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Abstract: We investigate how to modify executable files to deceive malware classification systems.
This work’s main contribution is a methodology to inject bytes across a malware file randomly
and use it both as an attack to decrease classification accuracy but also as a defensive method,
augmenting the data available for training. It respects the operating system file format to make sure
the malware will still execute after our injection and will not change its behavior. We reproduced five
state-of-the-art malware classification approaches to evaluate our injection scheme: one based on
Global Image Descriptor (GIST) + K-Nearest-Neighbors (KNN), three Convolutional Neural Network
(CNN) variations and one Gated CNN. We performed our experiments on a public dataset with
9339 malware samples from 25 different families. Our results show that a mere increase of 7% in
the malware size causes an accuracy drop between 25% and 40% for malware family classification.
They show that an automatic malware classification system may not be as trustworthy as initially
reported in the literature. We also evaluate using modified malware alongside the original ones to
increase networks robustness against the mentioned attacks. The results show that a combination of
reordering malware sections and injecting random data can improve the overall performance of the
classification. All the code is publicly available.

Keywords: malware classification; adversarial examples; Deep Learning; Convolutional Neural
Networks

1. Introduction

Malware—a short term for malicious software—is described by Sikorski et al. [1] by
their action:

Any software that does something that causes harm to a user, computer, or
network can be considered malware [. . . ]

These applications, purposedly built with intentions of reading, copying, or modifying
information from computer systems—often without user consent—pose a high threat for
modern information systems [2–7]. The early detection of such malware is vital to minimize
their effects on an organization or even among regular users.

In this work, we discuss strategies related to the classification (i.e., which kind of
malware is it?) of malware samples using only their raw bytes as inputs to machine
learning algorithms. These strategies can be seen as part of the static analysis of samples,
an especially important stage in a malware detection pipeline, in which it is necessary
to provide the classification without executing the file being analyzed. It is important to
stress that these methodologies are not to be used as the sole strategy to detect malware
samples but as the first one in a multi-step chain of procedures. Despite that, due to their
fast execution times and lack of human interaction, they are still an integral part of such a
pipeline [2,8,9].

We present here a straightforward way to modify a software file to deceive systems
built to classify malware examples into families. Our method builds upon the idea of
injecting bytes into the executable file [10]. We seek to insert bytes in various parts of a
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malware. By doing so, we aim to deceive malware classifiers and preserve the original
functionality while hindering the detection of injected data. To accomplish that, we create
rules of injection that respect the file format of the operating system the malware will infect.
We can not only define how many bytes we inject but also how they spread over the file.
More importantly, we explore two approaches:

Random injection: inserting random bytes, so that we do not require any knowledge
about the systems to be deceived

Adversarial injection: inserting bytes taken from families different from the sample be-
ing evaluated.

The classification approaches evaluated in this work are based on methods that learn
straight from the raw bytes of the file, ranging from methodologies that reinterpret the
sample as a grayscale image up to preprocessing each sample as a 1D vector in their
execution [9,11–20]. We want to evaluate the vulnerability of these variants to the already
known adversarial examples [21], which is an approach with increasing popularity in
the literature, especially in the context of malware [10,12,19,20,22–25]. There are some
limitations that must be observed, though, since the perturbations added to malware
samples must be drawn from a discrete domain. It differs from other types of data, such as
images. In addition, executable files have strict standards, which means byte ordering is
relevant in some parts of the file. As mentioned earlier, we limited our manipulations to
the expected standards in order to preserve the functionality of the malware samples.

In that sense, we investigate both sides of this problem: we explore an attack method
that modifies input samples to deceive the classification algorithms, but we also eval-
uate the robustness of defense mechanisms to mitigate those attacks. Several meth-
ods have been proposed recently to reduce the effects of adversarial attacks in multiple
domains [26–30]—by trying to distinguish a crafted input from a real one, reducing their
effects on the network output by modifying the optimization during training, or even
trying to totally remove the adversarial perturbations from the input. Nevertheless, this
still remains an open problem in the malware domain. With this work, we attempt to
provide some directions to the mitigation of adversarial attacks against malware classifica-
tion systems.

The rest of this paper is presented as follows: in Section 3, we compare our method-
ologies to others present in the literature. In Section 4, we present how we generate and
add data between sections of a Portable Executable (PE) file. Section 5 discusses the ma-
chine learning algorithms evaluated in this paper for malware classification. In Section 6,
we discuss our evaluation strategies and their results, finishing with our conclusions in
Section 7.

Our contributions can be summarized as follows:

1. We provide a framework to inject data into PE files that leverages all the alignments
required to preserve its functionality. It can inject any sort of data (either random or
from a different file) in multiple positions of the file, not only at the end (padding).

2. We evaluate how different deep neural networks architectures proposed for malware
classification behave in multiclass classification scenarios. We want to assess the
difficulties behind separating a given sample from other samples of the same kind.

3. We evaluate how the aforementioned networks behave when dealing with injected
samples. Our goal here is to assess how our attacks impact the classification of these
networks in regard to both the location and also the amount of injected data.

4. We evaluate different augmentation strategies for defending against our data injec-
tion scheme, amplifying the robustness of malware classification techniques using
raw bytes.

2. Background

Modern operating systems, such as Linux and Microsoft Windows, use the concept
of sections to read an executable file, load it to the memory, and run its instructions. It
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is necessary to know and follow the file format specifications to be able to insert data in
different parts of an executable and preserve its functionality. Since there are differences
between the files accepted by each operating system, designing a system-agnostic injection
scheme is impracticable. For this reason, we focus on the Microsoft Windows PE format, as
it is the only one included in publicly available malware datasets [11,31].

As shown in Figure 1, PE sections provide information about the executable, such as
its instructions (“.text”), its variables(“.data”), and resources it uses (“.rsrc”). Following
this layout, our strategy consists of injecting non-executable sections such as “.data” to the
file. This way, the set of instructions does not change, and the only way to decide whether
an injected section is in use or not is through execution.

Figure 1. Illustration of the sections of a PE file.

3. Related Works

We start by presenting previous works which performed malware classification. We
also discuss other methodologies for malware perturbation and how authors have tried to
minimize these effects.

3.1. Malware Classification

Nataraj et al. [11] presented a method to transform software into images and classify
them according to their malware family. In this context, a family is a set of software files
with high similarity of instructions and behavior. Follow-up works explored this idea
using different feature extraction (e.g., GIST, Local Binary Patterns, Scale-Invariant Feature
Transform) and classification (e.g., Support Vector Machines, K-Nearest Neighbors (KNN))
methods [32,33].

The growth in Deep Learning research led to the exploration of neural networks for
malware classification. Recent works applied different architectures for this task, either by
extracting static features from the file (e.g., system calls, imported libraries, functions in use,
function call graph) [13,34–38] or by using the raw bytes from the data as input [16,39,40].
Other strategies try to combine the extraction of static features with information taken
from the dynamic analysis of samples; i.e., they are executed in a controlled environment,
and the effects caused on the operational system are then used as features to classify the
input [2,41,42]. Some of them achieve high classification accuracy by training Convolutional
Neural Networks (CNNs) from scratch [18,33,41] or by using prior knowledge from a CNN
pre-trained on a large dataset [9,14,15] such as ImageNet [43]. Malware detection was also
exploited in the form of a binary classification by considering all malware files as one class
and samples of benign software as the other one [15,16,37,38,41].

These networks, however, are vulnerable to adversarial attacks, which means that
tampering with the data structure of a malware sample before it is analyzed can lead to
substantial misclassification, completely overruling the original purpose of an automatic
classification system. In this work, we explore different architectures—KNN+GIST as
proposed by Nataraj et al. (2011) [11], CNN, CNN-LSTM and CNN BiLSTM as proposed
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by Le et al. (2018) [17] and MalConv as proposed by Raff (2017) [16]—and how they behave
against crafted adversarial samples. Section 5 provides the reasoning behind this choice. In
this work, we evaluate the two aspects of adversarial training by attacking these models
with handcrafted samples and also retraining them with augmented data to make them
more robust against the injected samples.

It is worth mentioning that there are few relevant public datasets for training malware
classifiers, which makes comparing different works a more subtle task. Malimg [11], BIG
2015 [31] and EMBER [36] are the most notable ones. Since our injection method require
reading the file header, the BIG 2015 [31] dataset is not possible because the samples have
their headers stripped. EMBER [36], on the other hand, does not provide raw byte values
straight away. Since they provide SHA-256 values taken from file contents, a reverse search
in malware indexing services is needed in order to retrieve their raw bytes. In Table 1,
we aggregate state-of-the-art methods for malware detection and classification by their
technique and the dataset it used.

Table 1. Summary of different malware classification techniques.

Author Technique Dataset

Nataraj et al. (2011) [11] GIST + KNN malimg [11]

Pascanu et al. (2015) [34] Echo State Network (ESN) + Logistic
Regression Private

Athiwaratkun and Stokes (2017) [13] LSTM + Multilayer Perceptron (MLP) Private

Yue (2017) [14] CNN malimg [11]

Raff (2017) [16] Embedding + CNN Private

Anderson (2018) [36] Embedding + CNN Ember [36]

Su et al. (2018) [18] CNN Private

HaddadPajouh et al. (2018) [40] LSTM Private

Liu et al. (2018) [33] Multilayer SIFT malimg [11], BIG 2015 [31]

Agarap and Pepito (2018) [32] Gated Recurrent UNIT (GRU) + Support
Vector Machines (SVM) malimg [11]

Le (2018) [17] CNN-BiLSTM BIG 2015 [31]

Chen (2018) [15] Inception-V1 [44] malimg [11], BIG 2015 [31]

Vinayakumar et al. (2019) [41] CNN malimg [11], Ember [36], Private

Chen (2020) [9] Inception-V1 [44] Private

Gao et al. (2022) [38] Graph Isomorphism Network (GIN) Private

3.2. Malware Injection

Adversarial attacks consist of adding tiny changes to the input data to alter its clas-
sification result and are usually not easily perceived by humans. However, arbitrarily
modifying software files without changing its behavior is impossible. Even verifying if
a modification does not affect a software’s response is an undecidable problem. Thus, if
someone arbitrarily alters a malware to change its classification results, there is a chance it
will no longer pose a threat to the system. Despite that fact, there exists in the literature
some possible attacks that retain their functionalities. They are illustrated in Figure 2.
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Figure 2. Illustration of the differences among attacks to image-based malware classifiers. The
leftmost (red) square displays our approach. Blue squares displays previous attacks.

Different works exploited adversarial attacks in the malware domain. Grosse et al. [12]
and Al-Dujaili et al. [22] extracted static features from malware files and used the Fast
Gradient Sign Method (FGSM) [21] to modify these feature vectors and form adversarial
samples. Notwithstanding, these approaches do not guarantee that it is possible to alter
the malware file to produce the adversarial feature vector while maintaining the original
functionality. Therefore, they may not have a practical use.

Anderson et al. [10] explores a black box attack against a reinforcement learning model,
where the agent actions are taken from a list of modifications that includes manipulating
existing bytes but also adding ones between sections or even creating new sections. No
further information is provided regarding the constraints on these injections. It fits the
“Section Injection” and “Content Manipulation” categories illustrated in Figure 2. It achieves
evasion rates up to 16% against a Gradient Boost Decision Tree (GBDT) [36] model.

Khormali et al. [19] focused on injecting bytes to the executable files’ end, which is
an unreachable area during execution. It fits the “File Padding” category illustrated in
Figure 2. As the operating system will not execute it and not even read it in some cases,
it does not affect the malware behavior. These bytes can either be generated by FGSM or
be parts of other malware. Nevertheless, extra bytes at the end of the file may be easy to
detect and discard before the classification. This approach requires access to the model
or training data used by the classification system, which may not be available in a real
attacking scenario.

Demetrio et al. [23] propose a black-box attack called GAMMA (Genetic Adversarial
Machine Learning Malware Attack), which is a method that queries a given malware classi-
fier and based on the output, draws from a set of functionality-preserving manipulations
that changes malware samples iteratively. GAMMA is evaluated against two malware clas-
sifiers, Malconv [16]—a shallow neural network—and GBDT [36]. Its proposed methods
fit all the categories illustrated in Figure 2, despite not detailing how some of those are
achieved.

Lucas et al. [25] also employ functionality-preserving techniques. They extend binary
rewriting techniques such as in-place randomization (IPR) [45]—where the binary is disassem-
bled and some of its instructions are rewritten—and code displacement (Disp) [46]—where
the disassembled version is also used but with the intent of moving instructions between
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sections, fitting into the “Content Manipulation” category illustrated in Figure 2. They ap-
ply these attacks in an interactive manner and evaluate them against three neural networks,
achieving a misclassification rate of over 80% in some scenarios.

Benkraouda et al. [20] proposes a framework that mixes a mask generator to highlight
the bytes that are possible to manipulate while retaining executability, adversarial example
generation using a Carlini–Wagner (CW) attack [47] and an optimization step that iteratively
modifies the masked bytes by comparing the generated adversarial data to a set of known
instructions. It fits the “Content Manipulation” category illustrated in Figure 2. The attack
is evaluated against a three-layer CNN, achieving an attack success rate of up to 81.8%. A
shortcoming of this method is the time it takes to generate its samples, reaching over six
hours for a single sample in some cases.

Demetrio et al. [24] introduce the RAMEN framework, an extensive library with
multiple attacks for malware classification. They present three novel attacks—Full DOS,
Extend and Shift—all of them capable of modifying the binary sample while keeping its
functionality. The novel attacks are evaluated against MalConv [16], DNN with Linear
(DNN-Lin) and ReLU (DNN-ReLU) [48] and GBDT [36], being misclassified by the neural
networks but not being able to evade the Decision Tree since it does not rely only on
static data.

Our attack scheme—Section Injection—is also explored by Anderson et al. [10] and
Demetrio et al. [23] as one possible method in their pipelines, but no further information is
provided regarding the constraints for this injection. It can also be seen as an ensemble of
the Extend and Shift methods proposed by Demetrio et al. [24] and the padding methods
discussed by Khormali et al. [19]. The byte modifications presented by Lucas et al. [25] can
also be integrated in our method, leading to the injection of perturbed sections instead of
random ones.

Regarding the data used to evaluate the attacks, most of the works listed here used
some sort of private dataset either by collecting samples from malware hosting services or
expanding public ones—Benkraouda et al. [20] merged malimg [11] and benign samples
from the Architecture Object Code Dataset (AOCD) [49], while Khormali et al. [19] used
BIG 2015 [31] and also formed a private IoT dataset. A summary of the functionality-
preserving attacks can be found in Table 2.

Table 2. Summary of functionality-preserving attacks against PE malware classification.

Author Methods Targets Dataset

Anderson et al. [10] Set of Manipulations GBDT [36] Private

Khormali et al. [19] Padding 3-layer CNN BIG 2015 [31] + Private IoT
dataset

Demetrio et al. [23] Set of Manipulations MalConv [16], GBDT [36] Private

Demetrio et al. [24] Partial DOS, Full DOS,
Extend, Shift, FGSM, Padding

MalConv [16], DNN [48],
GBDT [36] Private

Lucas et al. [25] IPR, Disp AvastNet [50], MalConv [16],
GBDT [36] Private

Benkraouda et al. [20] Adversarial Generation +
Optimization CNN [19,51] Private (combination of

malimg [11] and AOCD [49])

4. Data Injection

To comply with a realistic usage scenario, we inject one or more sections filled with
arbitrary bytes before any processing is completed for classification purposes, as illustrated
in Figure 3. We explain how the proposed injection process works in the following sections,
and we show how we built the malware classifiers used in our experiments in Section 5.
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Figure 3. Flowchart of an image-based malware classification system (blue lines). Red lines replace
the dashed blue line in our data injection scheme.

4.1. File Header

The first step in our injection scheme is to obtain information about the input file by
reading its header. Table 3 lists the flags that are relevant to us. After inserting a new
section, we need to increment the flag NumberO f Sections and update the flag SizeO f Image
accordingly to preserve the malware functionality. We pick the injected section’s index k
by drawing a number in the interval [0, NumberO f Sections]. Sections 0 to k− 1 remain in
place, and sections k to NumberO f Sections− 1 are shifted one position forward so that we
can insert the new section in k-th place.

Table 3. Flags in the header of PE files.

Flag Name Description

NumberO f Sections Number of sections in the file

FileAlignment Section size in bytes is a multiple of this flag

SectionAlignment Memory address of a section is a multiple of this flag

SizeO f Image Memory size of all sections in bytes

ImageBase Address of the first byte when the file is loaded to memory (default value is
0x00400000)

4.2. Section Header

A section header is composed of 40 contiguous bytes. These bytes specify what the
loader needs to handle this section. Table 4 shows the bytes that we fill when creating a
new section. We refer to a flag of the i-th section as Flagi.

Table 4. Flags in section headers of PE files.

Flag Name Size Description

Name 8 bytes Section name

VirtualSize 4 bytes Section size in bytes on memory

VirtualAddress 4 bytes Section offset on memory relative to ImageBase

SizeO f RawData 4 bytes Section size in bytes on disk

PointerToRawData 4 bytes Section offset on disk relative to the beginning of the file

Characteristics 4 bytes Section characteristics like usage and permissions
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First, we generate eight random printable characters (ASCII table values between 33
and 126) as Namek. After that, we set SizeO f RawDatak using Equation (1):

SizeO f RawDatak = d
N

FileAlignment
e × FileAlignment (1)

with N being the number of bytes we want to add. We always set N as a multiple of
FileAlignment so that null padding is unnecessary. FileAlignment is usually 512 bytes, but
it varies according to compilation options.

PointerToRawDatak is set as in Equation (2) if the k-th section is the last one. Otherwise,
it is set as in Equation (3), and we add SizeO f RawDatak to PointerToRawDatai, ∀i > k.

PointerToRawDatak = PointerToRawDatak−1 + SizeO f RawDatak−1 (2)

PointerToRawDatak = PointerToRawDatak+1 (3)

On memory, we inject sections after every other section to avoid having to update in-
structions that use memory offsets and preserve the execution path. We set VirtualAddressk
using Equation (4):

VirtualAddressk = d
VirtualAddressL + VirtualSizeL

SectionAlignment
e × SectionAlignment (4)

where L is the index of the last section on memory. This way, we correctly align the injected
section according to SectionAlingment.

VirtualSizek is set to 0, as we do not want to take memory space. Thus, multiple runs
of this injection process produce sections pointing to the same address. In our tests, this
does not affect execution. We finish our header by setting Characteristicsk as a read-only
section with initialized data.

4.3. Injected Data

In our work, the injected data are a sequence of random bytes. As we have control of
the section structure, we could insert pieces from other executables or adversarial examples
created using FGSM as other works in the literature [19]. However, we do not do that
because we assume we have no access to models and training data used by malware
classifiers. Our results show that our simple strategy is enough to affect the performance of
a state-of-the-art malware classification approach substantially.

4.4. Workarounds

We found some challenges when applying this method to an arbitrary PE file. Instead
of constraining the input files, we dealt with the problems as they appeared. Some malware
instances, usually packed or obfuscated, have multiple contiguous virtual sections that do
not exist on disk, only on memory. For those cases, we had to adjust the PointerToRawData
in injected data to make sure it points to a valid physical section. Furthermore, malware
sections are not always correctly aligned with the FileAlignment flag. To avoid fixing
existing sections, we only inject data before correctly aligned ones.

5. Malware Classification

As can be seen in Figure 3, this process is divided into two parts: image generation
and classification. The former is described in Section 5.1. The latter is carried out with
various approaches:

1. GIST + KNN [11], which holds state-of-the-art performance for handcrafted meth-
ods [52];

2. Le-CNN, Le-CNN-LSTM, Le-CNN-BiLSTM [17], three similar models that uses resiz-
ing of the input data to a fixed number of bytes [53];



Mach. Learn. Knowl. Extr. 2023, 5 152

3. MalConv [16], a model that truncates the first 1MB and performs classification with
it [54]).

Those architectures were chosen because their code base is available publicly, and
they meet the hardware specifications on the computers used for the experiments (16 GB
RAM, 1 TB hard disk, NVIDIA® GeForce™ RTX 3060 GPU, Intel® Core™ i7-11800H @
2.30 GHz). Since we want a direct comparison with the original works, we used similar
training protocols. They are, respectively, described in Sections 5.2.1 and 5.2.2.

5.1. Image Generation

We transform an executable into an image following Chen’s adaptation [15] of Nataraj
et al.’s specifications [11]. We treat every byte as a grayscale pixel, and we break the file
into image rows by using a fixed width, which is set according to the file size (see Table 5).
We discard the last row if it is incomplete. The result is illustrated in Figure 1.

Table 5. Image width based on the executable size [11].

Size (kB) Width (px)

<10 32

10–30 64

30–60 128

60–100 256

100–200 384

200–500 512

500–1000 768

1000–2000 1024

>2000 2048

5.2. Classification
5.2.1. GIST + KNN

We reproduced Nataraj et al.’s approach [11] to the best of our abilities. To do so, we
resize our images to 64× 64 pixels, extract 320-dimensional GIST descriptors, and then
classify it using KNN with K = 3.

5.2.2. CNNs

Several types of neural networks were explored to classify malware files [13–18,34,35,39,40].
However, to the best of our knowledge, CNNs are the ones with the highest accuracy. In this
work, we chose different CNN strategies to understand how they perform against data injection:

1. Le et al. [17] present three models. A simple model with three 1D-CNN layers before
a fully connected layer is referred to as Le-CNN. A second model with an LSTM layer
before the fully connected one is referred to as Le-CNN-LSTM. A third model with a
bidirectional LSTM before the fully connected layer is referred to as Le-CNN-BiLSTM.
For all of them, we employ the same input size of 10 k bytes, a batch size of 512,
and train the model for at most 60 epochs (early stopping if the accuracy does not
improve for 10 epochs). Optimization is performed with the Adam algorithm [55]
with a learning rate of 1× 10−4.
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2. Raff et al. [16] present the model referred to as MalConv. This model employs a gated
convolution network, i.e., an embedding layer followed by two separate 1D-CNN
layers that are multiplied and passed on for two fully connected layers. For this
model, we use training protocol similar to Lucas et al. [23]: an input size of 1 MB
and training for a total of 10 epochs without early stopping with a batch size of 16
due to memory constraints. Optimization is performed using the Stochastic Gradient
Descent (SGD) algorithm with a Nesterov momentum [56] of 9× 10−1, weight decay
of 1× 10−3, and a learning rate of 1× 10−2.

All those models use some combination of 1D convolutions and pooling layers to both
reduce the dimensionality and also introduce some translation invariance to the model—i.e.,
being able to detect a feature even if it appears in a different position on the data [57]. It
is beneficial in the malware domain because even though the set of instructions can be
considered small (bytes 0–255), the context variance is remarkably high, and a given array
of bytes can appear in many locations within the file having different meanings.

6. Results

Henceforward, we display our experimental results for different attack and defense
scenarios. In Section 6.1, we provide an overview of the chosen dataset and its structure.
In Section 6.2, we discuss the reasons for using metrics such as precision–recall over other
metrics currently used in other malware injection/classification works, such as accuracy
and ROC. Sections 6.3 and 6.4 are the first evaluations on attacking classification models
with modified malware samples, and they provide the first insight on how impactful data
injection in the performance of our trained models is. In Section 6.5, we try to assess the
real importance of the file header as a feature for the classification models; if we strip
the header from input files, can they still be correctly classified? In Section 6.6, we try to
provide defense mechanisms against the attacks discussed previously in three different
fronts: using injected data in the training set in Section 6.6.1, creating a binary dataset by
inflating the dataset with benign data in Section 6.6.2 and also finetuning larger models in
Section 6.6.3.

6.1. Dataset

The forthcoming experiments were made upon the malimg [11] dataset to evaluate
malware classification before and after code injection. Table 6 displays the distribution of
samples across all classes. It has 9339 malware samples from 25 families, and the average
size of a sample is approximately 176 kB. In this dataset, most of the samples—7475 of them
to be precise—have a FileAlignment flag of 512 bytes. The second most common value for
this flag is 4096 bytes, with 1674 samples, and in third place, 1024 bytes with 190 samples.
No other values were found for the FileAlignment flag in this dataset.

In Figure 4, we display some visual contrast among classes with the most and the least
number of samples—Allaple.A and Skintrim.N, respectively—and also with the higher
and the smallest average size—VB.AT and Agent.FYI, respectively. The same aspect ratio is
kept for all images to highlight the resolution differences created during image generation,
as explained in Section 5.1. We can see that the class dissimilarities are mostly represented
by lower density sections, i.e., image areas with a higher number of black pixels. Texture
can be seen in some samples, such as at the bottom of Figure 4c, which is usually caused by
resource sections.

Another feature of this dataset is that most samples present a similar structure to the
one illustrated in Figure 1, having .text, .data and .rsrc sections as the most prevalent ones. A
few classes, namely Alueron.gen!J, Lolyda.AA1 and Lolyda.AT, present rather uncommon
sections either obfuscated or generated with non UTF-8 characters.
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Table 6. Samples distribution and average size in malimg [11] dataset.

# Family # Samples Average Size (kB)

1 Adialer.C 122 209.82

2 Agent.FYI 116 16.07

3 Allaple.A 2949 72.64

4 Allaple.L 1591 57.75

5 Alueron.gen!J 198 101.27

6 Autorun.K 106 524.54

7 C2LOP.P 146 386.92

8 C2LOP.gen!g 200 524.04

9 Dialplatform.B 177 13.98

10 Dontovo.A 162 34.50

11 Fakerean 381 110.62

12 Instantaccess 431 173.07

13 Lolyda.AA1 213 27.43

14 Lolyda.AA2 184 35.13

15 Lolyda.AA3 123 244.80

16 Lolyda.AT 159 24.66

17 Malex.gen!J 136 82.96

18 Obfuscator.AD 142 162.82

19 Rbot!gen 158 241.04

20 Skintrim.N 80 192.98

21 Swizzor.gen!E 128 336.74

22 Swizzor.gen!I 132 320.77

23 VB.AT 408 666.80

24 Wintrim.BX 97 408.74

25 Yuner.A 800 524.54

Total 25 families 9339 samples 176.29kB size
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(a) Allaple.A (b) Skintrim.N

(c) VB.AT (d) Agent.FYI

Figure 4. Illustration of samples from the class with most (a) and the least (b) number of samples. In
addition, classes with a higher (c) and smaller (d) average size. Images were rescaled to use the same
aspect ratio.

6.2. Metrics

There are many different metrics and visualization techniques in the literature being
used to evaluate the machine learning algorithm’s performance on adversarial examples,
each of them with a better use case or a more singular depiction of specific methods. In this
work, we decided to use the following approaches:

• Accuracy curves: where each data point represents the accuracy (e.g., percentage of
correctly classified samples over total number of samples) of the network in a given
scenario—as described by Equation (5), where True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN) are used.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

• Confusion Matrices: used to understand how similar the classes are before and after
the injection of data, which might give a clue on the weights given to each class by the
evaluated algorithms.
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• Precision–Recall curves: as mentioned in Section 6.1, we are dealing with a highly
imbalanced dataset, with some classes having an order of magnitude more examples
than others. In those scenarios, precision–recall curves offer a better visualization on
the true performance of the models, since it computes the capacity of the model in
correctly classifying the target class when it has way fewer samples than the negative
class. It is possible for a classifier to achieve high accuracies by learning to categorize
based only on the major class if the positive to negative ratio is too low [58,59]. We
also compute the average precision (AP) as described by Equation (6). It can be
understood as the area under the precision–recall curve. These values are obtained
by computing precision (P) and recall (R) over a range of thresholds (n), using the
algorithm’s output probabilities.

AP = ∑
n
(Rn − Rn−1)Pn (6)

Another relevant factor that might impact the overall results is the data distribution.
We randomly split the dataset into three parts: training (80%), validation (10%), and
test (10%). We use the training and validation sets to perform the CNN training and
combine them as a single gallery for the KNN search. This is important to evaluate the
true generalization power of the classifier and reduce its chance of overfitting the data by
simply replicating what it sees during the training phase [57]. No hyperparameter tuning
is performed using the test set, simulating a real set of unseen examples. In that sense,
we would be able to detect overfitting as a huge performance drop in the test set among
different methods.

6.3. Injection Attacks with Random Data

To evaluate malware classification before and after code injection, we use the malimg [11]
dataset. It has 9339 malware samples from 25 families. We randomly split the dataset
into three parts: training (80%), validation (10%), and test (10%). We use the training and
validation sets to perform the CNN training and combine them as a single gallery for the
KNN search.

For testing, we insert m new sections with n× FileAlignment bytes at random parts of
each test malware, with m and n varying from 1 to 5, totaling 25 different injection scenarios.
We repeat training/testing experiments three times for each model and show the average
results in Figure 5.

We can see that the way we inject multiple sections affects the results. For instance,
despite the amount of data being the same, four sections with FileAlignment bytes im-
pact more the performance than two sections with 2× FileAlignment or one section with
4× FileAlignment bytes. Thus, dividing a portion of data into more parts and spread-
ing them over the file is more effective in deceiving the classifier than having a few
large sections.

The biggest drop occurred when we injected five sections with 5× FileAlignment bytes.
As most samples have FileAlignment = 512 and the average malware size is 177 kB, our
injection approach accounts for an approximate 7% increase in file size and misclassification
rates ranging between 25% and 40%. Figure 6 illustrates the misclassification differences
between the test set with original samples and a set with injected samples.
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(a) GIST + KNN (b) MalConv

(c) Le-CNN (d) Le-CNN-LSTM (e) Le-CNN-BiLSTM

Figure 5. Average accuracy of malware classification under different injection scenarios. Different
colors represent the number of injected sections.

It is worth noting that some of these families share similar traits. For instance, families
Autorun.K, Malex.gen!J, Rbot!gen, VB.AT and Yuner.A are all packed using UPX packer.
Some families are variants of the same kind of malware, such as C2LOP.P and C2Lop.gen!g,
Swizzor.gen!I and Swizzor.gen!E. It is expected that confusion concentrates around those
variants [11].

We can see that all models fail to correctly classify these variants, even before data
injection. The Le-CNN-BiLSTM model, as seen in Figure 6c,d does not learn how to
correctly identify samples from a packed family, e.g., Autorun.K, incorrectly predicting
them as Yuner.A. One behavior is clear in KNN and MalConv models: their tendencies
to incorrectly predict samples as belonging to classes “Autorun.K”, “C2LOP.gen!g” and
“C2LOP.P”. Those families share samples with high average sizes, at 524.54 kB, 386.92 kB
and 524.04 kB, respectively. Since Le-CNN-BiLSTM resizes everything to 10 k bytes, this
error is less prevalent with this model. In the same manner, MalConv has these classes as
the ones with less misclassifications in the injected set. Considering its 1MB input, those
are the samples where padding is used the least.
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In Figure 7, we can see how the trained models lose precision after section injection.
Due to the imbalanced nature of the dataset, this is illustrated by precision–recall curves.

(a) KNN+GIST—Original (b) KNN+GIST—Injected

(c) CNN-BiLSTM—Original (d) CNN-BiLSTM—Injected

(e) MalConv—Original (f) MalConv—Injected

Figure 6. Confusion matrix for malware classification using KNN+GIST, Le-CNN-BiLSTM and Mal-
Conv in the original test set (a,c,e) and (b,d,f) when 5 sections of 5× FileAlignment bytes are injected.
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(a) Original (b) Injected with random data (c) Injected with adversarial data

Figure 7. Precision–recall curves in the original test set (a) and when 5 sections of 5× FileAlignment
bytes are injected, (b) with random bytes and adversarial bytes in (c). Each color represents a
different model.

We can see that the handcrafted method is the least precise in this scenario, being
followed by Le-CNN, MalConv, Le-CNN-LSTM and Le-CNN-BiLSTM, respectively.

6.4. Injection Attacks with Adversarial Data

What if instead of adding random data we use bytes that appear in samples from
other classes? We evaluate this kind of attack in this section, this time focusing on the most
impactful injection scenario, i.e., 5 sections with 5× FileAlignment. Figure 7c displays the
difference that injecting with adversarial data imposes.

Comparing with the random injection results seen in Figure 7b, we can see that
all models had their average precision decreased—KNN + GIST by 25.44%, Le-CNN by
15.75%, Le-CNN-LSTM by 15.91%, Le-CNN-BiLSTM by 11.56% and MalConv by 5.62%.
That might be an indication that MalConv is learning more discriminative features from
the samples, and it is deceived for reasons other than the kind of data being injected, since
it becomes the model with the highest average precision despite losing more accuracy than
Le-CNN-BiLSTM (Figure 5).

6.5. Evaluating Samples without Header

Here, we evaluate the possibility of training our models stripping the header of the
samples, similarly to what is employed in BIG 2015 [31]. Figure 8 illustrates the results for
samples without the header.

All models rely heavily on the samples header in order to perform classification, losing
precision even before data injection as seen in Figure 8a. Only Le-CNN-BiLSTM increased
its precision by 0.0026 in this scenario. All models became less robust to data injection,
losing precision significantly when compared to complete executables in Figure 7b. Despite
that, MalConv is the only model with similar average precision to previous scenarios.
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(a) Original (b) Injected

Figure 8. Precision–recall curves in the original test set (a,b) when 5 sections of 5× FileAlignment
bytes are injected, both versions without file header.

6.6. Defending against Data Injection

Multiple strategies were evaluated to make these models more robust against data
injection by focusing on the data available during training.

6.6.1. Augmentation

A solution proposed in the literature [60–62] is to augment the data used for training.
Three strategies were initially evaluated:

1. Section reordering: Since our injection scheme adds new sections in a random posi-
tion among the existing one, the first augmentation idea was to reorder the sections
on the training section. By doing this, we wanted to check if the model could be
more robust against data injection without seeing them during training. As shown
by Figure 9a–c, this strategy increased a bit the performance of all models when
compared to the vanilla results shown by Figure 7.

2. Training with injected data: Since data are injected in the test set, a possibility was to
include injected samples with random data in the training set as well. By comparing
Figure 9d–f against Figure 7, we can see that all models became less vulnerable against
random data injection but still struggle against adversarial data. MalConv benefitted
the most in this scheme.

3. Reorder+Injection: Augmenting the training set with both injected and reordered
samples, shown in Figure 9g–i, was also evaluated. Comparing with the original
results in Figure 7, we can see that this may be a good defense strategy as well.

As shown by Figure 9, some models were improved by these augmentation strategies,
even though they are still vulnerable.
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(a) Reordering x Unmodified (b) Reordering x Random (c) Reordering x Adversarial

(d) Injection x Unmodified (e) Injection x Random (f) Injection x Adversarial

(g) Reordering + Injection x Unmodified (h) Reordering + Injection x Random (i) Reordering + Injection x Adversarial

Figure 9. Precision–recall curves for tests with augmentation. (a,d,g) display results on test sets with
original samples. (b,e,h) display results for datasets injected with random data. (c,f,i) display results
for injection with adversarial data. Five sections of 5× FileAlignment bytes are injected in all cases.
Each color represents a different model.

6.6.2. Binary Data

All experiments mentioned here were also performed in a binary dataset. We collected
samples from a clean Windows 10 Virtual Machine to form the “benign” class and kept
every sample from the malimg [11] dataset as the “malware” class. For these tests, we
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evaluated the model’s performance on the original test set and against malware-only
versions of the dataset injected with both random and adversarial data.

In this version of the dataset, the models were barely affected by data injection. We
believe something similar to that mentioned by Raff et al. [16] also happened in our dataset:
models were learning “Microsoft vs. non-Microsoft” instead of “Benign vs. Malign”, as
shown by Figure 10. The models did not really learn to differentiate between a malware
and a benign file but rather whether a given executable is from Microsoft’s library or not,
hence why they seem more robust against injection attacks.

(a) Results on unmodified binary

dataset

(b) Results on random injected malware (c) Results on adversarial-injected

malware

Figure 10. Precision–recall curves when 5 sections of 5× FileAlignment bytes are injected, (b) with
random bytes and adversarial bytes in (c). Each color represents a different model.

6.6.3. Scaling Models

Some of the challenges involved in building more robust models are closely related to
the available data—highly imbalanced number of samples, sample size variation within
and across families, the packing and obfuscation of samples—but those are not the only
concerns. Increasing the architecture size does not necessarily lead to more robust models.

To verify that, we follow Chen’s approach [9,15], which consists of fine-tuning a
pre-trained CNN to classify malware families. We use the Inception-V3 architecture [44]
pre-trained on the ImageNet dataset [43]. For that, we resize our images to 299× 299 pixels
and transform it into a 3-channel (RGB) image by replicating the grayscale channel. Then,
we split our training into two phases. First, we recreate the last layer with the correct
number of classes and optimize it while keeping the rest of the network frozen. We
stop this training phase when the validation accuracy does not improve for ten epochs
(patience). Then, we resume training for all layers with a 30-epoch patience. In both
phases, we split training data into mini-batches of 64 images and use Adam optimizer
for backpropagation with a learning rate of 10−4. We can see that such a model is also
vulnerable to section injection, as seen in a preliminary comparison against KNN+GIST, as
illustrated in Figure 11.
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(a) Malware classification (malware family)

(b) Malware detection (benign vs. malign)

Figure 11. Average accuracy of (a) malware classification and (b) malware detection under different
injection scenarios. Solid lines show results for Inception architecture, and dashed lines show results
for GIST + KNN. Distinct colors represent the number of injected sections.

A straightforward observation in Figure inception-resultsa is that this model presents
the same behavior as the previous one in Section 6.3: the classification error increases
with the amount of injected bytes, and spreading the injected data is more effective in
deceiving the classifier than larger sections. For instance, despite the amount of data being
the same, four sections with FileAlignment bytes impact more the performance than two
sections with 2× FileAlignment or one section with 4× FileAlignment bytes (see the circles
in Figure inception-resultsa). The location does not seem to matter when adding a single
section, though, as the results for random place injection are equivalent to always inserting
the section at the end of the file.

In Figure inception-resultsb, we can also observe the same behavior described for
the other malware detectors in Section 6.6.2. Neither the volume of injected data nor its
dispersion through files considerably affects the CNN performance, which is more robust
than GIST + KNN in this experiment. Nonetheless, both CNN and GIST + KNN lost at
least 10% accuracy in the worst case, which is not an acceptable margin for a protection
measure. Our experiments highlight how risky it is to rely on image-based methods for
malware detection and classification by showing how easily one can trick them.

Current results point in the direction of combining text processing techniques with
convolutional layers, as made by MalConv [16] with its embedding layer and Le-CNN-
BiLSTM [17] with the recurrent layer after convolutional ones. An open challenge regarding
these approaches is related to their input sizes: MalConv truncates data larger than a
given size, which requires choosing between discarding relevant data and using more
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computational resources to process larger samples; CNN-BiLSTM interpolates its input to
a fixed size, possibly removing relevant byte relationships in some regions of the file.

7. Conclusions

In this work, we proposed a new method to inject data into malware files to change
its classification when analyzed by an automatic malware classification system. With a
mere 7% file size increase, we dropped the accuracy of five classifiers on par with the
state-of-the-art—namely GIST + KNN [11], MalConv [16] and Le-CNN [17] and two other
variations—between 25% and 40%. The obtained results seem promising, and we think
this method can be improved to be robust enough for a larger scale of scenarios. There are
some points researchers using this method need to be aware of:

• The usage of CNNs is gaining momentum in this research field literatures [9,14,15,17–19].
This work shows a simple technique that can make the accuracy in such CNNs drop
in almost 50% by adding small perturbations to a malware file. We could observe that
methods such as Gated CNN [16] or combining CNN with LSTM [17] can be more robust
against the data injection presented here.

• A deeper understanding of how the operating system loads executable files to memory
usually helps malware creators. During preliminary tests, we saw that some file format
rules are flexible, and malware authors do not follow all of them. It includes files
with section headers missing or some sections not aligned to the required flags. We
tried our best to keep our generated examples in accordance with the format specified.
Malware creators might not have this mentality, so that should be considered when
building neural networks with the purpose of detecting malware files that rely on
static features from the file.

• Our results show that data dispersion might be just as important as the amount of
data being injected. We can use this idea to conduct a more directed attack using our
method together with the method proposed by Khormali et al. (2019) [19], injecting
FSGM-generated sections in any position of the file.

Challenges and Future Directions

As mentioned in Section 6.6, augmenting the training set with injected samples might
not be enough to prevent section injection attacks nor only increasing architecture size.
Further investigation is required on how to transform the input for the models in such a
way that only relevant data for the classification are kept. Current experiments point in
the direction that instead of relying on a fixed preprocessing method—such as truncating
or interpolating—more dynamic approaches should be investigated, such as Attention-
based methods.

Another direction worthy of new experiments is the interpretability of these results.
We believe that the highly structured pattern in some samples is what makes them more
discriminative, hence why injecting patterns from opposite classes is hard to defend against
in all scenarios. The same goes for binary classification, where the models were seemingly
more robust against adversarial samples. The dataset construction needs to be explored
with more diversity to avoid introducing any kind of bias during sample selection, which
is a possible issue with our version. Figure 12 illustrates the variability of patterns (or lack
thereof) that might be the main discriminative feature for the studied models.
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(a) Benign samples

(b) Malware samples

Figure 12. Illustration of the patterns variations exhibited in benign (a) and in malware (b) samples.
Some patterns are highly structured and appear multiple times within the file. Some others are
relatively small or appear only a few times in the sample’s body.

Author Contributions: Conceptualization, A.A.d.S. and M.P.S.; methodology, A.A.d.S.; software,
A.A.d.S.; validation, A.A.d.S. and M.P.S.; formal analysis, M.P.S.; investigation, A.A.d.S. and M.P.S.;
resources, A.A.d.S.; data curation, A.A.d.S.; writing—original draft preparation, A.A.d.S.; writing—
review and editing, M.P.S.; visualization, A.A.d.S. and M.P.S.; supervision, M.P.S.; project administra-
tion, A.A.d.S. and M.P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The authors code is available at https://github.com/adeilsonsilva/
malware-injection (accessed on 10 January 2023). Restrictions apply to the availability of the used
datasets and related code [52–54].

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/adeilsonsilva/malware-injection
https://github.com/adeilsonsilva/malware-injection


Mach. Learn. Knowl. Extr. 2023, 5 166

Abbreviations
The following abbreviations are used in this manuscript:

AOCD Architecture Object Code Dataset
BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Networks
CW Carlini–Wagner
FN False Negaive
FP False Positive
FGSM Fast Gradient Sign Method
GAMMA Genetic Adversarial Machine learning Malware Attack
GBDT Gradient Boost Decision Tree
GIST Global Image Descriptor
IPR In-Place Randomization
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
PE Portable Executable
SGD Stochastic Gradient Descent
TN True Negative
TP True Positive
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