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Abstract: Artificial neural networks can learn complex, salient data features to achieve a given task.
On the opposite end of the spectrum, mathematically grounded methods such as topological data
analysis allow users to design analysis pipelines fully aware of data constraints and symmetries.
We introduce an original class of neural network layers based on a generalization of topological
persistence. The proposed persistence-based layers allow the users to encode specific data properties
(e.g., equivariance) easily. Additionally, these layers can be trained through standard optimization
procedures (backpropagation) and composed with classical layers. We test the performance of
generalized persistence-based layers as pooling operators in convolutional neural networks for image
classification on the MNIST, Fashion-MNIST and CIFAR-10 datasets.

Keywords: topological persistence; rank-based persistence; pooling; steady persistence

1. Introduction

Artificial neural networks (ANNs) can approximate arbitrarily complex functions
provided that they are fed with a high-quality, sufficiently large training set. Users do
not need to develop a profound knowledge of the data involved in the task. However,
they do not control the features that the network will learn to solve the task. The lack of
control makes it difficult to predict the generalization capacity of ANN-based analysis
pipelines, causing pathologies such as vulnerability to adversarial attacks [1] or requiring
the investigation of custom data augmentation algorithms [2] to reduce errors or tame
unwanted behaviors caused by noisy features interpreted as salient by the network. On the
contrary, the topological persistence (TP) requires the user to explicitly declare—under the
form of a continuous real-valued function—which features of the data are relevant to tackle
a given task. This procedure does not require harvesting training data and gives the user
complete control over the features used to solve the task.

Both the ANN and TP frameworks have apparent drawbacks; gathering the massive
training datasets required to train complex neural architectures can be extremely hard.
Symmetries of the data can be leveraged to reduce the dimensionality of the parameter
space of ANNs and learn efficiently from smaller datasets [3–5]. However, it is often
difficult to adapt such constructions to arbitrary features. Instead, in the TP frameworks,
accessing sufficient information to determine what features are needed to achieve the
desired results can be equally daunting. Moreover, TP is bound to topological data types
(e.g., triangulable manifolds). Thus, data lacking such topological structures need to be
mapped—often via complex transformations—to topological spaces. See [5–7] for examples
of topological constructions mapping graphs to simplicial complexes.

Interactions between TP and deep learning are of broad interest [8–10]. Ideally, com-
bining the two methods would yield constrainable and learnable models composable with
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state-of-the-art neural networks. However, we believe that the need to map data to topo-
logical objects and express their features as critical points of continuous functions hinders
the development of TP-inspired neural layers.

1.1. Aim

At the crossroad between artificial neural network and topological persistence, we
provide an algorithmic approach to the design of learnable persistence-based layers focus-
ing on generality in terms of data types, usability through a streamlined user interface,
and flexibility. We do this by building on the framework of rank-based persistence [11],
which allows us to avoid auxiliary topological constructions mapping data to topological
objects. This approach broadens the spectrum of applicability of our solutions, naturally
including data types such as undirected and directed graphs, and metric spaces. Finally,
in the attempt of simplifying the TP’s algorithmic pipeline, we leverage the notion of
persistent features [12]. Persistent features allow us to define learnable, persistence-based
neural network layers based on Boolean features of the data, rather than defining them as
continuous functions. Finally, such layers can be easily constrainable with respect to data
symmetries.

1.2. Contribution

In this study, we define and provide constructive examples of operators based on
persistent features and discuss their properties, particularly constrainability and noise
robustness. After showcasing these properties on images, we introduce an original neural
network layer, namely the persistent feature-based layer. We base our proposal on two primary
principles. On the one hand, we aim to learn relevant (persistent) features directly from
data points. On the other hand, we provide simple strategies to take advantage of locality
and equivariance, which are two critical notions for analyzing structured data. We provide
an algorithm for a persistence-based pooling operator, test it on several architectures and
datasets, and compare it with some classical pooling layers.

1.3. Structure

In Section 2, we retrace the interplay between networks and topological persistence,
in particular for the use of the latter in a neural network. Section 3 intuitively introduces
the central mathematical concepts involved in the definition of a persistence-based layer:
persistent homology, rank-based persistence, and persistent feature. In Section 4, we devise
an image-filtering algorithm based on persistent features, discuss its main properties,
and provide examples. Thereafter, we define a persistence-based neural network layer and
specialize it to act as a pooling layer in convolutional neural networks. Computational
experiments in Section 5 evaluate and compare the performance of the proposed pooling
layer in an image-classification task on several datasets and on two different architectures.
In the same section, we provide a qualitative analysis of the most salient features detected
by the persistence-based pooling, the classical max-pooling, and LEAP [13].

2. State of the Art

The interplay between topological persistence (TP) and networks is nowadays a wide
and ramified research area; it dates back at least to [6], where the clique and neighborhood
complexes were built on a time-varying network for application in statistical mechanics.
TP was then applied to graph-derived simplicial complexes in several contexts: polymers,
collaboration networks, various aspects of brain connections, social networks, language
families, and many more.

Comparing large networks in search of a possible isomorphism is not only compu-
tationally unfeasible but also nonsensical; so a notion of weak isomorphism [14] and an
interesting pseudo-metric on the space of all networks [15] were introduced. A natural
strategy is the reduction to a set of invariants; along the same lines, the same authors applied
persistent homology to the Dowker and clique complexes of a directed network [16,17]
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and to its path homology [18]. The stability and convergence of the derived invariants
are studied in a comprehensive paper: [19]. Two interesting papers on similar problems
are: [20,21].

TP is used in [22] for assessing a sort of complexity of a neural network: each edge is
given a weight derived from the activation function; then, the diagram of the persistent
Betti number in degree zero is computed. Finally, the p-th “neural persistence” of the
network is defined as the p-norm of the diagram. A “persistence interaction detection”
framework is the core of [23]. This shows how TP can be of use in the analysis of neural
networks; conversely, a neural network can be employed to directly produce the persistence
image of a given picture [24].

The first paper we know, in which TP is part of a neural network, is [25], which adopts
as the input layer a (vectorized) persistence diagram of the object to be classified. This
is a strategy that was then refined by [26,27] and was followed in different forms by a
large number of researchers. A similar technique, based on the “element specific persistent
homology” is applied in a series of papers (starting from [8]) for the prediction of protein-
ligand binding affinity; see the rich bibliography of [10]. In [28,29], the Wasserstein-1
distance between persistence diagrams contributes to the loss function of a deep neural
network for 3D segmentation.

Neural networks that have graphs as input, benefit quite naturally from topological
expedients for down-scaling: [30–33]. Coming closer to the subject of our research, a form of
topological pooling based on persistent homology was defined in [34] for pose recognition;
a message reweighting graph convolution is also based on TP in [35]. TP-based pooling is the
subject of two well-structured papers: [36,37]. Still, these articles are based on the classical
pipeline: constructing weighted simplicial complexes, getting a filtration, and computing
persistent homology modules. Our approach differs in that we bypass the simplicial
and homological passages, thanks to a generalization that produces persistence diagrams
directly from graph-theoretical features.

3. Background

In the following paragraphs, we sketch and provide references for the essential mathe-
matical constructions that motivate and inspire the idea of persistent-based layers: persis-
tent homology, rank-based persistence, and steady persistent features.

3.1. Rank-Based Persistence

Persistent homology requires three main ingredients:

1. A filtered topological space;
2. The homology functor Sk mapping topological spaces to finite vector spaces;
3. A notion of rank, e.g., the dimension for vector spaces or cardinality for sets [38].

In Figure 1, we show how considering a topological sphere X ⊂ R3 filtered by the
height function

f : X → R
(x, y, z) 7→ z

yields a persistence diagram whose points correspond to the maxima and minima of X with
respect to the vertical axis. We refer the reader to [39] for details on topological persistence
and persistent homology.

We choose to frame our work in a more general context than homological persis-
tence, namely rank-based persistence [11]. Although topological persistence and persistent
homology have been extended in several ways, e.g., [40–44], rank-based persistence al-
lows us to work directly in the category of the data of choice, rather than topological
spaces. The authors assume an axiomatic standpoint based on the three building blocks
of homological persistence mentioned above, and the authors generalize persistence to
categories and functors other than topological spaces and homology. Importantly, under a
few assumptions, persistence built in the rank-based framework still guarantees funda-
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mental properties such as flexibility (dependence on the filtering function), stability [45],
and robustness [46]. In this setting, we can work with data types such as images and time
series, without intermediary topological constructions. We refer to [11] for details and
provide a list of analogies between classical and rank-based persistence in Table 1.

(a) (b)

f −1((−∞, 2]) f −1((−∞, 5]) f −1((−∞, 10])

Sublevel 0 Sublevel 1 Sublevel 2
(c)

104 CHAPTER 7. TOPOLOGICAL PERSISTENCE

Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X æ R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 Îf ≠ gÎŒ ,

where Îf ≠ gÎŒ = supx |f(x) ≠ g(x)|, holds.

7.2.3 An algorithm for computing persistence
Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K æ X a monotone
function such that f̃ (·) 6 f̃ (‡) if · is a face of ‡. Consider an ordering of the
simplices of K, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
; 1 if ‡i < ‡j

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0≠1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J æ N
j ‘æ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of
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Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,Œ), (c2, c4),
(c3, c5) and (c6,Œ).

filtration induced by the sub-level sets of a tame functions f . Moreover, the lifespan
of the homology classes represented by a cornerpoint corresponds to its distance
from the diagonal. Thus, noisy and persistent homological classes are represented
by cornerpoints lying near to or far from the diagonal, respectively.

Bottleneck distance

Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
allows to compare such diagrams.

Definition 7.2.7. Let X be a triangulable topological space and f, g : X æ R two
tame functions. The bottleneck distance between Dk(f) and Dk(g) is

dB (Dk(f), Dk(g)) = inf
“

sup
pœDk(f)

Îp ≠ “(p)ÎŒ ,

where “ : Dk(f) æ Dk(g) is a bijection and Îp ≠ “(p)ÎŒ = maxpœDk(f) |p ≠ “(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of � allows the comparison of multisets of
points whose underlying set has di�erent cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.

f
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a) Filtration b) Persistence diagram c) Matching(a) (b) (c)

Figure 1. Persistent homology. Let us consider a topological space X and a continuous function
f : X → R. The (homological) critical values of f induce a sub-level set filtration of X. (a) Critical
values C = {c1, . . . , c6} of the height function on a topological sphere. Sublevels of the filtering
function f —namely, f−1((−∞, c]), for every c ∈ C—yield a filtration of the topological sphere.
(b) Changes in the number of generators of the kth homology groups along the filtration can be
represented as a persistence diagram. 0-dimensional holes (connected components) are represented
as green points. The void obtained at the last sublevel set gives rise to the blue line. (c) Persistence
diagrams can be compared by computing an optimal matching of points. Unmatched points are
associated with their projection on the diagonal.

Table 1. Analogy between the classical and rank-based persistence frameworks.

Classical Framework Categorical Framework

Topological spaces Arbitrary source category C
Vector spaces Regular target category R
Dimension Rank function on R
Homology functor Arbitrary functor from C to R
Filtration of topological spaces (R,≤)-indexed diagram in C

3.2. Persistent Features

In the spirit of the aforementioned generalization, ref. [12] (Section 2.2) introduces the
concept of steady persistent features for weighted graphs.

A weighted graph is a pair (G, f ), where G = (V, E) is a graph defined by a set of
vertices V and edges E, and f is a function assigning (tuples of) real-valued weights to the
edges of G, in symbols f : ei = [vi,1, vi,2] 7→ wi. The weighting function naturally induces a
sublevel set filtration

∅ ⊆ S1 = f−1((−∞, w1]) ⊆ · · · ⊆ Sn = f−1((−∞, wn]) = G.

For an intuition, see Figure 2a,b.
Let S = 2V∪E be the set of all subsets of elements (vertices and edges) of G. Let F be

a graph-theoretical property, e.g., local degree prevalence, independence. The persistent
feature F : S → {true, false} associated with F is a Boolean mapping returning true if
the property F holds for a certain subset s ∈ S and false otherwise. Symmetrically to
the topological persistence framework, we evaluate F for every subset of every {Si}i.
See Figure 2b. Then, we compute the steadiness σ of each subset s along the filtration by
counting subsequent sublevels such that F (s) = true. As in [12], we refer to σ((G, f ,F ))
as the steady persistence of the feature F on (G, f ). This construction yields a persistence
diagram. See Figure 2c.



Mach. Learn. Knowl. Extr. 2023, 5 350

(a) (b)

f −1((−∞, 2]) f −1((−∞, 5]) f −1((−∞, 10])

Sublevel 0 Sublevel 1 Sublevel 2
(c)

104 CHAPTER 7. TOPOLOGICAL PERSISTENCE

Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X æ R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 Îf ≠ gÎŒ ,

where Îf ≠ gÎŒ = supx |f(x) ≠ g(x)|, holds.

7.2.3 An algorithm for computing persistence
Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K æ X a monotone
function such that f̃ (·) 6 f̃ (‡) if · is a face of ‡. Consider an ordering of the
simplices of K, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
; 1 if ‡i < ‡j

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0≠1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J æ N
j ‘æ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of

7.2. FROM HOMOLOGY TO PERSISTENT HOMOLOGY 103

f

c1

c2

c3

c4

c5

c6

Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,Œ), (c2, c4),
(c3, c5) and (c6,Œ).
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by cornerpoints lying near to or far from the diagonal, respectively.
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Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
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where “ : Dk(f) æ Dk(g) is a bijection and Îp ≠ “(p)ÎŒ = maxpœDk(f) |p ≠ “(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of � allows the comparison of multisets of
points whose underlying set has di�erent cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.
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a) Filtration b) Persistence diagram c) Matching(a) (b) (c)

Figure 2. Persistent features. (a) A weighted graph (G, f ). The weight values—integers in the
set {2, 5, 10}—are encoded as the thickness of the edges. (b) The sublevel set filtration induced by
the weights. Teal vertices are the vertices in each sublevel with local degree prevalence. (c) The
persistence diagram is obtained by considering the steadiness of each true subset along the filtration.
One vertex realizes local degree prevalence at level 5 and stops being prevalent entering level 10.
Another vertex is prevalent at level 10 and shall never stop being such because f−1((−∞, 10]) = G.

4. Persistence-Based Layers

In the following sections, we first build a persistence-based operator that can act as a
filter on grayscale images (the operator can also be applied to RGB images treating each
channel independently). This construction follows naturally from the definition of steady
persistent function. Then, we discuss the main properties of such operators: locality and
equivariance. Finally, we specialize our construction to operate as a pooling layer in a
convolutional neural network.

4.1. Persistent Features as Equivariant Filters

Locality and equivariance are crucial features for convolutional neural networks,
and in general for any group-equivariant model. Indeed, we have:

1. The intensity of a pixel in a grayscale image carries knowledge only when compared
to neighboring pixels;

2. Identical configurations located in different regions of the image (translated) should be
recognized as such by the model, as is the case for convolutional neural networks [47].
Mathematically, a function f is equivariant with respect to the action of a group G
if f (gx) = g f (x). See [4,9,48,49] for an overview on and examples of equivariant
machine learning models

4.1.1. Locality

In this setting, considering the notion of the persistent feature introduced in Section 3.2,
we think about an image as a graph in which vertices are pixels and edges connecting
adjacent pixels. Patches (or windows in a time series) of size k around a pixel (point)
correspond to k-distance neighborhoods of the vertex associated with such a pixel.

4.1.2. Flexibility

Persistent features require a filtered space to be computed. Thus, after associating a
graph to an image (or time series), we define the weighting function f : S→ Rn, where S is
the set of all subsets of V ∪ E and n ∈ N. Importantly, f can carry additional information
about the original data. For instance, when considering images, one can associate with
each vertex the intensity value of its underlying pixel, and leverage this information to
compute appropriate weights in a process reminiscent of message passing in graph neural
networks [50]. The weighting function f induces a sub-level set filtration of the graph
associated with each pixel of the image. See Figure 3a,b for an example.

4.1.3. Equivariance

Once the pair (G, f ) has been associated with our data, the proposed construction
is naturally equivariant with respect to translation. Indeed, sublevel set filtrations and
persistent features are totally determined by the weights and connectivity of the graphs at
each filtration level. It is important to notice that the flexibility of the proposed solution
makes it possible to further control the equivariance of the operator. For instance, weighting
functions that only depend on pairwise intensity values will generate operators that not only
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are equivariant with respect to translations, but also to isometries (translation, rotations,
reflection, and scaling) of the original data.

(a) (b)0 0.25 0.5 10.75

f −1((−∞,0])

f −1((−∞,0.25])

f −1((−∞,0.5])

(c) (d)

Figure 3. Persistent features. An image (a) and its interpretation as a weighted graph. (b) Given
a focus pixel and its neighborhood (a 3× 3 patch in the example), we map the image to a graph G
having as vertices the patch’s pixels and edges connecting adjacent pixels. We weigh edges of G by
evaluating the function f : R×R→ R mapping the intensity values of two vertices to the minimum
intensity values of the respective pixels in the image. Edges with weight 0 are not shown. (c) The
sublevel-set filtration induced by the weights. Teal vertices are the ones with a prevalent local degree.
(d) The persistence diagram obtained considering the filtration/feature pair.

4.1.4. Parametrization

We can add parameters to the weighting function f and the feature F to create
operators endowed with more complex equivariance and learnable parameters. Let
St = ι−1((−∞, t]) be a sublevel of G naturally induced by the intensity of pixels (edges
are added when the vertices they connect are added). We define Gk

m,n(v, t) as the feature
mapping v to true if more than m and less than n pixels in the k-distance neighborhood of v
have an intensity less than t. Figure 4a shows how varying parameters m and n allow us to
highlight radically different aspects of a binary image.
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Figure 4. Persistence-based filter. (a) The persistence-based filter acts in an equivariant fashion (the
same feature is recognized throughout the image) and parametrization changes lead to the detection
of heterogeneous features. (b) We perform edge detection on a noisy input (40% of the pixels are salt
and pepper noise). Performance is compared across the proposed persistence-based filter, Canny,
and Sobel edge-detection algorithms with and without preprocessing (median filter). Results are
showcased for different ratios of noisy pixels. On the right, we compare the Mean Square Error and
Peak Signal to Noise Ratio across the considered edge-detection algorithms.
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Remark 1. The operator G defined above does not rely on the 2-dimensional structure of the selected
patch. Thus, its steady persistence diagram is not only invariant with respect to translations, but also
to permutations. This kind of equivariance meshes the standard convolutional equivariance with the
fully-connected input/output representation typical of dense layers of an artificial neural network.

4.1.5. Robustness

In the context of both topological and rank-based persistence, robustness means that
small changes in the image do not give rise to significant perturbations of the corresponding
persistence diagram. This concept is defined in [12] for persistent features and dubbed
balancedness. In [51], it is formally shown that G is a balanced feature in the sense of [12].
Robustness to noise is showcased in Figure 4b. Additionally, and in line with the principles
of functional data analysis [52], the proposed operator is adapted to work on continuous
data and multiple resolutions: salient features are maintained across different resolutions, as
shown in [53] in the context of persistent images; in computational experiments, the authors
demonstrate how downsampling the persistence diagram does not affect the classification
accuracy.

4.2. A Steady, Persistent-Feature Layer

The filter G and its steady persistence introduced in Section 4.1 is endowed with
features inherited from its mathematical foundation, which make it suitable for tackling
typical machine learning tasks:

1. G enhances the signal in correspondence of abrupt changes (a max-pooling filter could
be blind to such features);

2. The steady persistence σ(G) yields invariant representations of the input with respect
to the group of isometry;

3. Salt-and-pepper noise does not impair the quality of detected features.

These properties motivate implementing and testing σ(G) as a complement to pool-
ing and convolutional operators in standard artificial neural networks. In the following
paragraphs, we discuss the implementation of a pooling layer with learnable parameters
based on persistence features. The same operator can be easily adapted to work as a
convolution-like layer.

4.2.1. Persistence-Based Pooling

We consider an image I and split it in a collection of patches {P(h, w)i} of size
(h, w) ∈ N2. For every pixel p ∈ Pi, we compute σ(Gk

m,n)(p) for some fixed values of
m, n and k (padding is added if needed). This procedure, which computationally boils
down to sorting and slicing operations, yields a persistence diagram with a point per pixel
in Pi. Indeed, we compute the operator G for every Pi, padding the patch whenever neces-
sary. Symmetrically to the classical max-pooling operator, the maximum persistence—i.e.,
the distance from the diagonal—shall determine the value to be associated with the entire
patch and its downsampling. As an example, see Figure 5a,b, and the top row of (c).

4.2.2. Parametrization

Alternatively, and following the idea of learnable pooling operators, e.g., [13], we
propose to learn weights Λ to modulate the contribution of the non-zero component of
the persistence diagram, as depicted in Figure 5c. Because the persistence value associated
with each pixel is continuous and G is balanced, it is possible to learn such weights through
standard backpropagation.
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Figure 5. Persistence-based Pooling. (a) We extract patches of fixed size from the input image.
(b) The steady persistence operator σ(G) yields a persistence diagram associating a persistence
value—namely, the distance from the diagonal of the points of the persistence diagram on the right of
the panel—with each of the pixels of the considered patch. (c) We associate to each patch either the
maximum persistence or a weighted sum of the persistence values associated with each pixel. In the
latter case, weights are learned through gradient descent.

5. Computational Experiments

We assess the performance of the suggested pooling layer, embedding it into two
neural architectures. First, we compare the performance of the persistence-based pooling
with some classical pooling implementations. Then, we compute saliency maps (projections
of the network’s gradients onto the input images) to highlight qualitative differences across
the considered pooling layers.

5.1. Datasets

We perform computational experiments on the MNIST [54], Fashion-MNIST [55],
and CIFAR-10 [56] datasets. The MNIST and Fashion-MNIST datasets are composed of
grayscale images labeled according to ten classes of hand-written digits and fashion articles,
respectively. Both datasets are composed of 60,000, 28 by 28 pixels, black and white images
for training, and 10,000 for testing. The CIFAR-10 dataset is composed of 50,000, 32 pixels
by 32 pixels, RGB images for training that belong to ten classes: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. The test is performed on 10,000 additional
labeled images.

5.2. Architectures

We test the proposed layer via two neural network architectures depicted in Figure 6.
We designed the first architecture to provide the simplest configuration, in which different
pooling operators could be compared during a supervised task where parameters are
learned via gradient propagation. The second architecture is more akin to the standard
convolutional neural network topology in a simple image-classification task; we alternate
the convolutional and pooling layers before a dense classifier is provided.
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Figure 6. Benchmark architectures. The two architectures used in computational experiments. (a) A
toy neural network where a pooling operator is applied directly to input images. The downsampled
output of the pooling layer is passed to a dense classifier. In other words, first, the pooled output is
flattened, then its dimensionality is reduced to match the number of classes to be predicted by the
network. (b) As common practice for CNNs, this architecture alternates convolutional and pooling
layers before the dense classifier.



Mach. Learn. Knowl. Extr. 2023, 5 354

Training

We use sparse categorical cross-entropy as a loss function [57]. Optimization is con-
ducted in batches of 32 images through the ADAM optimizer [58] with a learning rate of
3× 10−4 . We train each model for 100 epochs and make use of early stopping [59] with
parameters min_delta = 0 and patience = 3.

5.3. Results

We tested the architectures presented in Section 5.2 on image classification on the
MNIST, Fashion-MNIST, and CIFAR-10 datasets. We adapted the persistence-based and
convolutional layers to work with the RGB images of CIFAR-10. Specifically, the persistence-
based pooling layer treats channels independently; thus, multiple channels are processed
in parallel, ignoring their interactions.

5.3.1. Performance

We compared the performance of several pooling layers, namely:

• Max-pooling;
• Persistence-based-pooling with learnable parameters (ours);
• LEAP [13].

Additionally, we considered a combination between the learnable persistence-based
pooling and max-pooling layers. The two pooling approaches are combined by adding
the value obtained through max-pooling on a specific patch to the weighted sum defined
in Section 4.2 and depicted in Figure 5c. In this way, the weights learned during training
combine and modulate the contribution of persistent features detected in each patch and
the maximum intensity value of the pixels therein.

We quantify the performance of each network through a standard accuracy metric. We
list the results in Table 2. The proposed layers, outperform the max-pooling and LEAP on
both datasets and architectures. The combination of max- and persistence-based-pooling
realizes the maximum performance in three out of six experiments. We believe this result
points to the complementarity of the two approaches.

Table 2. The accuracy realized by the selected architectures when endowed with ours and state-of-
the-art pooling layers.

Architecture-Dataset Max LEAP PL (Ours) PML (Ours)

(a)—MNIST 0.8905 0.9238 0.9472 0.9087
(b)—MNIST 0.9886 0.9848 0.9908 0.9880
(a)—FMNIST 0.7978 0.8385 0.8424 0.8435
(b)—FMNIST 0.8845 0.8776 0.8930 0.8985
(a)—CIFAR-10 0.3226 0.3291 0.4185 0.3869
(b)—CIFAR-10 0.6145 0.5217 0.6355 0.6499

5.3.2. Qualitative Comparison of Salient Features

Pooling operators aim to select salient features of their input. Grad-CAM heatmaps [60]
are a visualization tool for highlighting regions of the input that contributed most to the
model’s prediction. Figure 7 showcases Grad-CAM heatmaps obtained through the consid-
ered architectures on random input samples. As expected, the persistence-based pooling
and its combination with max-pooling yield similar yet distinct heatmaps. In particular,
although non-topological, the persistence-based pooling seems to capture geometrical
and topological features of the images, such as corners and regions that would cause the
foreground image to disconnect. See Figure 7a,b, respectively.
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Figure 7. Grad-CAM heatmaps show pixel-wise saliency of features of an image with respect to
the neural network’s gradients. Each row provides an example from a different dataset: MNIST (a),
Fashion-MNIST (b), and CIFAR-10 (c).

6. Conclusions

At the crossroad between artificial intelligence and generalizations of topological data
analysis, we propose original constructions of neural network layers, taking advantage
of the formalism of rank-based persistence. Building on persistent features, we define a
convolution-like operator that can be tailored to specific tasks by imposing equivariance
through simple invariants. Such invariants can be defined easily by considering features of
the data at hand rather than mapping data to the category of topological spaces. Thanks
to its mathematical foundation relying on steady persistence and inherited by persistent
homology, the proposed operators enjoy mathematically guaranteed properties such as
noise robustness and stability to perturbations. We showcase these properties by explicitly
defining an image filter operator, relying on steady persistence and testing it in an edge-
detection task on noisy images. We compare the performance of the proposed filter against
state-of-the-art edge detectors, namely Canny and Sobel operators, comparing the mean
squared error and peak signal-to-noise ratio achieved by the three methods on images
affected by the salt and pepper noise. In our tests, the proposed operator outperforms
competitors in detecting edges and image restoration (noise removal).

Locality, equivariance, and robustness to noise make the proposed class of operators a
plausible complement to existing neural layers. Indeed, neural network layers are designed
to be as agnostic as possible to the intrinsic properties of their input data. These features
make them incredibly general and, at the same time, challenging to constrain to specific
data features. This generality induces problematic behaviors and hinders the intelligibility
of neural networks’ learning patterns [61–63]. The proposed persistence-based layers,
allowing the user to select relevant (persistent) features a priori, pave the road to the design
and implementation of hybrid strategies leveraging the data-driven, learnable nature of
artificial neural networks and the flexibility of the persistence-based approach.

We devise and implement a special class of the persistent-features-based layer called
persistent-based pooling. The proposed layer uses the previously defined edge detection
operator to act as a pooling layer in convolutional neural networks. A natural choice of
operation for persistence-based pooling is to consider the maximum persistence realized
in the diagram associated with each input image patch. We implement an alternative
parametrized version that is equipped with learnable weights and easily combinable with
standard max-pooling. We test this learnable layer version in image classification on
three benchmark datasets. We compare the classification accuracy achieved by our layers
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with max-pooling and LEAP and embed the pooling layer into two neural architectures
(dense and convolutional, respectively). Persistence-based pooling realizes a better perfor-
mance than its competitors across architectures and datasets. Finally, utilizing Grad-CAM
heatmaps, we visualize salient features of input samples to provide a qualitative compari-
son across the considered pooling layers. There, the persistence-based pooling seems to
retrieve relevant geometrical properties of the images.

This approach meshes well with the framework developed in [64], where inputs,
outputs, and weights of a neural network layer are expressed as functions on smooth or
discrete spaces. There, we demonstrated how several classes of linear neural network layers
can be expressed as a combination of the function pullback (from a smaller to a larger
space), pointwise multiplication of functions, and integration along fibers. We believe
that, by combining the two approaches, it will be possible to define general parametric
nonlinear layers, where the architecture is defined through the parametric spans introduced
in [64], whereas the geometry-aware nonlinear computation descends from the methods
developed here.
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