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Abstract: Generally, when developing classification models using supervised learning methods (e.g.,
support vector machine, neural network, and decision tree), feature selection, as a pre-processing
step, is essential to reduce calculation costs and improve the generalization scores. In this regard,
the minimum reference set (MRS), which is a feature selection algorithm, can be used. The original
MRS considers a feature subset as effective if it leads to the correct classification of all samples by
using the 1-nearest neighbor algorithm based on small samples. However, the original MRS is only
applicable to numerical features, and the distances between different classes cannot be considered.
Therefore, herein, we propose a novel feature subset evaluation algorithm, referred to as the “E2H
distance-weighted MRS,” which can be used for a mixture of numerical and categorical features
and considers the distances between different classes in the evaluation. Moreover, a Bayesian swap
feature selection algorithm, which is used to identify an effective feature subset, is also proposed.
The effectiveness of the proposed methods is verified based on experiments conducted using artifi-
cially generated data comprising a mixture of numerical and categorical features.

Keywords: feature subset selection; minimum reference set; classification; machine learning; Bayesian
optimization

1. Introduction

Generally, classification tasks are executed using supervised learning models, such
as support vector machines, neural networks, and decision trees. However, the explicit
use of the selected effectiveness features for classification is essential when developing
classification models. This process is called feature selection, and it is known to reduce
the calculation time and improve the estimation accuracy [1,2]. Therefore, several feature
selection algorithms have been proposed in the field of machine learning; these include out-
of-bag error [3], inter–intra class distance ratio [4,5], genetic algorithms [6,7], bagging [8,9],
CART [10,11], Lasso [12,13], BoLasso [14], ReliefF [15,16], and atom search [17].

In this study, we consider the minimum reference set (MRS) [18], another feature selec-
tion algorithm, for developing a high-quality classification model. In the MRS, we select a
feature subset F ′ from among the feature set F and calculate the Euclidean distances for all
the pairwise samples belonging to different classes. Next, we test the correct classification
of all samples using the 1-nearest neighbor (1NN) algorithm based on paired samples with
close distances. In this regard, if we achieve the correct classification of all samples using
a small sample size, we regard the corresponding feature subsets as desirable. In other
words, the sample size that leads to no classification error is considered as the evaluation
value of the feature subset F ′. Additional details on the MRS can be found in [18]. We
consider the MRS to be reliable because it has been adopted in previous studies for feature
selection [19–22]. However, the MRS presents the following two limitations:

One of these limitations is represented as “Issue 1” in Figure 1. Here, (A1) and (A2)
denote feature spaces with values x1 and x2, and the blue circle and red cross represent
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the observation samples of two different classes. In these cases, the correct classification
of all samples can be achieved using 1NN, explicitly based on samples enclosed in the
square box. Notably, large distances between different classes in a feature space are often
desirable to achieve a high generalization score. Therefore, feature space (A2) is better than
space (A1). However, the feature space evaluations of (A1) and (A2) are the same (i.e., six)
when using the original MRS [18], even if the feature space (A2) is known to be desirable.
We consider this an issue because the MRS is a method used for identifying a desirable
feature subset for the classification problem.

Figure 1. Issues related to the original minimum reference set (MRS) [18] feature selection algorithm.

The second issue is indicated as “Issue 2” in Figure 1. The figure presents a three-
dimensional feature space consisting of two numerical features x1, x2 ∈ R and a categorical
feature x3 ∈ {�,♣,♠}. Here, when x3 = �, the samples are correctly classified by the
numerical features x1 and x2. In certain cases, categorical features, such as x3, are also
effective for classification. However, the original MRS [18] can only evaluate numerical
features because it is based on the Euclidean distance. Although we can transform the
categorical values into numerical values via one-hot encoding, large categorical values often
lead to an increase in the dimension number [23]. When the sample size and dimension
number are a and r, respectively, the time complexity of the 1NN algorithm based on the
brute-force search is O(ar) [24]. Moreover, although the k-d tree [25] is a fast algorithm, it
is affected by dimensionality [26]. The number of dimensions r increases the computational
time, despite the existence of an algorithm with a time complexity of O(r log r + log a) [26].
Therefore, we consider that the application of one-hot encoding to categorical features is
not desirable because it leads to an increase in the dimensionality.

Therefore, herein, we propose a novel feature subset evaluation algorithm, called
the E2H distance-weighted MRS (E2H MRS), to address the two aforementioned issues.
Here, “E2” and “H” denote the squared Euclidian distance and Hamming distance, re-
spectively. Note that we can measure the distances between samples in a feature space
comprising a mixture of numerical and categorical values by using the mixture distance
“E2H.” Moreover, we propose a Bayesian swap feature selection algorithm (BS-FS) to iden-
tify a subset of desirable features for classification. In this paper, we will present details
regarding the E2H MRS and BS-FS algorithms.

2. Proposed Method

Herein, we explain the mathematical representation of feature subset selection and the
proposed methods. The used variables are summarized in Appendixes A.1 and A.2.
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2.1. Mathematical Representation of Feature Subset Selection

Let us denote a set Fr consisting of nr numerical features and a set Fc consisting of nc

categorical features as follows:

Fr = { f r
1 , · · · , f r

nr}, Fc = { f c
1 , · · · , f c

nc}. (1)

For instance, f r
1 = “age”, f r

2 = “height”, f c
1 = “male or female”, f c

2 = “blood type”,
and so on. As these features are known to mix, all features can be represented as

F = Fr ∪ Fc, |F| = n, n = nr + nc. (2)

The proposed algorithm determines a feature subset F ′opt. consisting of m effective
features from among the all features F to estimate the class z ∈ {z0, z1}, that is,

F ′opt. ⊂ F, |F ′opt.| = m, m ≤ n, (3)

where

F ′opt. = argmin
F ′⊂F

L(F ′), s.t., |F ′| = m. (4)

Notably, the E2H MRS adopts a function L for evaluating the feature subset F ′.
Because the feature subset F ′ consists of a mixture of numerical and categorical features, let
us denote the feature vector of class z ∈ {z0, z1} as

xz = [xz,r xz,c]>, (5)

where

xz,r = [xz,r
1 · · · xz,r

pr ]>,

xz,c = [xz,c
1 · · · xz,c

pc ]>, (6)

pr + pc = m.

Here, xz,r is a vector consisting of pr numerical features, and xz,c is a vector consist-
ing of pc categorical features. As examples, we use four features of “Sex”, “Embarked
(Port of Embarkation)”, “Age”, “Fare” for Titanic survival prediction [27,28]. In this case,
the features subset is F ′ = {“Age′′, “Fare′′, “Sex′′, “Embarked′′} ⊂ F. pr = 2, pc = 2,
and m = 4 because “Age” and “Fare” are numerical features, “Sex” and “Embarked” are
categorical features. Moreover, feature vector xz consists of these values.

When the feature vector xz consists of only categorical or numerical features,
(pc, pr) = (m, 0) or (pc, pr) = (0, m) is satisfied. The feature vector of the i-th observation
sample is defined as xz

i .

2.2. E2H Distance-Weighted MRS Algorithm

The E2H MRS algorithm developed for evaluating the feature subset F ′ is summarized
in Algorithm 1. This algorithm outputs an evaluation L(F ′) by inputting the feature subset
F ′. After initialization, all pairwise distances D(xz0 , xz1 ; γ) between the classes z0 and z1
are computed (line 5). Next, the distance set D = {d1, d2, · · · } is sorted by D(xz0 , xz1 ; γ)
(line 6). Although these processes are also included in the original MRS [18], only numerical
features can be evaluated because the original MRS is based on the Euclidean distance.
Therefore, we use another distance function to apply the MRS to the feature subset F ′

comprising a mixture of numerical and categorical features. The definitions of D(xz0 , xz1 ; γ)
will be explained in Section 2.3.
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Algorithm 1 E2H MRS feature evaluation algorithm

Input: Feature subset F ′, Hamming weight γ, distance weight δ
Output: Evaluation of the feature subset L(F ′)

1: Standardizing numerical features in F ′ on a value range of zero to one
2: Set initial data I ← φ, i.e., empty set
3: Set initial average distance C(I)← 0
4: Set initial classification error of all data based on 1-NN using I, E(I)← ∞
5: Calculating all pairwise distances D(xz0 , xz1 ; γ) between different classes
6: Set D ← {d1, d2, · · · } sorted by the smallest to largest distance on D(xz0 , xz1 ; γ)
7: k← 1
8: while E(I) 6= 0 do
9: Identify different class samples i and j related to D(xz0

i , xz1
j ; γ) = dk

10: if {i, j} 6⊂ I then
11: Updating sample set I ← I ∪ {i, j}
12: Updating distance C(I)← C(I) + dk
13: end if
14: k← k + 1
15: end while
16: Averaging distance C(I)← C(I)/|I|
17: Scoring S(I; δ)← (1− C(I))δ|I|
18: L(F ′)← S(I; δ)
19: return L(F ′)

Next, two samples {i, j} of different classes that are nearest to each other (i.e., d1)
are added to the set I. We then test E(I), which denotes the classification error resulting
from the 1NN algorithm based on the set I. The proposed distance function is used in
the 1NN algorithm because the feature subset consists of a mixture of numerical and
categorical features. If the error rate is not zero, that is, E(I) 6= 0, paired samples {i, j}
related to d2 are added to I, and the error rate E(I) is rechecked. Note that the evaluation
value of the feature subset F ′ is calculated when the error rate is zero, that is, E(I) = 0.
The computation of the evaluation value in the original MRS [18] uses |I|, which is the size
of the set I. This implies that the larger the sample size, the better the evaluation of feature
subsets by the original MRS. However, although this method is valid, the distances between
different classes are not considered. To consider the distances between different classes, we
propose a novel feature subset evaluation function S(I; δ) using C(I), the average distance
of dk, which is obtained in the growth process of the set I. The evaluation value of the
feature subset L(F ′) is obtained using these processes. Details pertaining to S(I; δ) are
explained in Section 2.4.

2.3. Distance Function

Let us now denote the distance between xz0 and xz1 , consisting of a mixture of numer-
ical and categorical values, as

D(xz0 , xz1 ; γ) =
1

pr + γpc

(
DE2(xz0,r, xz1,r) + γDH(xz0,c, xz1,c)

)
, γ ≥ 0. (7)

The first and second terms represent the squared Euclidean distance and the Hamming
distance, respectively, that is,
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DE2(xz0,r, xz1,r) = (xz0,r − xz1,r)>(xz0,r − xz1,r)

=
pr

∑
i=1

(xz0,r
i − xz1,r

i )2, (8)

DH(xz0,c, xz1,c) =
pc

∑
i=1

σ(xz0,c
i , xz1,c

i ), (9)

where

σ(xz0,c
i , xz1,c

i ) =

{
0, xz0,c

i = xz1,c
i

1, xz0,c
i 6= xz1,c

i
. (10)

In general, the Hamming distance is defined as the minimum number of substitutions
required to change one string into another. In other words, it is the number of mismatches
between two strings. Therefore, when regarding the pc-dimensional categorical features
vector as a string of length pc, the number of mismatches between the categorical features
vectors of two different classes can be represented by the Hamming distance. This number
is calculated with Equations (9) and (10).

Moreover, we refer to γ as the “Hamming weight” because it is a weight parameter
used for categorical features. The parameter γ is manually set by users, and when they
have a hypothesis in which categorical features are important for classification, they set a
large value. When we set γ = 0, the effect of categorical features on distance disappears.
The distance function defined by Equation (7) is similar to that used in the k-prototype
algorithm [29].

The following theorem is satisfied for the proposed distance function D(xz0 , xz1 ; γ):

Theorem 1.

xz,r ∈ [0, 1]p
r ⇒ D(xz0 , xz1 ; γ) ∈ [0, 1].

Proof.

xz,r ∈ [0, 1]p
r ⇒ max

xz0,r,xz1,r
DE2(xz0,r, xz1,r) = pr

⇒ max
xz0 ,xz1

[
DE2(xz0,r, xz1,r) + γDH(xz0,c, xz1,c)

]
= pr + γpc,

∵ max
xz0,c,xz1,c

DH(xz0,c, xz1,c) = pc

⇒ max
xz0 ,xz1

D(xz0 , xz1 ; γ) = 1

⇒ D(xz0 , xz1 ; γ) ∈ [0, 1], ∵ min
xz0 ,xz1

[
DE2(xz0,r, xz1,r) + γDH(xz0,c, xz1,c)

]
= 0

In other words, the range of D(xz0 , xz1 ; γ) extends from zero to one when the condition
xz,r ∈ [0, 1]p

r
is satisfied. The process involved in the standardization of numerical features

from zero to one is presented in line 1 of Algorithm 1.

2.4. Evaluation Function of a Feature Subset

Here, we explain the evaluation function L(F ′) of the feature subset F ′. In the original
MRS [18], the sample size |I| of set I leading to the correct classification (no error) of all
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samples is adopted as an evaluation function of a feature subset. By including the distances
between different classes in the original MRS, we propose

S(I; δ) = (1− C(I))δ|I|, δ ≥ 0 (11)

as a novel feature subset evaluation function (line 17 in Algorithm 1). For the proposed
evaluation function S(I; δ), the following theorem is satisfied:

Theorem 2.

xz,r ∈ [0, 1]p
r ∧ δ ≥ 0 ⇒ S(I; δ) ∈ [0, |I|].

Proof.

xz,r ∈ [0, 1]p
r ⇒ D(xz0 , xz1 ; γ) ∈ [0, 1], ∵ Theorem 1

⇒ C(I) ∈ [0, 1], ∵ C(I) is average of D(xz0 , xz1 ; γ)

⇒ (1− C(I))δ ∈ [0, 1], ∵ δ ≥ 0

⇒ S(I; δ) ∈ [0, |I|]

Note that the range of evaluation S(I; δ) extends from zero to |I| if the range of the
numerical features xz,r extends from zero to one. C(I) is the average distance of set I and is
obtained using the different class distances dk represented in lines 12 and 16 of Algorithm 1.
The range of C(I) extends from zero to one because it denotes the average of D(xz0 , xz1 ; γ)
based on Theorem 1. Therefore, Theorem 2 is satisfied. Moreover, we understand that
(1− C(I))δ is a damping coefficient for |I|, based on Equation (11). δ is referred to as
the “distance weight” because it is a parameter used for adjusting the damping coefficient
based on the distance C(I). In a typical classification problem, the distance between
different classes in a features space should be long to decrease classification errors. In some
works, feature spaces leading to a long distance between different classes were used for
classification [30,31]. Therefore, we included the parameter δ to represent the weight of the
distance between different classes in the proposed method. This parameter is manually
set by the users. The distance between the different classes is emphasized when setting
δ to a large value. In contrast, the sample size of set I is emphasized when setting δ to
a small value. The value of the proposed evaluation function S(I; δ) approaches zero
when the distance between different classes is large, and the sample size of I is small.
Notably, the smaller the value of S(I; δ), the more effective the subset F ′; hence, we define

L(F ′) = S(I; δ) (12)

to evaluate F ′. This function is expressed in Equation (4).
Note that when setting δ = 0, the proposed evaluation function and the original

MRS [18] have the same form, owing to

S(I; δ = 0) = |I|. (13)

In contrast, when setting δ→ ∞, the evaluation value is

lim
δ→∞

S(I; δ) =

{
0, 0 < C(I) ≤ 1
|I|, C(I) = 0

. (14)

In most cases, S(I; δ→ ∞) approaches zero because C(I) = 0 (i.e., the average distance
between classes z0 and z1 is zero) is not satisfied. This implies that when the distance
weight δ is too large, the proposed evaluation function S(I; δ) does not perform well.
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2.5. Bayesian Swap Feature Selection Algorithm

In the brute-force search method, the number of calculations required to solve the
optimization problem presented in Equation (4), that is, the number of calculations required
for identifying a feature subset that minimizes L(F ′), is

Tall(n, m) = nCm, (15)

where n denotes the size of F, and m is the size of F ′. Therefore, when n is large, obtaining
an optimal solution is difficult from the perspective of the calculation cost. In the original
MRS [18], an approach for finding the approximate solution is adopted. In particular,
the first process randomly chooses m features from among the all features F, and the
second process gradually improves the evaluation value L(F ′) by swapping the features.
Additional details on this method are explained in [18]. The number of calculations required
when using this method is

Tfsa(n, m) = m(n−m). (16)

Thus, this algorithm significantly reduces the calculation cost compared to the brute-
force search. However, the final adopted feature subset depends on the initially selected
feature subset. Therefore, we adopt an approach using the initial feature subset obtained
via Bayesian optimization. The Bayesian optimization algorithm is a tree-structured parzen
estimator algorithm (TPE) [32], and it is used in the optimization framework “optuna”
(v2.0.0) [33].

A feature selection algorithm based on the described approach is outlined in
Algorithm 2. The input values comprise the all features of set F, the dimension num-
ber m, and the number of iterations in the Bayesian optimization b. The output is an
approximate solution F∗opt.. We represent L(F∗opt.) ' L(F ′opt.) because L(F∗opt.) is expected to
be close to L(F ′opt.), which is an evaluation of the optimal solution F ′opt..

Algorithm 2 Bayesian swap feature subset selection algorithm (BS-FS)

Input: Feature set F, feature dimension m, iterations of the Bayesian optimization b
Output: Approximation solution of the feature subset F∗opt., i.e., L(F∗opt.) ' L(F ′opt.)

1: for t = 1 to b do
2: Bayesian selection (TPE) of m features F ′t ← { f1, f2, · · · , fm} ⊂ F
3: Calculate L(F ′t )
4: end for
5: Solve F∗opt. ← argmin

F ′t

{L(F ′t ) | t = 1, · · · , b}, where F∗opt. = { f ∗1 , f ∗2 , · · · , f ∗m}

6: Obtain the difference set F∗opt. ← F \ F∗opt., where F∗opt. = { f
∗
1 , f
∗
2 , · · · , f

∗
n−m}

7: for i = 1 to m do
8: for j = 1 to n−m do
9: Swap f ∗i and f

∗
j , i.e., F∗,swap

opt. ← F∗opt. \ { f ∗i } ∪ { f
∗
j }, F∗,swap

opt. ← F∗opt. \ { f
∗
j } ∪ { f ∗i }

10: if L(F∗,swap
opt. ) < L(F∗opt.) then

11: Accept the swap, i.e., F∗opt. ← F∗,swap
opt. , F∗opt. ← F∗,swap

opt.
12: end if
13: end for
14: end for
15: return F∗opt.

Note that lines 1–5 in Algorithm 2 detail the Bayesian optimization processes used
for searching for the initial feature subset. We choose F ′t ⊂ F and determine its eval-
uation value, L(F ′t ). Note that t denotes the iteration ID of the Bayesian optimization.
The relevant Bayesian optimization processes are repeated b times, and the feature subset of
the minimum evaluation value is selected as the initial subset F∗opt. (line 5).
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Subsequently, the evaluation value is improved by swapping each feature in the initial
subset F∗opt. and the remaining subset F∗opt. = F \ F∗opt.. These processes are indicated in
lines 6–14 of Algorithm 2. We refer to this algorithm as the “Bayesian swap feature selection
algorithm (BS-FS)” because this method is a combination of Bayesian optimization and
feature swapping.

Using Algorithm 2, the number of calculation evaluation functions in the BS-FS is

Tbs(n, m, b) = b + m(n−m)

= b + mn−m2. (17)

In general, n, b � m is satisfied as a parameter relationship. Therefore, the time com-
plexity of Algorithm 2 is O(b + n). This algorithm is fast compared to the brute-force
search method. However, if the number of maximum iterations b is too large, the num-
ber of calculations for BS-FS is larger than that for the brute-force search method (i.e.,
Tbs(n, m, b) > Tall(n, m)). The boundary point b′ is

b′ = nCm + m2 −mn ⇔ Tbs(n, m, b′) = Tall(n, m). (18)

In other words, the number of maximum iterations for the Bayesian optimization, b, must
be less than b′.

3. Artificial Dataset for the Verification of the Proposed Methods

Further, we verified the effectiveness of the proposed methods using an artificial
dataset. Note that the effective feature subset for classification is defined as

FSol. = { f Sol.,r
1 , f Sol.,r

2 , f Sol.,c
1 , f Sol.,c

2 }, (19)

where { f Sol.,r
1 , f Sol.,r

2 } ⊂ Fr, and { f Sol.,c
1 , f Sol.,c

2 , } ⊂ Fc. In other words, the combination
of two numeric features and two categorical features forms an effective feature subset
for classification tasks. Let us denote the values of these features as x1, x2, x3, and x4.
In particular, because x3 and x4 are categorical features,

x3 ∈ {♣,♠}, x4 ∈ {♦,♥}. (20)

Although we set a binary state as a categorical feature for simplification, because we
adopted the Hamming distance DH, the number of states of a categorical feature can be
any number of states. In this study, we generated the feature vectors x = [x1 x2 x3 x4]

>

related to the feature subset FSol. based on the probability distribution. An overview of this
is presented in Figure 2. The samples x1 and x2 of class z0 (blue circles) are generated based
on a Gaussian distribution N , defined as

fz0(x1, x2; ec) = N (u(ec), v). (21)

To determine the effects of categorical features, the mean vector u is defined as follows:

u(ec) =


[u1 u2]

>, (x3, x4) = (♣,♦)
[u1 + ec u2]

>, (x3, x4) = (♣,♥)
[u1 u2 + ec]>, (x3, x4) = (♠,♦)
[u1 − ec u2 − ec]>, (x3, x4) = (♠,♥)

. (22)

This implies that the average vector is shifted by ec depending on the categorical
features. Only in the case of (x3, x4) = (♠,♥), the average vector is shifted by −ec.
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Figure 2. Overview of the probability distributions defined by Equations (21) and (23) for generating
artificial data. The blue and red circles represent the distributions used for generating samples
belonging to z0 and z1, respectively. The number of blue circles on each figure is one because samples
belonging to class z0 are generated by the Gaussian distribution. The number of red circles is three
because the samples of class z1 are generated based on a Gaussian mixture distribution. The radius
of the circle represents the standard deviation. These figures indicate that the average values of these
distributions are changed by x3 and x4, the values of categorical features. Therefore, to correctly
classify classes z0 and z1, categorical features should be used. We used artificial samples generated
by these distributions for verifying the effectiveness of the proposed methods E2H MRS and BS-FS.
These results are described in Sections 4 and 5.

The samples x1, x2 of class z1 (red circles) are generated based on a Gaussian mixture
distribution, defined as

fz1(x1, x2; ec, er) =
1
3

3

∑
i=1
N (ui(ec, er), v). (23)

To determine the effect of the categorical features, the mean vectors u1, u2, and u3 are
defined as

u1(ec, er) =


[u1 + er u2]

>, (x3, x4) = (♣,♦)
[u1 + ec + er u2]

>, (x3, x4) = (♣,♥)
[u1 + er u2 + ec]>, (x3, x4) = (♠,♦)
[u1 − ec + er u2 − ec]>, (x3, x4) = (♠,♥)

, (24)
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u2(ec, er) =


[u1 u2 + er]>, (x3, x4) = (♣,♦)
[u1 + ec u2 + er]>, (x3, x4) = (♣,♥)
[u1 u2 + ec + er]>, (x3, x4) = (♠,♦)
[u1 − ec u2 − ec + er]>, (x3, x4) = (♠,♥)

, (25)

u3(ec, er) =


[u1 + er u2 + er]>, (x3, x4) = (♣,♦)
[u1 + ec + er u2 + er]>, (x3, x4) = (♣,♥)
[u1 + er u2 + ec + er]>, (x3, x4) = (♠,♦)
[u1 − ec + er u2 − ec + er]>, (x3, x4) = (♠,♥)

. (26)

In other words, the samples of class z1 are shifted by er compared with the samples of
class z0. The variance–covariance matrix is defined as follows:

v =

[
v 0
0 v

]
. (27)

The distribution has the following parameters: er and ec. For the artificial samples
generated by the distribution based on large values of er, the classification of two classes
using the numerical features x1 and x2 is simple because the distances between different
classes are large. For artificial samples generated by the distribution based on large values
of ec, it is necessary to use the categorical features x3 and x4 for classification. Therefore, er

represents a “numerical effect,” and ec represents a “categorical effect.”
The generated feature spaces in four dimensions (x1, x2 ∈ R, x3,∈ {♣,♠}, x4 ∈ {♦,♥})

are presented in Figure 3: (A) (ec, er) = (10, 30), (B) (ec, er) = (10, 50), (C)
(ec, er) = (30, 30), and (D) (ec, er) = (30, 50). The values of the categorical features x3
and x4 change from left to right. The rightmost figure depicts an explicit scatter plot of the
numerical features x1 and x2, that is, it does not consider the categorical features x3 and x4.
Comparing (A) and (B), we can establish that the distance between different classes in-
creases for a large value of the numerical effect er. Moreover, even if we do not consider the
categorical features x3 and x4, we can classify the samples owing to the small value of the
categorical effect ec. In contrast, (C) and (D) represent spaces with large categorical effects ec.
In this case, we can observe that the categorical features x3 and x4 are required for correct
classification. We can control the difficulty level of classification using the parameters er

and ec. Therefore, the method for the generation of artificial data described in this section
is appropriate for verifying the proposed algorithms. Note that the generated values of the
numerical features x1 and x2 are standardized from zero to one to satisfy Theorems 1 and 2.

The numerical examples of feature spaces (A)–(D) calculated by Algorithm 1 and
Equation (11) are provided in Table 2. S(I; δ), |I|, and (1− C(I))δ represent the evalu-
ation value, the size of MRS, and the damping coefficient, respectively. These values
are calculated using Algorithm 1 and Equation (11). Notably, the lower the value of
S(I; δ), the better the feature space is for classification. For Algorithm 1, we adopted
(γ, δ) ∈ {(0, 0), (1, 1), (1, 5)} as the Hamming weight γ and distance weight δ. The pa-
rameters γ and δ are manually set by the users. (γ, δ) = (0, 0) indicate the original MRS,
and (γ, δ) = (1, 1) and (1, 5) represent the proposed method E2H MRS. In the case of
(γ, δ) = (0, 0), although (B) and (D) are perceptually desirable feature spaces for clas-
sification, the best space based on evaluation value S(I; δ) is (A). The method did not
determine (D) as the best feature space. This can be attributed to the Hamming weight
γ = 0, i.e., the method did not consider the effect of the categorical feature values x3 and
x4. Similarly, in the case of (γ, δ) = (0, 0), the score of (B) was worse than that of (A),
which can be attributed to the distance weight δ = 0, i.e., it did not consider distance
between different classes. In contrast, when adopting (γ, δ) = (1, 1), the proposed method
determined (B) and (D) as desirable feature spaces for classification because the effects of
categorical features and the distance between different classes are considered. Moreover,
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when adopting (γ, δ) = (1, 5), the effect of the damping coefficient on the evaluation value
increased. Therefore, we consider the proposed method of E2H MRS to be better than
original MRS method for evaluating features subset.

Figure 3. Artificial data generated by using Equations (21) and (23), and Figure 2. The cases (A)–(D)
vary in parameters ec and er. The values of categorical features x3 and x4 change from left to right. The
rightmost figure presents an explicit scatter plot of the numerical features x1, x2, i.e., no categorical
features x3, x4 are considered.

Table 1. Evaluation scores of the feature spaces (A)–(D) shown in Figure 3. (γ, δ) = (0, 0) represents
original MRS and (γ, δ) = (1, 1) and (1, 5) represent E2H MRS. Note that total samples size on each
feature space is 120 (class z0: 60, class z1 : 60).

Feature Space
(ec, er)

Setting
Parameters
(γ, δ) 1

MRS Size |I|
Damping

Coefficient
(1− C(I))δ

Score S(I; δ) 2

(A) (10, 30) (0, 0) 48 1.000 48.00
(B) (10, 50) (0, 0) 56 1.000 56.00
(C) (30, 30) (0, 0) 63 1.000 63.00
(D) (30, 50) (0, 0) 67 1.000 67.00
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Table 2. Cont.

Feature Space
(ec, er)

Setting
Parameters
(γ, δ) 1

MRS Size |I|
Damping

Coefficient
(1− C(I))δ

Score S(I; δ) 2

(A) (10, 30) (1, 1) 35 0.983 34.41
(B) (10, 50) (1, 1) 26 0.960 24.95
(C) (30, 30) (1, 1) 35 0.993 34.77
(D) (30, 50) (1, 1) 27 0.981 26.48

(A) (10, 30) (1, 5) 35 0.844 29.54
(B) (10, 50) (1, 5) 26 0.661 17.20
(C) (30, 30) (1, 5) 35 0.935 32.73
(D) (30, 50) (1, 5) 27 0.822 22.20

1 γ: Hamming weight, δ: distance weight. 2 The lower the value of S(I; δ), the better is the feature space
for classification.

4. Experiment 1: Relationship between the Distance between Different Classes and
the E2H MRS Evaluation
4.1. Objective and Outline

In the original MRS [18], the distance between different classes is not considered be-
cause the evaluation value of the feature subset is the sample size of the set I.
Therefore, we propose a novel evaluation function S(I; δ) that includes the distance and
sample size. To verify its effectiveness, we generate a feature subset F ′, m = 4 compris-
ing two numerical and two categorical features, and we calculate the evaluation value
S(I; δ) = L(F ′).

Notably, we adopt er ∈ {20, 30, 40, 50} and ec = 20 as the parameters for generating
artificial feature subsets. Moreover, δ ∈ {0, 1, 2, 3, 4} is adopted for the sensitivity analysis
of the distance weight. When δ = 0, the evaluation functions of the original MRS [18] and
E2H MRS have the same form. In other words, the results of δ ≥ 1 represent E2H MRS but
not the original MRS. The number of generated samples is

(nz0 , nz1) ∈ {(12, 12), (24, 24), (48, 48), (96, 96), (192, 192), (384, 384)}, (28)

where nz represents the samples of class z ∈ {z0, z1}. As stated, all numerical features
are standardized from zero to one to satisfy Theorems 1 and 2. Moreover, we perform
experiments using 100 random seeds to obtain stable results because the generated data
depend on randomness.

4.2. Result and Discussion

The results obtained are summarized in Figure 4. The vertical axis represents the
average evaluation value S(I; δ) = L(F ′) on 100 seeds. The horizontal axis represents the
numerical effect, er. In other words, the greater the value of er, the greater the distance
between different classes in the feature subset. The dashed line indicates the result of the
original MRS (δ = 0), and the solid lines indicate the results of the E2H MRS (δ ≥ 1).

The greater the distance between different classes, the more effective the feature subset
for classification. Therefore, when er is large, the evaluation value L(F ′) should ideally
be small. From this viewpoint, the results of the original MRS (δ = 0) are deemed to be
inappropriate when the sample size is greater than 48. This is because the original MRS
cannot consider the distance between different classes. In contrast, in the case of the E2H
MRS (δ ≥ 1), the evaluation values are small when the distance between different classes is
large. Therefore, the E2H MRS is effective in identifying feature subsets with large distances
between different classes.
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Figure 4. Effect of the distance weight δ on the evaluation L(F ′).

5. Experiment 2: Effectiveness of BS-FS in Finding Desirable Feature Subsets
5.1. Objective and Outline

In this section, we describe whether the combination of the E2H MRS (Algorithm 1)
and BS-FS (Algorithm 2) can determine an effective feature subset for classification. To this
end, the following features are generated:

FSol., |FSol.| = 4 : Correct feature subset by (ec, er) = (40, 50),

FQ.Sol., |FQ.Sol.| = 4 : Quasi-correct feature subset by (ec, er) = (40/2, 50/2), (29)

FBad, |FBad| = 7 : Bad feature subset,

F = FSol. ∪ FQ.Sol. ∪ FBad, |F| = 15 : All features set.

Among these, FSol. is the most effective feature subset comprising two numerical
and two categorical features (a total of four features), which are generated based on the
probability distribution of (ec, er) = (40, 50). Further, FQ.Sol. is a quasi-correct feature
subset consisting of two numerical and two categorical features (a total of four features),
and these features are generated based on the distribution of (ec, er) = (40/2, 50/2). Next,
FBad consists of seven randomly generated features (the breakdown of categorical and
numerical features is also random). Therefore, FBad is not an effective classification feature
subset. Notably, the feature sets F consist of the union of these feature subsets, and the
total number of features is 4 + 4 + 7 = 15. We adopt the proposed algorithms E2H MRS
and BS-FS to identify four effective features among all the 15 features. Note that the total
number of solutions is 15C4 = 1365, as shown in Figure 5; that is, the chance of obtaining
the optimal solution in one trial is 1/15C4 = 1/1365 ' 0.0733%.

Although both FSol. and FQ.Sol. are effective feature subsets for correct classification,
FSol. is better than FQ.Sol. owing to the adopted parameters, ec, er. That is, FSol. is the best
solution, and FQ.Sol. is the second-best solution. In any case, identifying these subsets is a
difficult problem because there is only one in all 1365 feature subsets, as shown in Figure 5.
When the number of generated samples is extremely small, the evaluation value of the best
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subset FSol. may not be the minimum value owing to randomness. In this case, the proposed
algorithms may identify the best FSol. or the second-best FQ.Sol. subset depending on the
number of samples generated. Therefore, we tested various sample sizes (nz0 , nz1) defined
by Equation (28). Moreover, we adopted b ∈ {0, 100}, γ ∈ {0.1, 1, 10} to understand the
effects of the Bayesian optimization and Hamming weight on the evaluation results. The
corresponding experiment was conducted using 100 random seeds to verify the correct
detection rate of FSol. and FQ.Sol..

Figure 5. The generated feature subsets for the experiment 2 and the candidates of solutions.

5.2. Result and Discussion

The rates for the correct detection of FSol. and FQ.Sol. for a total of 1365 solutions using
the proposed algorithms are shown in Figure 6. The left-, center-, and right-side figures
present the results for different Hamming weights. The top and bottom figures illustrate
the results of the Bayesian optimization. The horizontal axis represents the number of
generated samples, and the vertical axis represents the correct detection rate for 100 seeds.

First, when the Hamming weight is too small (γ = 0.1), the correct detection rate is
also small compared with that for γ = 1 and γ = 10. The Hamming weight refers to the
weight of categorical features (see Equation (7)). Therefore, for γ = 0.1, we consider that
the detection rates decrease because the proposed method fails to detect correct categorical
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features. From the results for γ = 1 and γ = 10, we can conclude that the correct detection
rates improve for a large Hamming weight. However, because the results for γ = 1 and
γ = 10 are almost the same, there may be an upper limit to its effectiveness.

Next, we discuss the effects of Bayesian optimization. When Bayesian optimization
was not adopted (upper side in Figure 6), the detection rates of FSol. and FQ.Sol. were
almost the same. In contrast, when searching for the initial feature subset using Bayesian
optimization (bottom side in Figure 6), the detection rate of FSol. was higher than that
of FQ.Sol. by approximately three times. For example, when the number of generated
samples was 384, the detection rates of FSol. and FQ.Sol. were approximately 60% and 20%,
respectively. Therefore, searching the initial feature subset using Bayesian optimization
may be effective in identifying the best subset FSol.. Moreover, BS-FS is effective in detecting
one of the following subsets: FSol. and FQ.Sol. because the total detection rate of FSol. and
FQ.Sol. increases.

Figure 6. Detection rate of FSol. and FQ.Sol. for the E2H MRS and BS-FS (Bayesian optimization
iteration b ∈ {0, 100}, and Hamming weight γ ∈ {0.1, 1, 10}).

However, for small sample sizes, the detection rate of FSol. and FQ.Sol. is also small.
When the sample size is too small, owing to an incorrect random bias, the E2H MRS may
classify some features belonging to the bad feature subset FBad as effective.
Therefore, when the sample size is too small, selecting only two patterns of the correct
solution FSol. and quasi-correct solution FQ.Sol. from a total of 1365 pattern candidates
is difficult when using E2H MRS and BS-FS. In actual data, cases where the numbers of
collected samples are not large are sometimes encountered. In such cases, the selection of
all the correct features becomes unrealistic. Therefore, it is important to check the number
of correct features among the four features selected by the proposed method.

Further, we checked the detection rate of two or three correct features among the four
features selected by the E2H MRS and BS-FS. Notably, the correct features are defined as
features belonging to FSol. or FQ.Sol.. The corresponding results are presented in Figure 7.
Here, (A) and (B) denote the detection rates obtained when the number of correct features
is two and three or more, respectively. As can be observed, although the sample size is
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small, some correct features are selected. Moreover, we also understand that the detection
rates increase when searching for the initial feature subset using Bayesian optimization.
Therefore, we consider that the proposed methods, E2H MRA and BS-FS, are effective in
identifying desirable feature subsets for classification tasks, even if the sample size is small.

Figure 7. Detection rate of two or three correct features (Hamming weight γ = 1 and Bayesian
iteration b ∈ {0, 100}).

6. Conclusions

In this paper, we propose an improved form of the original MRS [18], which is a
feature subset evaluation and selection algorithm. The improved algorithm is referred to
as the E2H MRS. In particular, the E2H MRS (Algorithm 1) can evaluate numerical and
categorical mixture feature subsets and consider the distance between different classes.
Moreover, a subset selection algorithm for time complexity O(b + n), referred to as BS-FS
(Algorithm 2), is proposed. The proposed methods are validated using Experiments 1 and
2 based on artificial data.

In this study, we verified the effectiveness of the proposed methods, E2H MRS and
BS-FS, by using samples sizes of several tens to hundreds. However, recently, large datasets
with several million samples have emerged, and we did not verify the effectiveness on such
a dataset. Moreover, we adopted 2:2 as the proportion of numerical/categorical features in
the experiment described in Section 5. Cases of other proportions should also be verified.
Therefore, we plan to perform experiments in future.
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Appendix A. Variables and Their Meanings Table

Appendix A.1. Variables for Representing Problem Description

Variables Meanings

F The all features set collected by the users who want to find desirable features subset.

Fr The all numerical features set in F.

Fc The all categorical features set in F

nr The size of Fr, i.e., nr = |Fr|.

nc The size of Fc, i.e., nc = |Fc|.

n The size of F, i.e., n = nr + nc.

f r
i The i-th element of Fr, i.e., one of numerical features.

f c
i The i-th element of Fc, i.e., one of categorical features.

F ′ One of the features subset of F.

m The size of F ′.

L(F ′) The evaluation function for the features subset F ′.

F ′opt. The optimal features subset leading to the minimum value of L(F ′).

z Either class z0 or z1.

xz The features vector of class z ∈ {z0, z1}.

xz,r The part of feature vector xz that consists numerical values.

xz,c The part of feature vector xz that consists categorical values.

pr The dimension number of xz,r.

pc The dimension number of xz,c.

Appendix A.2. Variables for Representing the Proposed Methods

Variables Type 1 Meanings

D(xz0 , xz1 ; γ) Calculation The mixture distance between two features vectors xz0 and xz1 .

DE2(xz0,r, xz1,r) Calculation The squared Euclidean distance between two numerical features xz0,r and xz1,r.

DH(xz0,c, xz1,c) Calculation The Hamming distance between two categorical features xz0,c and xz1,c.

σ(xz0,c
i , xz1,c

i ) Calculation
The function for checking whether xz0,c

i and xz1,c
i are the same or not. If their are the same, it

outputs 0, if not, it outputs 1. The function is used for the Hamming distance DH(xz0,c, xz1,c). Note
that xz0,c

i and xz1,c
i are i-th elements of categorical features vectors xz0,c and xz1,c, respectively.

γ Manually
The weight of the Hamming distance DH(xz0,c, xz1,c). When users have a hypothesis in which
categorical features are important for classification, they set a large value. When users set γ = 0,
the effect of categorical features on distance disappears. The range is γ ≥ 0.

I Calculation It is the minimum reference set (MRS) leading to the correct classification (no error) of all samples
by using features subset F ′. MRS was proposed in the original study [18].

C(I) Calculation The average distance between different classes of set I. Appears in Algorithm 1.

S(I; δ) Calculation The evaluation function of features subset F ′ considered both of MRS size I and distance C(I).
The lower the value, the better is the feature space for classification. This is equivalent to L(F ′).

δ Manually
The effect of the distance between different classes on the evaluation function. This parameter is
manually set by the users. When they emphasize the distance between different classes compared
with MRS size, they set a large value. The range is δ ≥ 0.

b Manually
Iterations of the Bayesian optimization. Appears in Algorithm 2. This parameter is manually set
by the users. When they want to improve accuracy of the obtained solution, they set a large value.
The computational cost is highly dependent on this value.
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Variables Type 1 Meanings

F∗opt. Calculation The solution of features subset for classification obtained by Algorithm 2. The solution’s evaluation
L(F∗opt.) is expected to be close to the optimal solution’s evaluation L(F ′opt.).

1 “Manually” means the users of the proposed methods need setting any value. “Calculation” means the values
are automatically calculated.
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