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Abstract: In recent years, the diabetes population has grown younger. Therefore, it has become a
key problem to make a timely and effective prediction of diabetes, especially given a single data
source. Meanwhile, there are many data sources of diabetes patients collected around the world,
and it is extremely important to integrate these heterogeneous data sources to accurately predict
diabetes. For the different data sources used to predict diabetes, the predictors may be different. In
other words, some special features exist only in certain data sources, which leads to the problem of
missing values. Considering the uncertainty of the missing values within the fused dataset, multiple
imputation and a method based on graph representation is used to impute the missing values within
the fused dataset. The logistic regression model and stacking strategy are applied for diabetes
training and prediction on the fused dataset. It is proved that the idea of combining heterogeneous
datasets and imputing the missing values produced in the fusion process can effectively improve
the performance of diabetes prediction. In addition, the proposed diabetes prediction method can
be further extended to any scenarios where heterogeneous datasets with the same label types and
different feature attributes exist.

Keywords: diabetes prediction; data sources fusion; missing values imputation; graph representation
learning; ensemble learning

1. Introduction

The prevalence of diabetes is rising all over the world. According to the statistics
from the International Diabetes Federation (IDF), about 425 million adults worldwide were
diagnosed with diabetes in 2017. Following this trend, it is estimated that by 2045, the
number of diabetic patients in the world will exceed 629 million [1]. Diabetes is a major
cause of blindness, kidney failure, heart attack, stroke and lower-limb amputation, bringing
huge inconvenience to the patients and even being life-threatening in severe cases. If it can
be detected early and intensive treatment be offered, about half of those diabetes patients
can go into remission.

At present, machine learning is an important research direction due to its high effi-
ciency, accuracy, and extraordinary learning speed, and it plays a huge role in many fields,
such as computer vision [2], natural language processing [3,4], stock market analysis [5], etc.
In the 1980s, machine learning was used to predict diabetes. In 1988, Smith [6] constructed
an early neural network model to study diabetes prediction in Pima Indians. He compared
and analyzed the results with Logistic Regression (LR) and Linear Perceptron (LP). In 2004,
Meiland [7] established a model based on LR to predict the presence of asymptomatic
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bacteriuria in diabetic women according to clinical indicators such as medical history and
white blood cell count. In 2011, Ahmad A [8] compared the performance of decision trees
and neural networks in diabetes prediction. In 2013, Kumari [9] used the backpropagation
algorithm to provide an effective method for the automated examination of diabetes. In
2017, Maniruzzaman et al. [10] proposed a Gaussian Process (GP)-based model for dia-
betic classification of existing techniques such as Naive Bayes (NB), Linear Discriminant
Analysis (LDA) and Quadratic Discriminant Analysis (QDA). In 2018, Swapna and Vinaya
Kumar [11] used a deep learning method for detecting diabetes. In their study, Long
Short-Term Memory (LSTM), Convolutional Neural Network (CNN) and a combination
thereof were adopted to obtain dynamic features and then pipelined to Support Vector
Machine (SVM) for classification.

All these studies have improved the prediction performance of diabetes. However,
they are only based on a single small dataset. Considering that a single dataset contains
limited information and there are many diabetes datasets, an effective method to pro-
mote diabetes prediction performance should be combining the multiple heterogeneous
datasets. It should be noted that the process of combining datasets is also a feature-
fusion process. Different datasets contain different feature information, and the features
contained in different datasets will be fused when combined with different datasets. For
feature fusion, many datasets are multi-dimensional. For example, the characteristics of
a flower can be shape, color, and so on. These characteristics determine which breed it
belongs to. We can also infer its species by its smell, flowering period, and geographical
distribution. Therefore, if we combine these characteristics together, then the prediction
of the flower varieties should be more accurate. In fact, this process can be viewed as
multi-view learning [12–14]. In the process of feature fusion, the common features of
heterogeneous datasets are directly integrated. Some specific features will be missed
during the fusion process. Thus, some missing-value handling methods are needed to
solve this problem and form a complete dataset.

For missing value handling strategies, there are three categories of approaches to deal
with missing values. The first category is to remove all samples with missing values [15].
This is simple and intuitive; it will encounter huge problems when a large number of
data values are missing. Unlike the first category, the second category chooses to impute
the missing values. There are many common imputation methods, including Mean Im-
putation [16], Random Imputation within Classes [17], Gaussian copula imputation [18],
etc. Commonly used ones include Regression Imputation [19], Support Vector Machine
Imputation (SVM) [20], Multiple Imputation (MI) [21], Genetic Algorithm [22], graph-based
imputation [23], etc. These imputation methods can effectively impute the missing values,
but the imputation effect is different. The third category uses the indicator matrix to indicate
the position of the missing values in the dataset, ignoring the marked missing values in the
subsequent training and prediction process, and only uses the non-missing parts [24,25].
The second category is the most commonly used one among these three categories, and
multiple imputation is the most popular one among the methods based on imputation.

As for diabetes prediction, besides the most critical glycemic indicator, different
hospitals or institutions will also consider other indicators to help them determine whether
a patient has diabetes. These indicators may be differentiated and of different dimensions.
In other words, there is heterogeneity between datasets. Since different indicators in the
heterogeneous datasets all reflect some information related to diabetes, from the perspective
of feature fusion, it is necessary to fuse them together. After fusion, the new dataset contains
the characteristics of the original two datasets, which theoretically improves the prediction
effect of diabetes. Therefore, in this paper, we will propose a new diabetes prediction
system that can combine heterogeneous data sources. The system fused the common and
special features within two data sources and missing values occurred during this process.
For the missing value handling problem, we adopt multiple imputation and the graph
representation learning model to impute the data to feed LR [26] to train and predict



Mach. Learn. Knowl. Extr. 2023, 5 386

diabetes. To further improve the prediction results, we also introduce ensemble learning
framework stacking [27,28], and finally further improve the prediction performance.

The main contributions of this paper are summarized as follows:

1. Explore and improve diabetes prediction by fusing two heterogeneous datasets from
different sources, which can be generalized to more than two data sources and differ-
ent application domains.

2. Taking the uncertainty of the missing values into consideration, graph representation
learning is adopted to impute the missing values within the fused dataset.

3. Compared with the prediction results of the original dataset, the prediction re-
sults of the fused dataset are improved, and the stacking strategy further improves
the performance.

The rest of this paper is organized as follows: Section 2 elaborates the overall frame-
work of the system, introducing the specific functions of each module. Section 3 demon-
strates the experiments, including dataset description, experimental settings, experimental
evaluation metrics, experimental results and the analysis. In Section 4, we discuss the
experimental results. Finally, Section 5 concludes the paper.

2. Heterogeneous Data Source Combination System Framework

The system framework in Figure 1 demonstrates the main process to combine data
sources and predict diabetes. The whole system consists of three stages: data input, data
combination, data training and prediction. Two heterogeneous datasets are fed as input, a
new fused dataset is obtained by data combination, and then training and prediction are
carried out to output the prediction result of diabetes. The details of these three phases are
described below.

Figure 1. An overview of heterogeneous data source combination system framework

2.1. Data Input

At this stage, we feed two different datasets to predict diabetes. The features of these
two datasets can be divided into common parts and specific parts, and the labels of those
samples, being positive or negative, are retained.

2.2. Data Combination
2.2.1. Data Analysis

In this section, for the two datasets, we first calculate the correlation between the
features of the datasets and the labels, and then analyze which features have a greater
impact on the prediction of diabetes. These features are supposed to be extracted as
the features of the combined dataset. Essentially, this is the feature selection or feature
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reduction. In addition, some advanced machine learning methods, such as supervised
nonnegative matrix factorization and attribute reduction [29–31], can also be adopted.

2.2.2. Data Preprocess

Before combination, the original datasets should be preprocessed to eliminate abnor-
mal samples. For the few missing values in the datasets, we can choose to remove them
directly, or we can use common imputation methods (such as mean imputation) to impute
the missing values. In short, what we do is ensure that the input data are reasonable.

2.2.3. Data Imputation

After data preprocessing, there should be no missing data in the two original datasets.
Then, we start to combine heterogeneous data sources. Let P = {p1, p2, · · · , ps} be all the
feature sets in the first dataset, and Q = {q1, q2, · · · , qt} be all the feature sets in the second
dataset. Aip(i = 1, 2, · · · , m; p = p1, p2, · · · , ps) represents the p-th feature corresponding
to the i-th sample in the first dataset, Bjq(j = 1, 2, · · · , n; q = q1, q2, · · · , qt) represents the
q-th feature corresponding to the j-th sample in the second dataset. When combining data,
let S = P∩Q be the feature sets shared by P and Q, and union the sample with the shared
features in data A(S) and B(S) to obtain D1, i.e., D1 = A(S) ∪ B(S). Let R = P \Q be
the feature sets that exist in P but do not exist in Q, then set the sample in the second
dataset B(R) = NaN, union the sample to obtain D2 = A(R) ∪ B(R). In the same way, let
T = Q \ P, set the sample in the first data A(T) = NaN, and union the sample to obtain
D3 = A(T) ∪ B(T). In the end, the final combined dataset is D = D1 ∪D2 ∪D3.

As long as there are different features in the two different datasets, there must be
missing values in the new dataset. Next, two imputation models will be used to impute
missing values.

1. Multiple Regression. The main idea of multiple regression imputation model
is to fit multiple regression models to missing variables and complete data variables
to predict missing values [32]. For each missing value, we regard the missing variable
as the dependent variable and the related variable (other non-missing variables) as the
independent variable, perform regression fitting, then use the predicted value as the
imputed value. We repeat the above process to generate m datasets, integrate the datasets
together, then evaluate the model, and finally output a complete dataset.

2. GRAPE. Traditional missing value imputation methods include simple mean im-
putation and median imputation, etc., and complex ones such as k-neighbor imputation,
regression imputation and so on [33]. However, some imputation methods based on deep
learning, such as graph representation learning, are rarely considered to impute missing
values. GRAPE is a graph-based representation learning method, which has good perfor-
mance in feature imputation and label prediction [23]. In the GRAPE framework, feature
imputation is transformed into an edge-level prediction task and label prediction into a
node-level prediction task according to the bipartite graph model. These tasks are then
solved using graph neural networks. The main steps are as follows:

Transform the Dataset into a Graph Structure

The main idea of the GRAPE model is to represent the missing dataset as a bipartite
graph. In Figure 2, Fj(j = 1, 2, 3) represents the jth feature of the sample, Oi(i = 1, 2, 3)
represents the ith sample, R(Oi, Fj) represents the value corresponding to the jth feature
of the ith sample. For example, R(O1, F1) = 0.5. Taking O1, O2, · · · , Oi as the nodes
on one side of the bipartite graph, and F1, F2, · · · , Fj as the nodes on the other side of
the bipartite graph, the nodes on both sides correspond to the edges formed by the
connection, which is R(O, F). R(O, F) is the feature value of the corresponding sample.
If the feature of the sample is missing, the corresponding connection is missing. The
nodes of the bipartite graph are represented in the form of one-shot vectors, which is
convenient for subsequent input.
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Figure 2. The process of transforming a dataset into a graph in “GRAPE”.

Use a Trained GNN (Graph Neural Network) to Calculate the Embedding of Each Vertex
and Corresponding Known Edge

The embedding of an element is the vector calculated by propagating the element to
the hidden layer. Based on a trained GNN, each element can be transmitted to the hidden
layer from its own one-shot representation, and then extract the hidden layer vector as
its own embedding [34]. An embedding can be regarded as a new feature vector, which
contains information between elements. These embeddings are used as the input of the
imputation model to impute missing values.

Use of MLP (Multilayer Perceptron) Model for Data Imputation

The nodes on one side of the bipartite graph are used as the input layer of the MLP, and
the nodes on the other side are used as the output layer. Here, the MLP can in fact be viewed
as a GNN over a complete graph, where the message function is matrix multiplication.
GRAPE extends a simple MLP by allowing it to operate on sparse graphs, enabling it for
missing feature imputation tasks by adopting a more complex message computation. For
more detail, refer to GRAPE [23].

Through data analysis, data preprocessing and data imputation, a fused complete
dataset can be finally obtained. This dataset contains the features extracted from the original
two datasets, and each sample has a corresponding feature value. Then we use this dataset
for training and prediction.

2.3. Data Training and Prediction

In this step, we use the basic model and the stacking method of ensemble learning [35]
to train and make prediction. The main idea of the stacking method in the ensemble
learning paradigm is as follows. First, the dataset is evenly divided into k parts, any one
part is used as the test data, and the remaining k− 1 parts are used as training data. The
k basic models are employed to train and predict the data, and then the predicted results
are combined to form a single dataset. Finally, a meta-model is used to train this dataset
and obtain the final result. We chose five basic models (decision tree, random forest, LDA
(linear discriminant analysis), KNN, Naive Bayes) and a meta-model (LR) for training and
prediction. Its algorithm is shown in Algorithm 1.

The fused dataset is divided into training and test sets, and then the above models are
used for training to predict, respectively, the samples belonging to the first data source in
the test set, the samples belonging to the second data source, and all the samples in the test
set to obtain the results.
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Algorithm 1 Algorithm of Stacking

Require: Training Set D = {(x1, y1), (x2, y2), · · · , (xm, ym)};
Basic Model b1, b2, · · · , bT ;
Meta-Model m

1: for t = 1→ T do
2: ht = bt(D);
3: end for
4: D

′
= ∅;

5: for i = 1→ m do
6: for t = 1→ T do
7: zit = ht(xi);
8: end for
9: D

′
= D

′ ∪ ((zi1, zi2, · · · , ziT), yi);
10: end for
11: h

′
= m(D

′
);

Ensure:H(x) = h
′
(h1(x), h2(x), · · · , hT(x))

3. Experiment
3.1. Dataset Description

There are two datasets used in this experiment, namely the Weihai Municipal
Hospital(WMH) Diabetes Dataset and the Pima Indian Diabetes Dataset. The WMH
dataset comes from a municipal hospital in Weihai City, Shandong Province, China. It
records 12 diabetes-related diagnostic indicators of 118 local patients in Weihai, including
gender, age, BMI, family history, insulin, blood sugar, serum C-peptide, and so on. The
Pima dataset contains diabetes indicators including Pregnancies, Glucose, Insulin, Blood
Pressure, Skin Thickness, Diabetes Pedigree Function, BMI, etc. of 768 Pima Indian
women with potential diabetes from Phoenix, Arizona [36]. Both datasets contain the
diagnosis labels of each patient (ill or not). According to the advice from doctors and
some conclusions from previous research [37], six important features (gender, age, BMI,
blood glucose, proinsulin and Cp120) are selected from the former dataset and five
features (gender, age, BMI, blood glucose and diabetes pedigree) from the latter one to
form seven common features. The features shared by the two datasets include gender,
age, BMI, and blood glucose. Table 1 is a detailed description of the features.

Table 1. Description of the features in the combined dataset.

Feature Value Type Description

Gender 0 or 1 gender
Age Integer age
BMI Float Body mass index

Blood Glucose Float Human blood glucose concentration
Proinsulin Float initial proinsulin level, measured 120 min after taking glucose

Cp120 Float initial C−peptide level, measured 120 min after taking glucose
Diabetes Pedigree Float coefficient calculated by family members diabetes conditions

3.2. Experimental Settings

After the dataset fusion process, we selected the multiple imputation and the GRAPE
model to fill in the datasets, and obtained two complete fused datasets. The LR model and
the stacking model in the ensemble learning framework are selected to train and predict
whether the person is diabetic. Five basic models—random forest, decision tree, LDA,
KNN, and Naive Bayes—and a meta-model LR are adopted in the stacking model. To verify
the effectiveness of the proposed methods, five performance evaluation metrics—accuracy,
precision, recall, F1-score, AUC (Area Under Curve)—are used in our experiments, and
five-fold cross-validation is adopted to run the experiments. The average results and
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standard deviations are reported. Cross-validation can decrease the impact brought about
by the different distributions of training data and test data.

Experiment 1. Use the LR model to train and predict on the original dataset.
Experiment 2. Use the multiple imputation model and GRAPE model for data imputa-

tion on the fused dataset, and use LR model and stacking model for training and prediction.
Train the models on the training set containing both WMH and Pima samples, and then
predict the WMH samples and Pima samples in the test set, respectively.

Experiment 3. Use the multiple imputation model and GRAPE model for data im-
putation on the fused dataset, and use LR model and stacking model for training and
prediction. Split the fused dataset into the WMH samples and Pima samples, and then
train and predict on WMH samples and Pima samples, respectively.

Experiment 4. Compare the methods “Complete GRAPE” and “GRAPE”. When the
GRAPE model is used to impute the missing values, in fact, it will impute all the values
including the existing values and the missing values. When we adopt LR to do the training,
and use the complete data obtained after GRAPE, we call this method “Complete GRAPE”.
If the dataset keeps the existing values and just replaces missing values with the imputed
values obtained from GRAPE, we call the method employed on this dataset “GRAPE”. We
will use them to predict the labels of WMH samples, Pima samples, and all samples in the
test set.

Experiment 5. Compare the methods “LR+GRAPE” and “GRAPE”. For the basic
model LR, the data after GRAPE imputation is divided into training and test sets, LR is
trained on the training set and prediction is performed on the test set. This method is
named “LR+GRAPE”. It is noted that GRAPE can predict the label in the test set without
the help of any additional classification model. In Figure 2, running GRAPE with the label
as node, the label corresponding to each sample in the test set will be given. This method is
named “GRAPE”. We will use them to predict the labels of WMH samples, Pima samples,
and all samples in the test set.

Since we use five-fold CV, all the above experiments are run five times, and the mean
and standard deviation of the five results are taken as the final result.

3.3. Evaluation Metrics

Five evaluation metrics—accuracy, precision, recall, F1-score, and AUC (Area Under
Curve)—are adopted in the experimental comparison. Since the first four are based on the
confusion matrix, we will introduce the confusion matrix first. Figure 3 is the structure of
the confusion matrix. The confusion matrix is a two-dimensional matrix, which is mainly
used to evaluate binary classification problems and reflect the difference between the
predicted result and the actual result [38]. It can be seen from the matrix that there are two
types of category (0 and 1), and the difference between the category predicted by the model
and the true categories forms four indicators, respectively. They are true positive (TP),
false positive (FP), false negative (FN) and true negative (TN). TP represents the number of
samples whose predicted result is 1 and the true result is 1, and FP represents the number of
samples whose predicted result is 1 but the actual result is 0. TN represents the number of
samples whose predicted result is 0 and the true result is 0, and FN represents the number
of samples whose predicted result is 0 but the actual result is 1.

The calculation formula for accuracy is

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

It reflects the proportion of the correctly predicted sample to the total sample.
The calculation formula of precision is

Precision =
TP

TP + FP
. (2)
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Figure 3. Confusion Matrix.

It reflects the accuracy of the positive class and measures the correctness of the predic-
tion of the positive class.

The calculation formula of recall is

Recall =
TP

TP + FN
. (3)

It indicates how many samples with positive labels are predicted correctly.
Precision and recall are often relative. Sometimes precision is high but recall is low, so

F1-score is introduced to provide a trade-off. F1-score is an evaluation index that combines
precision and recall. Its calculation formula is

F1 =
2TP

2TP + FN + FP
(4)

It is the harmonic mean of precision and recall.
The last one, AUC, refers to the area between the ROC (Receiver Operating Char-

acteristic) curve and the x-axis. It can quantitatively display the classification of the
model. Generally, the larger the value of AUC, the better the classification performance
on the dataset.

In the context of medicine, especially in clinical decision support, the AUC is often too
general in that it assesses all decision thresholds, including unrealistic ones. Conversely,
accuracy, precision, recall, positive predictive value, and the F1 score are too specific; they
are measured against a single threshold that is optimal for some cases but not for others,
which is not fair. Thus, each measure has its limit, all of them will be adopted to evaluate
the result. A very recent work [39] describes a deep ROC analysis to measure performance
in multiple groups of predicted risk or in groups of TP rate or FP rate. It is interesting that
these authors also provide a Python toolkit.

3.4. Experimental Results

The results of Experiment 1 and Experiment 2 are shown in Figure 4, Tables 2 and 3.
From Table 2, we can find that both the MICE filling model and the GRAPE imputa-
tion model have improved the prediction results of WMH samples slightly, and the
performance obtained using the stacking model is better than that obtained by the LR
model. Regarding the WMH data, it achieves the best performance with an accuracy of
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92.5% using the GRAPE model for data imputation and the stacking model for training
and prediction. From Table 3, it can be seen that compared to the WMH dataset, Pima’s
prediction results are slightly improved. On the whole, for Pima dataset, it can be im-
proved slightly using the MICE filling model to impute and using the stacking model
to predict.

Accuracy Precision Recall F1 AUC
0.0

0.2

0.4

0.6

0.8

1.0

LR-WMH LR-PIMA

Figure 4. The prediction of the LR model on the two original datasets.

Table 2. Prediction results of WMH samples on the combined data set.

Dataset Accuracy Precision Recall F1-Score AUC

LR-WMH origin 0.873 ± 0.042 0.859 ± 0.090 0.878 ± 0.075 0.863 ± 0.052 0.878 ± 0.041

LR-MICE 0.879 ± 0.063 0.934 ± 0.045 0.910 ± 0.055 0.921 ± 0.043 0.827 ± 0.096

STACK-MICE 0.912 ± 0.074 0.929 ± 0.061 0.962 ± 0.044 0.945 ± 0.049 0.842 ± 0.106

LR-GRAPE 0.908 ± 0.058 0.946 ± 0.073 0.938 ± 0.045 0.940 ± 0.040 0.877 ± 0.110

STACK-GRAPE 0.925 ± 0.026 0.945 ± 0.054 0.964 ± 0.042 0.953 ± 0.016 0.880 ± 0.080

Table 3. Prediction results of Pima samples on the combined data set.

Dataset Accuracy Precision Recall F1-Score AUC

LR-PIMA origin 0.763 ± 0.025 0.717 ± 0.068 0.548 ± 0.062 0.618 ± 0.049 0.715 ± 0.029

LR-MICE 0.762 ± 0.035 0.736 ± 0.067 0.520 ± 0.068 0.609 ± 0.067 0.708 ± 0.041

STACK-MICE 0.787 ± 0.029 0.733 ± 0.092 0.597 ± 0.083 0.652 ± 0.051 0.742 ± 0.037

LR-GRAPE 0.768 ± 0.023 0.758 ± 0.065 0.525 ± 0.055 0.617 ± 0.040 0.715 ± 0.021

STACK-GRAPE 0.770 ± 0.027 0.734 ± 0.058 0.546 ± 0.083 0.622 ± 0.056 0.719 ± 0.037

For Experiment 3, Figure 5 shows the result comparison of training on fused training
samples to predict Pima test samples and separate training on Pima training samples and
then predicting Pima test samples. Figure 6 shows the result comparison of training on
fused training samples to predict WMH test samples and separately training on WMH
samples and then predicting WMH test samples. It can be seen from the results that for
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both Pima samples and WMH samples, the results of separate training and prediction are
generally not as good as those results obtained with training and predicting together.

For Experiment 4, Tables 4 and 5 demonstrate the results of the two methods “GRAPE”
and “Complete GRAPE”. From these two tables, we can see that it is slightly better to
use the imputed dataset obtained from “Complete GRAPE” for WMH dataset than that
obtained from “GRAPE” in recall, but slightly worse in precision, F1-score and AUC. For
Pima data, it seems that “Complete GRAPE” performs worse than “GRAPE” in most of
the evaluation metrics. On all data, “Complete GRAPE” performs slightly better than or
as well as “GRAPE”. In summary, it seems that “Complete GRAPE” performs as well as
“GRAPE”. This is indeed reasonable, because the imputed result of the GRAPE model for
the position that already exists is very close to the actual value. It indicates that this has
little influence on the prediction effect.

LR-MICE STACK-MICE LR-GRAPE STACK-GRAPE
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

train and predict separately train and predict together

Figure 5. Comparison of the prediction accuracy of training on all samples and training only on
Pima samples.

Table 4. Results obtained with the method “GRAPE”.

Dataset Accuracy Precision Recall F1-Score AUC

WMH 0.908 ± 0.058 0.946 ± 0.073 0.938 ± 0.045 0.940 ± 0.040 0.877 ± 0.110

PIMA 0.768 ± 0.023 0.758 ± 0.065 0.525 ± 0.055 0.617 ± 0.040 0.715 ± 0.021

ALL 0.775 ± 0.031 0.790 ± 0.049 0.592 ± 0.055 0.676 ± 0.049 0.744 ± 0.033

For Experiment 5, Figures 7 and 8 show the predicted results of the two methods
“GRAPE” and “LR+GRAPE”. From the results, we can find that the prediction results ob-
tained from “GRAPE” are slightly better than or as well as that obtained from “LR+GRAPE”.
Thus, it is better to directly use “GRAPE” to impute and predict than to run LR on the data
after “GRAPE” imputation.
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LR-MICE STACK-MICE LR-GRAPE STACK-GRAPE
0.0

0.2

0.4

0.6

0.8
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train and predict separately train and predict together

Figure 6. Comparison of the prediction accuracy of training on all samples and training only on
WMH samples.

Table 5. Results obtained with the method “Complete GRAPE”.

Dataset Accuracy Precision Recall F1-Score AUC

WMH 0.908 ± 0.054 0.911 ± 0.067 0.972 ± 0.029 0.939 ± 0.037 0.861 ± 0.088

PIMA 0.748 ± 0.034 0.698 ± 0.063 0.489 ± 0.079 0.571 ± 0.061 0.688 ± 0.037

ALL 0.786 ± 0.040 0.793 ± 0.067 0.655 ± 0.041 0.717 ± 0.046 0.767 ± 0.038

To see the boundary of the proposed method, we run the STACK-GRAPE on fused
datasets with three missing ratios: 30%, 50% and 80%. For our fused dataset, its missing
ratio is about 30%. We assume our fused dataset to be X with the size 986× 7, to generate
a dataset with missing ratios 50% and 80%, 20% and 50% of 6902 (986× 7) entries are
randomly removed from those observed positions. STACK-GRAPE is then run on these
generated datasets. The results are shown in Table 6. From this result, we can see that
the performance of STACK-GRAPE decreases when missing ratios increase, but even in
the missing ratio 80%, the accuracy is still 0.676. Thus, this method applies to the high
missing ratio.

Table 6. Experiments on fused datasets with different missing ratios.

Percentage Accuracy Precision Recall F1-Score AUC

Missing-30% 0.803 ± 0.020 0.789 ± 0.059 0.682 ± 0.062 0.729 ± 0.037 0.781 ± 0.025

Missing-50% 0.732 ± 0.025 0.697 ± 0.046 0.603 ± 0.062 0.645 ± 0.042 0.712 ± 0.028

Missing-80% 0.676 ± 0.020 0.661 ± 0.068 0.481 ± 0.060 0.552 ± 0.034 0.651 ± 0.020
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Figure 7. Results obtained with the method “GRAPE”.
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Figure 8. Results obtained with the method “LR+GRAPE”.

Since ensemble learning framework stacking is used to predict diabetes, to understand
the stacking model better, additional experiments with each sub-model are conducted and
the results are shown in Table 7. From the results, we can find that Naive Bayes performs
the worst, and random forest performs the best among the sub-models. The ensemble
model STACK-GRAPE outperforms all the sub-models in the average cases.
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Table 7. Experiments of the stacking model and each sub-model on the fused dataset with GRAPE
imputation.

Methods Accuracy Precision Recall F1-Score AUC

Random Forest 0.778 ± 0.028 0.787 ± 0.058 0.629 ± 0.061 0.697 ± 0.046 0.755 ± 0.031

Decision Tree 0.762 ± 0.019 0.744 ± 0.071 0.632 ± 0.078 0.677 ± 0.031 0.740 ± 0.018

LDA 0.774 ± 0.015 0.771 ± 0.036 0.621 ± 0.057 0.686 ± 0.037 0.748 ± 0.023

KNN 0.758 ± 0.028 0.769 ± 0.043 0.608 ± 0.058 0.678 ± 0.044 0.737 ± 0.030

Naive Bayes 0.661 ± 0.022 0.608 ± 0.037 0.494 ± 0.056 0.544 ± 0.043 0.635 ± 0.021

STACK-GRAPE 0.803 ± 0.020 0.789 ± 0.059 0.682 ± 0.062 0.729 ± 0.037 0.781 ± 0.025

4. Discussion

From the above experiments, it can be seen that the imputation model and the classifier
adopted have an impact on the prediction performance of the fused datasets. As for the
filling model, the more basic filling models such as mean filling and KNN filling are not
suitable for multiple regression imputation. The deep-learning imputation model GRAPE
seems the best option to impute the missing values in the fused dataset. GRAPE, a deep-
learning imputation model, can act as a classifier besides the imputation model, and it
performs well. In addition, the ensemble learning model stacking can boost the performance
further, and some previous works [40,41] also verified this conclusion. However, these
works cannot deal with missing-value problems, thus comparison cannot be done on
prediction on incomplete datasets. In the process of fusing heterogeneous datasets, it is
important to choose a suitable filling model. The better the filling model used, the more
effective the information contained in the fusion dataset. With such a dataset, coupled with
a good prediction model, the final prediction result will be satisfactory.

For the imputation model, besides multiple imputation and GRAPE, several other
models are proposed to deal with missing values, such as LSTM [42]. Due to the
introduction of a gating mechanism, LSTM is outstanding in the processing of the
missing values of time-series problems. Compared with LSTM, GRAPE can deal with any
missing case in any data. The idea of combining heterogeneous datasets and imputing the
missing values incurred in the combining process is not only applicable to the problem
of diabetes prediction, but also to all the disease prediction problems [43], even those
outside the medical field. It is also interesting to consider missing-value imputation and
diabetes prediction as multitask learning [44].

Although the proposed methods show their effectiveness, there is a limit for them. If
the different data sources do not have common features, the proposed method cannot be
directly uses. However, in real-world applications, different data sources collected with
the same goal normally have some features in common, as well as some special features.
Thus, when combining, it is better to make full use of their complementary and consensus
information. It can be seen as multi-view learning [45,46] or multi-source learning. Thus,
the tools used in those related areas can be borrowed to serve the current goal. In addition,
we fused two data sources in this work, and in fact it is easy to extend to more than two
data sources.

5. Conclusions

The prediction performance of this system obtained by combining two heterogeneous
diabetes data sources and selecting an appropriate imputation model is better than those
obtained on the original datasets. For the WMH dataset, the GRAPE model for imputation
and the stacking model for training is the best combination. For the Pima dataset, the MICE
model and the stacking model have the best prediction performance. This shows that the
idea of combining heterogeneous datasets and imputing the missing values produced in the
fusion process is effective to improve diabetes prediction performance. In fact, almost every
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hospital collected the heterogeneous diabetes datasets and they have not been exploited
to serve for diabetes prediction. This paper provided a feasible and effective way to deal
with this problem and shows great potential. Moreover, this idea may not only be used in
diabetes prediction, but also can apply to any scenarios where heterogeneous datasets with
the same label types and different feature attributes exist. In the current work, we did not
investigate the impact caused by the different distribution of training data and test data.
However, this fact indeed has an impact on the prediction performance. In future work,
further research will be conducted.
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