariates are associated with each response and they are country group (CG), gender (G),
year of birth (Y), age of education completion (ED), marital status (M), employment status
(EM), occupation (O), and household income (I). Individuals can be classified into three
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groups based on their choices. Regardless of the ordering, individuals who prefer (A) and
(C) are classified as “materialist”, whereas those who prefer (B) and (D) are classified as
“postmaterialist”. The rest of the individuals are classified as those holding “mixed” value
orientations [19]. The dataset is obtained from R package psychotree [20]. There are missing
values in the data. After removing missing values, there are a total of 1911 respondents from
26 countries with complete data information, and the country group is given in Table 1.

Table 1. The country groups in the EVS data without missing values. The value in parentheses is the
number of respondents.

Group Country

1 Italy (113), the Netherlands (48), Denmark (95)
2 France (106), Spain (35), Belgium (115), Croatia (24), Greece (53)
3 West Germany (52), East Germany (48), Iceland (62), Czechia (144),

Romania (60), Bulgaria (64), Malta (29), Luxembourg (32), Slovenia (49)
4 Estonia (70), Latvia (66), Lithuania (50), Poland (109), Slovakia (103),

Hungary (77), Russia (170), Ukraine (66), Belarus (71)

2.2. Variable Selection

We first introduce the Gini impurity measure, which is used in Yu et al. [13] to select
split variables and points. The Gini impurity measure is a way of quantifying the impurity
of a set of examples, which is used to determine the best way to split the data at each level
of the decision tree. The goal is to minimize the Gini impurity at each split, resulting in
more homogeneous subsets of data that are easier to classify. We often refer to methods
using such techniques as exhaustive searches. Exhaustive search of choices refers to the
process of considering all possible ways of splitting the data at each level of the tree in
order to identify the best split that minimizes the Gini impurity.

The Gini impurity measure for rank data is defined as follows. Given m items, let Cm,d,
d ≤ m be the set of ranking with members from all possible d-permutations of m elements
in {1, 2, . . . , m}. Suppose only top−k rank outcomes, k ≤ m, are observed. For node t, let
p(y1, . . . , yk|t) be the proportion of cases where item y1 ranks first, item y2 ranks second,
and so on. The top-k Gini index is defined as:

i(k)(t) = 1− ∑
π∈Cm,k

p(π|t)2.

when k = m, it becomes the usual Gini index [1], where each of the m! rank outcomes is
treated as a class.

For each covariate X, a split of the form X < c, if X is an ordered variable; or X ∈ S, if
X is a categorical variable, is considered. Such split creates subnode tl and tr. All possible
constants c or subsets S are considered and the split which minimizes the following:

i(k)X (t) = Ntl i
(k)(tl) + Ntr i(k)(tr)

which is chosen to be the best split associated with X, where Nj is the sample size at node j,

j = tl or tr. The variable associated with the minimal value of i(k)X (t) is the split variable at
node t. We denote this method as the Gini method.

However, it is well known that the exhaustive search principle used in split variable
selection has some disadvantages. Loh [3] provided some evidence for this in the context of
classification and regression trees. Namely, the method has selection bias toward variables
with more split points and it is costly to build such trees. Moreover, in their simulation
study, Lee and Yu [12] and Kung et al. [17] found the evidence of such selection bias for
trees used to model complete rank data.

To eliminate possible selection bias, a useful strategy is to separate variable selec-
tion from point selection. Loh and Shih [21] and Loh [22] have shown its effectiveness
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in classification and regression trees. A similar approach is taken by Kung et al. [17]
for complete rank data. We follow the same principle and propose the following method to
select split variables. For top-k ranking outcomes, we know there are at most
κ = m × (m − 1) . . . × (m − k + 1) different rank outcomes. We treat each of them as
a class and use Pearson’s chi-squared independence test to guide the variable selection
process. If a covariate is associated with the rank response, the test itself should reveal
the degree of association. We denote our method as the ST (Statistical Test) method.
The algorithms, called Algorithms 1 and 2, are given in what follows. Denote ps and p∗s as
two probability values.

Algorithm 1 Main effect detection.

1. For each ordered covariate, divide the data into four levels at the sample quartiles;
construct a two-way 4× κ contingency table with the levels as rows, the different
ranking responses as columns; omit entries with zero column totals and count the
number in each cell.

2. Compute the Pearson chi-squared statistic of testing independence between the
row and the column variable and obtain its corresponding p-value, denoted by ps.

3. Do the same for each categorical covariate, using the categories of the covariate
to form the rows of the contingency table and omitting entries with zero row or
column totals.

4. The covariate which has the corresponding smallest ps value is chosen to be the
split variable.

Algorithm 1 is designed to capture a single covariate effect, but it may lose its power
when an interaction effect between two covariates appears [17]. To detect such interaction
effects, we provide the following Algorithm 2.

Algorithm 2 Interaction effect detection.

1. Repeat Algorithm 1 and obtain the corresponding ps value.
2. For a pair of ordered covariates (Xi, Xj), divide the (Xi, Xj)-space into four quad-

rants by split the range of each variable into two halves at the sample median;
construct a two-way 4× κ contingency table with the quadrants as rows, and the
different ranking responses as columns; omit entries with zero column totals and
count the number in each cell.

3. Do the same for each pair of categorical covariates, using their categorical pairs
to form the rows of the contingency table and omit entries with zero row or
column totals.

4. For each pair of covariates (Xi, Xj) where Xi is ordered and Xj is categorical, divide
the Xi-space into two categories at the sample median; use their categorical pairs to
form the rows of the contingency table and omit entries with zero row or column
totals. Obtain its corresponding p-value.

5. For each pair of covariates, denote the smallest p-value be p∗s .
6. If p∗s < ps , the (interaction) covariate with the smaller ps value is chosen to be the

split variable. Otherwise, the covariate which has the corresponding smallest ps
value is chosen.

2.3. Point Selection and Stopping Rule

After the split variable is selected, the split point is determined by applying Algorithm 1
as follows. For each possible split point, samples are divided into two subnodes. By treating
two subnodes as two rows in the contingency table analysis used in Algorithm 1, we obtain
a p-value for each point. The point associated with the smallest p-value is then selected as
the split point.

We employ a simple Bonferroni rule to determine whether a node worths splitting
or not. A node stops splitting if its p-value associated with the split point is not less than
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α/Nc, where α is a pre-specified probability value and Nc is the number of available cut
point at the node. We set α = 0.01 in our data analysis. Besides, a node with the sample
size of its child node smaller than a fixed number is not split. This fixed value is set to be 20
in our data analysis.

3. Simulation Studies on Variable Selection

We compare the Gini and the ST methods on variable selection in this section. Rank
samples are generated by using the following Kendall’s tau distance-based model. For k
items with label 1, . . . , k, let π be a rank function from {1, . . . , k} onto {1, . . . , k}, where π(i)
is the rank of item i. The class of distance-based models(DBM) for rank data proposed by
Diaconis [23] is as follows:

Pr(π|λ, π0) = e−λd(π,π0) × C(λ)−1 (1)

where λ ≥ 0 is the dispersion parameter, d(π, π0) is a distance function between ranking
function π and π0, and C(λ) is a proportionality constant. Let φ = e−λ. The closer to the
modal ranking π0 is, the higher probability of occurrence ranking has. The distribution
of ranking will be more concentrated around π0 for smaller λ (larger φ). Kendall’s tau
distance is considered and it is defined as:

d(π1, π2) = ∑
i<j

I{[π1(i)− π1(j)][π2(i)− π2(j)] < 0},

where I(·) is an indicator function and π1 and π2 are rank functions for i, j ∈ {1, . . . , k}.
Suppose Y is the response variable with ranking outcome 1, 2, 3, or 4. Two types of

the response samples are considered. One is complete rank and the other is partial rank.
For the partial rank responses, the last two rank values are deleted after the associated
complete rank responses are simulated. Five independent covariates are also used and
their distributions are given in Table 2. Among them, the first three are ordered and the
others are categorical covariates. For each study, 500 or 1000 random samples of Y and
its related covariates are generated, respectively. The number of times of each covariate
selected by the Gini and ST methods are recorded in 1000 repetitions.

Table 2. Distributions of X variables used in the simulation studies. Z, E, U10, C2, and C10 are
mutually independent; Z is a standard normal variable; E is an exponential variable with mean one;
U10 is a uniformly distributed variable on the set {1, 2, . . . , 10}; Cm denotes an m-category variable
taking values {1, 2, . . . , m} with equal probabilities.

X1 ∼ Z
X2 ∼ E
X3 ∼ U10
X4 ∼ C2
X5 ∼ C10

3.1. Independent Case

In this study, the response variable is designed to be independent of the five covariates.
The response is generated by Kendall’s tau distance-based model with φ = 0.8. The estimated
probability for each covariate being selected is given in Figures 1 and 2 for partial (top-2) rank
and complete rank responses, respectively.

From both figures, we find that the Gini method select X1 or X2 more frequently than X3
for ordered covariates. For categorical covariates, it selects X5 more often than X4. For either
sample sizes (500 or 1000), it is designed that X1 or X2 has more split points than X3, as does
X4 compared with X5. Hence, we find that the Gini method tends to select variables with more
split points. However, in this study, the response variable is assumed to be independent of the
five covariates. The probability of each variable being selected must be approximately 1/5.
Therefore, we believe that the Gine method has obvious variable selection bias. Conversely,



Mach. Learn. Knowl. Extr. 2023, 5 453

the ST method selects each covariate all within three standard errors of 1/5 for each design
setting. We conclude that our method is relatively unbiased.
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Figure 1. Estimated probabilities of variable selection for the ST and the Gini method where Y is
independent of the X values. The sample size is 500 and 1000, respectively. The distribution of Y
follows the DBM model with Kendall’s tau distance function, where φ = 0.8 and π0 = (1, 2, 3, 4).
The top-2 rank data are used in this setting. The distributions of X values are given in Table 2. The
simulation standard errors are about 0.018.
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Figure 2. Estimated probabilities of variable selection for the ST and the Gini method, where Y is
independent of the X values. The sample size is 500 and 1000, respectively. The distribution of Y
follows the DBM model with Kendall’s tau distance function, where φ = 0.8 and π0 = (1, 2, 3, 4). The
complete rank data are used in this setting. The distributions of X values are given in Table 2. The
simulation standard errors are about 0.018.

3.2. Dependent Models

We study the selection power of the two methods in this section. The response
variables, which depend on some covariates, are generated. Five dependent models are
considered and they are given in Table 3. For example, in Model I, when X3 ≤ 5, rank
outcomes are generated by fitting Kendall’s tau distance model with π0 = (1, 2, 3, 4).
Otherwise, they are generated with π0 = (4, 3, 2, 1). Each of the first four models only
contains a main effect, while the last model involves a pure interaction effect. The estimated
probability for informative covariate(s) being selected is recorded and the results are given
in Figures 3, 4, 5, 6 and 7, respectively.
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Table 3. Models for power studies of the variable selection methods. The response variable is
generated by fitting Kendall’s tau distance-based model with π0 = (1, 2, 3, 4) when the condi-
tion is satisfied; otherwise, π0 = (4, 3, 2, 1). The distributions of X values are given in Table 2,
S = {(X2, X4)|X2 ≤ 1 or X4 ∈ {1}}, and T = {(X2, X4)|X2 ≤ 1 and X4 ∈ {1}}.

Model Condition

I X3 ≤ 5
II |X3 − 5| ≤ 2
II X4 ∈ {1}
IV (X2, X4) ∈ S
V (X2, X4) ∈ T

For Model I, a mean shift in X3 changes the response. Therefore, X3 is an important
factor in Model I and should be defined as a selection variable. From Figure 3, we observe
that the Gini method performs slightly better than the ST method for φ ≤ 0.8. This trend
continues for φ = 0.85 when the sample size is 1000. However, for φ = 0.85 and the sample
size is 500 or φ = 0.9, the ST method is better.

For Model II, a range change in X3 affects the response. To ensure the accuracy, it is
crucial to choose X3 as a selection variable. Figure 4 indicates that the Gini method is
compatible with the ST method when φ = 0.75. Otherwise, the ST method performs better
than the Gini method. Moreover, for some values of φ, the selection probabilities of the Gini
method are smaller than 1/5, which is undesirable. The selection bias of the Gini method
contributes to this.

The response depends on X4 under Model III. Therefore, X4 holds great significance
in Model III and we should define X4 as a selection variable. From Figure 5, we find that
the Gini method is competitive with the ST method when φ = 0.75. For larger π values,
the selection probability of the Gini method drops rather fast and its performance is inferior
to the ST method.

Under Model IV, either X2 or X4 is informative. Using X2 or X4 as a selection variable
is imperative for the model to produce reliable outcomes. Figure 6 shows that the ST
method is always better than the Gini method in selecting the informative variables for the
settings with either partial or complete rank outcomes.

For Model V, it involves an interaction effect between X2 and X4. According to the
literature proposed by Kung et al., when there is an interaction effect between variables,
utilizing a strategy of interaction detection such as Algorithm 2 will result in more powerful
outcomes. Therefore, we test Algorithm 2 against the Gini method in this study. To keep
the effectiveness of Model V, either X2 or X4 should be assigned as a selection variable.
Figure 7 shows that the ST method using Algorithm 2 is able to select the correct variables
more effectively than the Gini method.

Through these studies, we conclude that the ST method is more reliable in selecting
the informative variables than the Gini method, except perhaps some cases in Model I.
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Figure 3. Estimated probability of X3 is selected for the ST and the Gini method under Model I. Data
are observed for partial rank (P, top-2) or complete rank (C) and the sample size is 500 or 1000.

ST     
Gini

0.75 0.750.80 0.800.85 0.850.90 0.90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 P C

𝝓𝝓 𝝓𝝓

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

ST     
Gini

Figure 4. Estimated probability of X3 is selected for the ST and the Gini method under Model II. Data
are observed for partial rank (P, top-2) or complete rank (C) and the sample size is 500 or 1000.
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Figure 5. Estimated probability of X4 is selected for the ST and the Gini method under Model III.
Data are observed for partial rank (P, top-2) or complete rank (C) and the sample size is 500 or 1000.
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Figure 6. Estimated probability of X2 or X4 is selected for the ST and the Gini method under Model IV.
Data are observed for partial rank (P, top-2) or complete rank (C) and the sample size is 500 or 1000.
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Figure 7. Estimated probability of X2 or X4 is selected for the ST and the Gini method under Model V.
Data are observed for partial rank (P, top-2) or complete rank (C) and the sample size is 500 or 1000.

4. Data Analysis

We apply our method to the EVS data and its resulting tree is shown in Figure 8. The
bar plots of each terminal shows the proportions of combined partial rank responses in each
terminal node. For the convenience of representation, we regard A&B and B&A as the same
category. In other words, the label assigns a rank to outcomes regardless of their order, for
instance, AB indicates that the ranking is either A&B or B&A. We find that country group
and age of education completion are two decisive predictors, which agrees with the finding
of Lee and Yu (2010). However, the selection of split variables differs between the fourth
and fifth nodes. In the ST method, there is only one cut point selection for the CG variable,
whereas in the Gini method, there are more cut point selections for the Ed variable (in fact,
32 cut points). This confirms the discussion of the dependent models in Section 3.2, which
shows that the Gini method favors the split variable with more cut points. Therefore, in
our analysis of the EVS data, we have more confidence in the ST tree method. Group 4
countries are in node 1 and 2, which are divided by education level. Node 3, 4, and 5 consist
of Group 1, 2, and 3 countries, respectively. From the bar plots, we further notice that,
regardless of the ordering, the majority of individuals in Group 4 prefer (A) and (C), and
individuals with higher education level (Ed > 17) valued (A) and (B) almost as important
as (A) and (C). For Group 1 countries, people prefer (A) and (D), while people in Group
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3 give priority to (A) and (B). For Group 2 countries, although people prefer (A) and (B),
almost equal preference is given to (B) and (D) or (A) and (C).
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Figure 8. ST tree and Gini tree for EVS data. At each intermediate node, an observation goes to the
left child node if and only if the stated condition is satisfied. The number beneath each terminal node
gives the node sample size.

5. Conclusions

Decision trees are excellent data exploratory tools. In this article, we propose a frame-
work of constructing decision trees for rank data which may contain missing ranks. It uses
Pearson’s chi-squared tests of independence to select the split variable as well as its split
point at each node. It retains its nature of easy interpretation without worrying about the
split selection bias. Through simulation experiments, we find that, compared with the Gini
criterion method of Yu et al. [13], our selection method is relatively unbiased. Furthermore,
it is more effective in selecting the informative covariates when these covariates are related
to the ranking response. A Bonferroni type stopping rule is applied to declare a node
terminal. In the end, our tree method is used to analyze an EVS dataset and some distinct
ranking patterns are found.
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Two issues are not treated in this paper. One is the assignment rule of terminal nodes.
It surely depends on the criterion, which can be (1) mean rank, (2) top-choice frequency,
(3) the most frequently observed rank, or (4) the paired comparison probabilities [13].
The other issue is the assessment of tree performance, which may rely on (a) deviance [12],
(b) AUC [13], or (c) Kendall’s tau statistics [16]. This will be the subject of our future research.
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