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Abstract: Currently, explainability represents a major barrier that Artificial Intelligence (AI) is fac-
ing in regard to its practical implementation in various application domains. To combat the lack
of understanding of AI-based systems, Explainable AI (XAI) aims to make black-box AI models
more transparent and comprehensible for humans. Fortunately, plenty of XAI methods have been
introduced to tackle the explainability problem from different perspectives. However, due to the vast
search space, it is challenging for ML practitioners and data scientists to start with the development
of XAI software and to optimally select the most suitable XAI methods. To tackle this challenge,
we introduce XAIR, a novel systematic metareview of the most promising XAI methods and tools.
XAIR differentiates itself from existing reviews by aligning its results to the five steps of the software
development process, including requirement analysis, design, implementation, evaluation, and
deployment. Through this mapping, we aim to create a better understanding of the individual steps
of developing XAI software and to foster the creation of real-world AI applications that incorporate
explainability. Finally, we conclude with highlighting new directions for future research.
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1. Introduction

In the recent decades, artificial intelligence (AI) models have become a key technology
that enabled breakthrough innovations in various application domains, e.g., natural lan-
guage processing [1], computer vision [2–4], autonomous driving [5], agriculture [6], and
healthcare [7]. However, these innovations have been realized at the cost of poor model
interpretability, which makes it challenging for humans to trace their decision process.
Figure 1 illustrates a classification of most popular AI models according to their complexity,
potential performance in AI applications, and level of interpretability. As the figure depicts,
traditional machine learning algorithms, tend to be more readily explainable, while being
relatively less powerful in terms of predictive performance. Other advanced algorithms,
such as deep learning models, remain much harder to explain while being more powerful
in complex systems.

This classification leads to a natural question of why explainability is a crucial measure
in AI applications. Generally speaking, providing explanations of AI models and their
predictions can be necessary for commercial benefits, ethical concerns, or for regulatory
considerations. For instance, European Union regulation 679 [8] guarantees data owners the
right to receive explanations of the decision reached using their data and to challenge the
decision if it was generated by AI models. For decision-critical domains where automated
decisions need to be well-understood, explainability is not only indispensable but also
increases the acceptance of these AI-powered applications. This acceptance is broadly
necessary in situations where AI models have a supporting role (e.g., medical diagnosis) as
well as in situations where they practically make the decisions (e.g., autonomous driving).
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Aside from justifying the predictions and decisions, explainability also helps in controlling
the behavior of AI models by providing greater visibility over the inner components of AI
models.
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Figure 1. Classification of AI models according to their level of complexity, explainability, and their
potential in modern AI applications.

Fortunately, plenty of methods and tools for explaining AI models have been intro-
duced in the scientific literature [9–11]. As XAI has grown exponentially in recent years, it
is challenging for individuals to get started with XAI and select appropriate XAI methods
and tools for their applications. To keep track of new developments and trends in XAI
research, there is an increasing number of reviews and overview articles on specific facets
of XAI. A particularly popular trend is to create taxonomies of the proposed XAI methods
[12–17], leading to several competing approaches to construct them [18]. However, the XAI
landscape is simply too broad and complex to be compressed into a single pragmatically
useful taxonomy. Due to this vast amount of taxonomies that lack uniformity between
each other, practitioners may struggle to apply those explainability methods. To overcome
this problem, few articles and reviews aim to provide assistance for practitioners. For in-
stance, Saeed and Omlin [19] conducted a systematic metareview by adopting the machine
learning lifecycle to structure the different challenges and opportunities of XAI. Moreover,
Chazette et al. [20] introduce six core activities and related practices for XAI system devel-
opment based on the results of a literature review and an interview study. Other recent
reviews focus on a general overview of XAI [16,18,21–23] or individual aspects of XAI, such
as regulatory frameworks [24], barriers and challenges [25], or explanation theory [17,26].
Moreover, some articles review explainability methods for specific application domains
[27–33]. Such reviews mostly lack a clear description of all necessary aspects to develop
XAI software. Accordingly, converting scientific innovations by academic research into
usable real-world systems is still a major challenge, which hinders the applicability of XAI
methods in industrial environments.

In this paper, we conduct a systematic metareview, called XAIR (XAI Review) and
align our findings along the steps of the software development process [34] to create a better
understanding of the individual steps of developing XAI software. Therefore, the research
of this paper is structured around five research questions, which are illustrated in Figure 2.
By these means, we aim to highlight the important steps during the software development
process and to foster the creation of real-world AI applications that incorporate explainabil-
ity. In response to our research questions, we provide the following three contributions: (1)
We thoroughly analyze the literature on XAI to introduce a systematic metareview of the
most prominent explainability methods and tools. (2) We align the results of our qualitative
and quantitative analysis to the five steps of the software development process in order to
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help ML practitioners during the development of XAI software. (3) We discuss the study
implications and conclude the findings with future research directions for each step of the
XAI software development process.
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Figure 2. Addressed research questions (RQ) aligned to the XAI software development process.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the main terminologies and concepts in the field of XAI. In Section 3, we introduce
our research methodology followed to analyze existing XAI literature with the goal of
extracting useful insights on the development of XAI software. Sections 4–8 provide
detailed answers to the aforementioned research questions which address the requirement
analysis, XAI design, implementation, evaluation, and deployment. In Section 4, we list
requirements that need to be collected and analyzed before developing or selecting a
suitable XAI method. Section 5 elaborates on the implications related to the design phase
of XAI software development. This phase includes the explanation design as well as the
explainable user interface design. Section 6 highlights the most prominent XAI libraries,
before Section 7 introduces different categorizations for the evaluation of XAI. In Section 8,
we shed light on the various identified challenges of deploying XAI software. In Section 9,
we first discuss different ways to select a suitable XAI method. Then, we present not only
general research possibilities but also specific research directions toward the XAI software
development process. Finally, Section 10 draws a conclusion of the obtained results.

2. Background

In this section, we discuss the main XAI concepts and terminologies, which are helpful
to fully understand the technical contributions in this article. First, we define the term
explainability before describing the individual components of an XAI. We then discuss the
different types of explanations as well as the existing categorizations of XAI methods.

2.1. Important Concepts

In 2004, the term XAI was first coined by Van Lent et al. [35] when describing their
system’s ability to explain the behavior of AI-controlled entities in simulation games. The
progress toward explainable AI models slowed down, however, as AI reached a tipping
point with the spectacular advances in ML. In the wake of these advances, the focus of AI
research has shifted to improving the predictive power of these models, while the ability
to explain the underlying decision processes has taken a back seat [9]. In general, there
is no agreed definition of XAI in the scientific literature. A widely accepted definition is
introduced by Adadi and Berrada [9], where XAI is defined as the movement, initiatives,
and efforts being made in response to concerns about transparency and trust in AI systems.
These concerns are mainly connected to the decisions, generated using AI models, which
ultimately affect people’s lives (such as in healthcare or law) since there is an increasing
need to understand how such decisions are made by AI models [36]. Therefore, the goal of
enabling explainability “is to ensure that algorithmic decisions as well as any data driving
those decisions can be explained to end-users and other stakeholders in nontechnical
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terms” [37]. Across different research communities, different terms are used around the
key concepts shaping this explainability landscape.

Fundamentally, explainability is closely related to the concepts of interpretability and
fidelity. To this end, interpretable systems are explainable if their operations can be under-
stood by humans [9]. In other words, the interpretability of an explanation indicates how
understandable an explanation is for humans. In the technical literature, explainability
and interpretability are often used synonymously [10,11]. Accordingly, interpretability can
be considered as a property related to an explanation, where explainability is a broader
concept related to all actions to be explained. Aside from interpretability, the fidelity of an
explanation captures how accurately an explanation describes the behavior of a model, i.e.,
how faithfully an explanation corresponds to the task model that generates predictions. In
this sense, it is argued that an explanation should be understandable to humans and at the
same time correctly describing the model behavior in the entire feature space. We follow
this notion of explainability, as we believe fidelity is an essential term that should be taken
into account in the development of XAI software.

2.2. XAI Components

As outlined in the introduction, this research explores the XAI software development
process. Figure 3 illustrates the main components of an explainable AI and its possible
stakeholders. As the figure depicts, the explainable AI typically consists of two components,
namely a machine learning model and a XAI method. The model calculates predictions
based on the training data, while the XAI method is responsible for generating explanations
for the inner workings and predictions of the ML model. Accordingly, an explainable AI
incorporates two outputs, predictions and explanations. In order to effectively deliver these
outputs to the end user, typically a (graphical) user interface is implemented. Various stake-
holders are able to engage with both the predictions and the explanations generated by the
machine learning model. Data scientists and ML developers may utilize the explanations to
gain a deeper understanding of the model’s inner workings and optimize its performance.
Domain experts may evaluate whether the model’s behavior aligns with real-world logic.
Managers and business owners may utilize the explanations to make informed decisions
based on the model’s outputs. To help with developing such an explainable AI, XAIR
considers all relevant steps adopted from the building blocks for software development [34],
starting from requirement analysis and finishing at the deployment of XAI applications.

Data Scientists/ 
Developers

XAI Method

Stakeholders

Explanations

Explainable AI (XAI)

ML Model

Input Data

Predictions

User
Interface

Domain Experts

Managers/ Business
Owners

Figure 3. Explainable AI (XAI) and possible stakeholders.

2.3. Black- and White-Box Models

In this section, we highlight a selection of relevant XAI notions that we consider helpful
to contextually define the field under study. One important classification of ML models
is according to their inherent model interpretability. Hereby, we differentiate between
white-box and black-box models. In general, white-box models typically create a description,
interpretable for humans, of the input–output relationship. For example, the coefficients
in a linear regression report how an additional input unit changes the output in a linear
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relation. Other examples of white-box models comprise other types of traditional machine
learning models, e.g., decision trees, rule-based learners and k-nearest-neighbor models.
On the contrary, black-box models are de facto not humanly comprehensible due to the high
non-linearity and the model size. These properties enable such models to capture complex
relationships within the data, which the white-box models are not able to learn. Therefore,
interpretability usually comes at the cost of model accuracy. Examples of black-box models
are neural networks, ensemble methods and support vector machines. The XAI methods
which aim to explain the model predictions after the training and inference processes are
typically referred to as post-hoc methods in the literature [9,38].

2.4. Global and Local Interpretability

The main objective of global interpretability is to create general comprehensibility of a
model’s behavior [9,39–43]. The derived explanations are valid for all data instances. These
types of XAI methods are useful if the goal is to uncover the general mechanisms behind the
model features and the outputs. In contrast, local interpretability refers to explanations for a
single data point [9,39–43]. The aim of local XAI methods is to make individual decisions of
a black-box model comprehensible. However, these approaches are not capable of finding
a general relationship between the input features and the model outputs. Although, it can
be argued that local interpretability is sufficient for some end-users because they might
be less interested in a global explanation, but more interested in knowing what caused a
certain model prediction in their individual case. In the next section, we elaborate on the
research methodology adopted while reviewing the most prominent works in the realm of
AI explainability.

3. Research Methodology

Aiming to gain insights into the different steps of the XAI software development
process, XAIR leverages the results of our systematic metareview of the most prominent
XAI methods and tools. Accordingly, XAIR can broadly assist data scientists and software
developers through leveraging the best practices of developing XAI software. To provide
a comprehensive overview of the topic, XAIR analyses several scientific studies, not only
from a variety of application domains (e.g., healthcare, Industry 4.0, security, finance,
logistics), but also from different XAI research foci (e.g., XAI design, use cases, domain-
dependent applications, requirements, social responsibility, HCI, implementation). In fact,
organizing and classifying the XAI literature in a precise and indisputable manner is typi-
cally a challenging task. The difficulty of such a task emerges due to the multidisciplinary
nature of this field of research, which ranges from Computer Science to Mathematics, from
Psychology to Human Factors, from Philosophy to Ethics.

To overcome this challenge, XAIR leans on a set of guidelines, defined in [44]. Such
guidelines involve four major steps, namely planning, selection, extraction, and execution. The
planning step deals with clearly identifying the purpose of the intended review. Previous
reviews usually lack the perspective on XAI-powered application development as they
mainly focus on the broad range of XAI methods. In XAIR, we aim to fill this gap by deriv-
ing insights for the development of XAI software from the scientific literature. Accordingly,
XAIR can help to translate innovations created by researchers into real-world applications.
The selection step involves searching the literature for XAI articles and carrying out an
initial screening. The adopted search strings are derived from various XAI concepts (cf.
Section 2.1), including “explainable artificial intelligence”, “transparent artificial intelli-
gence”, “responsible artificial intelligence” and “interpretable artificial intelligence” in
combination with “review” or “survey”. We opted to cover these four concepts within the
literature review to achieve a broad perspective over the entire research field. The search
process has been conducted on titles, abstracts, and keywords. As data sources, we selected
several databases, such as Scopus, IEEE Xplore and ACM Digital Library, to cover different
research communities. We considered the time frame between 2018 and 2022 to capture
the most recent XAI literature. Searching within such a time frame resulted in a total of
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1327 hits. In an initial screening process, we considered the abstracts, keywords and titles
to exclude the articles that do not mainly cover the topic of XAI or do not exhibit a review
or survey character. Furthermore, duplicates and non-English articles have been excluded.
Such an initial screening resulted in 346 articles. Afterward, a thorough quality inspection
of the remaining research articles has been conducted. Accordingly, the articles which did
not meet the scientific rigour or were poorly written have been dismissed. As a result, we
consider 227 articles in the remainder of this review.

In the extraction step, we carried out a quantitative analysis in which the characteristics
of each article has been estimated. Figure 4 illustrates the quantitative results obtained in
the extraction step. For instance, Figure 4a shows the distribution of different research foci
within the analyzed XAI literature. As the figure depicts, 44% of the analyzed articles focus
on the design of explainability methods. Such a category encompasses the articles with
provide a general overview of available XAI methods and articles covering the explanation
theory [11,45–48]. The second fraction, circa 15% of the examined articles, deals with the
application of XAI methods in specific use cases. The domain dependent XAI methods,
dedicated to specific domain such as natural science or finance, cover around 12% of
the examined articles. Other research perspectives: the requirements analysis for XAI
applications [49–54], the social responsibility [55–58], the processed data types [59–61], and
human–computer interaction (HCI) [62–66] are represented by circa 6%, 6%, 5%, and 5% of
the examined articles, respectively.
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Figure 4. Results of the quantitative analysis. (a) Research focus. (b) Application domains.
(c) Time distribution.

As illustrated in Figure 4b, we also quantitatively analyzed the distribution of the XAI
application fields. The results show that AI explainability plays a crucial role in several
application domains, such as health care, Industry 4.0, and security. More than half of the
analyzed reviews are not be linked to any application field. Rather, they take a general
perspective on XAI. The most frequently occurring application field is health care (i.e.,
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circa 23% of the examined articles). This result is not surprising because explanations in
this field are essential to enhance the trust in the AI-powered health care systems and to
reason the consequent actions based on the model’s predictions. After health care comes
Industry 4.0 and security in the third (circa 6%) and the fourth (circa 4%) places, respectively.
The Industry 4.0 class covers the articles which adopt XAI methods in industrial settings,
while the security class contains the articles which adopt XAI for fraud detection. In
natural sciences (circa 4%), XAI has been used to generate and explain new scientific
findings, for example in chemistry [67] and high-energy physics [68]. The articles with
a legal background (circa 2%) cover algorithmic transparency in the European General
Data Protection Regulation (GDPR) [24], the applications of XAI on legal text [69], the
explanation techniques in law and their applications for machine learning models [70]. In
the field of robotics (circa 2%), the considered articles address the subject of explainable
reinforcement learning [71,72] as well as categorization of explanatory capabilities and
requirements [51]. Examples of other application fields include autonomous driving [50],
communication systems and networking [49,73], education [74,75], and social sciences [11].

As illustrated in Figure 4c, the number of XAI articles is broadly increasing since 2018,
confirming the rising interest in the topic of XAI. At the beginning of the observed period, all
the analyzed reviews did not address a specific field of application. Since then, the number
of publications for specific applications has been increasing, demonstrating the usefulness
of XAI in different fields. XAI methods have always been the most important focus of the
articles. However, in recent years, the trend has shifted from generally-written articles
toward articles targeting specific methods or application domains. This shift indicates
that the need for generic reviews has become saturated, whereas their applications are
still highly relevant. Hence, it is not only important how to generate explanations from
a technical perspective, but also how theory from psychology and linguistics can help to
improve explanation quality and how HCI concepts can make them more human-friendly.

This quantitative analysis of the literature shows that XAIR covers a great variety
of the academic field. In addition, we used forward and backwards search to further
deepen this foundation in order to retrieve all the necessary information [76]. Finally, in
the execution step, we thoroughly analyzed the literature with regards to our research
questions and aligned our findings along the software development process. The process of
software development has been a subject of research for a long time [77,78]. Its basic steps
usually include requirement analysis, design, implementation, evaluation, and deployment
[34]. Along these lines, XAIR leans on the processes which are well-established in the
context of AI and software development in order to identify the most important aspects for
the development of XAI software. Since the “explainable” component places additional
requirements on the development, there is hardly any development process for this type
of XAI software so far [79]. Hereby, we focus on how the basic steps of the software
development process need to be adapted with respect to this additional component. In
the next sections, we align our results of the proposed literature meta-review along the
aforementioned software development steps in order to provide answers to our research
questions (cf. Figure 2).

4. Requirement Analysis

In the first step of the development process, the requirements of the XAI software
need to be clearly specified. In addition to the functional requirements regarding the
software itself, it is also necessary to formulate the requirements addressing the explainable-
component. Hereby, we extracted several starting points from the literature. Initially, it is
necessary to specify what needs to be explained and to whom [80]. In fact, a precise definition
of the relevant stakeholders and the target users represents a major aspect for deriving the
requirements [80–85]. To formulate such a definition, several user characteristics, e.g., AI
knowledge, domain knowledge, attitude toward AI, responsibilities and cognitive abilities,
can be exploited [20,80,83]. This definition is de facto important because different users
require different kinds of explanations. For example, a machine learning engineer who has
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a strong knowledge of the inner workings of ML models can make use of more complex
explanations than a novice user without technical background. In fact, it is not only impor-
tant to define what to explain and to whom but also how to explain. Hence, the requirements
also deal with the type of explanations [82] or certain explanation characteristics [81]. For
example, a manager would like to know the variables that need to be changed in order to
obtain a different result, whereas a machine learning engineer would prefer to identify the
most important variables for a better model understanding. This type of requirement is
often linked to the type of user. The most frequently-used data type of an application can
also act as a requirement when selecting the appropriate explainability method [83]. For
instance, some explainability methods have been primarily developed for images [86] or
tabular data [87], whereas others are not dependent on the data type [88].

Another set of requirements can be derived based on the underlying ML model [20].
Specific tasks may require certain model architectures, e.g., CNNs and RNNs. For example,
in natural language processing, large transformer-based models [89] are the current state
of the art. However, the size and computational cost of these networks may hinder the
adoption of certain XAI methods. In this context, model-specific XAI methods could
efficiently provide better explanations by considering the unique model characteristics.
Along a similar line, a set of requirements can also be derived based on the existence of an AI
system for which the explanations are needed. If an AI model is already in place, time and
cost have already been invested. Thus, techniques which focus on post-hoc explanations
are preferred, as they do not require any changes to the trained model. In contrast, if there is
no trained model, choosing a white-box model design is more feasible. Aside from the ML
models, the requirements can also be defined based on a set of decision characteristics, such
as the outcome criticality, the time sensitivity and the decision complexity if the explanation
is used to support decision making [83]. Another important aspect is the context of the
explanation which can also be used to derive requirements, because it can imply constraints
on the explanations [80]. For example, in the case of an automotive assistant system, visual
explanations might be less feasible since they might distract the driver from the traffic.

In summary, there exist several requirements which need to be collected and thor-
oughly analyzed before designing the XAI software. In this regard, Chazette et al. [20]
propose a trade-off analysis as part of the requirement analysis. Hereby, they argue that
trade-off between explainability and other quality aspects like ease of use, user interface
design or information load should already be part of the requirement analysis. When
setting up the requirements, it is not only important to define the ideal system behavior, but
also what happens if explainability is not possible and how much uncertainty is tolerable
[82]. Following this approach usually reduces the unexpected consequences caused by
unspecified system behavior.

5. Design Phase

In this section, we present our findings for the design phase of XAI software. The
goal is to identify suitable methods for generating and presenting explanations for the
model output. In comparison to the traditional design phase of a an AI system without
an explainability component, XAI software needs two additional design steps, namely
explanation design and explainable user interface design [79], which is illustrated in Figure 5.

XAI Design

Explanation Design User Interface Design

Feature
Importance

Visual
Explanations

Feature
Importance

White-Box
Models

Example-
Based XAI

White-Box
Models
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Figure 5. Classification of the reported XAI design methods.
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To this end, there exist a variety of methods for both parts of the XAI design phase. On
the one hand, the explanation design (Section 5.1) covers the process of selecting one or more
suitable methods to generate appropriate explanations, depending on the requirements
and the application which is a major step within the design phase. On the other hand, it
is necessary to adequately design the user interface (Section 5.2) that precisely delivers the
explanations to the application users. In the following, we use this classification to report
on relevant XAI design methods.

5.1. Explanation Design

Here, the aim is not to provide a comprehensive overview on all existing XAI methods,
but rather to propose a starting point for developers and practitioners to select suitable XAI
methods. In this regard, XAIR differentiates itself from existing taxonomies, which merely
focus on the categorization of XAI methods on a purely functional level [9,13,38]. Instead,
XAIR introduces a simple categorization based on the type of explanation that developers
and practitioners may want to implement to make their model more interpretable in
combination with common types of ML models which they might want to use. As Figure 5
illustrates, we consider four major kinds of explanations for explanation design used in
the literature, namely feature selection, white-box models, example-based XAI, and visual
explanations. The most common explanation methods generate importance values for the
input features. These features might be image pixels, word tokens, or numeric features from
structured data. A second group of methods aims to create a white-box model that mimics
the original black-box model and is inherently interpretable. Furthermore, example-based
XAI methods use instances from the training data to make decisions of the black-box model
more comprehensible. The last group relies on purely visual explanations. Below, we
discuss the most prominent XAI methods in each of these groups. Table 1 summarizes the
reported XAI methods with highlighting their scope and functionality.

5.1.1. Feature Importance

In the following, we discuss the most prominent feature importance methods, which
calculate importance values for the input features. These features can be features can be in
the form of image pixels, word tokens, or numeric features from structured data.

LIME. Several XAI methods that provide feature importance values can be employed
with almost any type of black-box ML models. Among these XAI methods are the surrogate
models, which can be used in lieu of the original models to improve explainability. In
the context of local explainability, the surrogate models create a white-box model around
a single data instance. Such surrogate models are inherently explainable, but are only
valid for a single data instance. In particular, a surrogate model fits a data set sampled
around a focal data point and is subsequently used to retrieve the importance vector
for the input features. The first XAI method to exploit this approach is LIME [88]. As
a model-agnostic XAI method (Model-agnostic methods can be used with any machine
learning models, while model-specific methods aim to understand the black model machine
learning models by analyzing their internal components and how they interact), LIME
generates explanations through perturbing the input data samples to understand how the
predictions change. Specifically, LIME creates a linear surrogate model which is trained
on small perturbations of an original data instance. Accordingly, the output of LIME is
simply a vector of explanations, reflecting the contribution of each feature to the prediction
of a data instance. However, LIME suffers in some scenarios since (1) simple perturbations
may not be sufficient to generate accurate predictions of the surrogate model and (2) it
relies only on linear surrogate models which may not be powerful enough if the region,
generated by perturbation around the sampled data instance, is relatively large.
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Table 1. Overview of the reported XAI methods.

Explanation Type Black-Box Model Method Scope Functionality Source

Feature Importance

Any

LIME Local Surrogate Model [88]

LORE Local Surrogate Model [90]

Anchors Local Surrogate Model [91]

Occlusion Local Input Perturbation [86]

Permutation Feature Importance Global Input Perturbation [92]

Shapley Feature Importance Global Game-Theory [93]

SHAP Both Game-Theory [87]

Neural Network

Guided Backpropagation Local Backpropagation [94]

Integrated Gradients Local Backpropagation [95]

Layerwise Relevance Propagation Local Backpropagation [96]

DeepLift Local Backpropagation [97]

Testing with Concept Activation Vectors Global Human Concepts [98]

Activation Maximization Global Forwardpropagation [99]

CNN
Deconvolution Local Backpropagation [86]

Class Activation Map Local Backpropagation [100]

Grad-CAM Local Backpropagation [101]

Transformer
Attention Flow/Attention Rollout Local Network Graph [102]

Transformer Relevance Propagation Local Backpropagation [103]

White-Box Model

Any
Rule Extraction Global Simplification [104]

Tree Extraction Global Simplification [105]

Model Distillation Global Simplification [106]

CNN Attention Network Global Model Adaption [107]

RNN Attention Network Global Model Adaption [108]

Example-Based Any
Prototypes Global Example (Train Data) [109]

Critisisms Global Example (Train Data) [110]

Counterfactuals Global Fictional data point [111]

Visual Explanations Any
Partial Dependence Plot Global Marginalization [112]

Individual Conditional Expectation Global Marginalization [113]

Accumulated Local Effects Global Accumulation [114]

Anchors & LORE. To overcome these limitations, the same authors introduce another
model-agnostic XAI method based on IF-THEN rules, referred to as Anchors [91]. Instead
of identifying the important features as LIME does, Anchors creates a region, i.e., numerical
ranges, in the feature space. Such a region can be defined within a set of decision rules to
precisely interpret the outputs of the black-box model. These rules can be interpreted as
sufficient conditions for a particular prediction. For instance, Anchors can generate the
following explanation: Rose survived Titanic since she was a woman aged between 15 and 25,
who had a cabin on the upper deck. To find the decision rules, Anchors implements a greedy
beam search algorithm. In particular, Anchors exploits the beam search algorithm to find
a solution within a set of candidate rules which have been derived from perturbations of
the input data instance. Due to the need for input data permutation, the search process
becomes computationally intensive, especially if the number of features is relatively large.
Another model-agnostic XAI method that is based on local surrogate models is LORE [90].
Similar to Anchors, LORE generates explanations in the form of decision rules. However,
LORE generates the decision rules in a different way. Specifically, LORE creates synthetic
neighborhood data samples, using a genetic algorithm, which then are used to fit a decision
tree. Afterward, a set of decision rules is extracted from the decision tree classifier.

Permutation Feature Importance (PFI). Aside from surrogate models, permutation
feature importance (PFI) is another powerful model-agnostic tool that aim to detect which
features have predictive power. To this end, PFI methods tend to randomly shuffle the
feature values. To measure the importance of an input feature, its data instances are shuffled,
while leaving all other features constant. Afterward, the impact of such perturbation on the
model performance is measured. In this context, a feature is considered important if the
performance of the ML model drops significantly due to the perturbation process, which
deliberately removes the dependency, learned by the model, between the input data and



Mach. Learn. Knowl. Extr. 2023, 5 88

the labels. For instance, Zeiler and Fergus [86] iteratively occlude different parts of the
input images to find important regions. Although this concept was originally introduced
for convolutional neural networks (CNN), it can be applied to any black-box model by
defining an appropriate policy to occlude parts of the input data. Despite being simple, PFI
methods suffer from several drawbacks. For instance, they are computationally intensive
due to iterating through each of the input features. Moreover, they usually offer poor
performance if the input features are correlated. In this case, the model may still perform
well after shuffling one of these correlated features.

Shapley. Another group of model-agnostic XAI methods is based on the Shapley
value [115], which is originally a concept from cooperative game theory. It has been
applied to the field of XAI with the goal of attributing a model prediction to individual
input features. Specifically, the Shapley value method treats each feature as a “player”
in a game and the prediction as the “payout”. In this setting, the Shapley value method
finds how to fairly distribute the payout among the features. To this end, the Shapley
method calculates the average marginal contribution of each feature across all possible
coalitions (i.e., distinct combinations of this feature with other features). Due to the huge
space of possible coalitions, several approximations, implemented in different ways, are
necessary to efficiently execute the Shapley method. In this realm, Shapley Feature Importance
(SFI) [93] is a global explanation method which relies on permutation to approximate the
computations. The SFI method can be seen as an extension of the PFI method because
instead of fully attributing importance gained through feature interaction to all features,
it fairly distributes the importance scores across the features based on the Shapley values
[93]. In contrast, SHAP (Shapley Additive Explanations) [87] generates local explanations.
The approximations are made by adding mathematical assumptions which simplify the
computations of the Shapley value. The authors provide both a model-agnostic version
and model-specific versions for linear models and neural networks, which exploit the
individual model characteristics.

Model-specific XAI. Because neural networks are one of the most commonly-used
type of black-box models, there are plenty of XAI methods which focus on their explainabil-
ity. They leverage the fact that the gradient of a neural network is already calculated during
the training process. Thus, many approaches use the gradient to assert importance values
to the input features. Due to the layered structure of neural networks, it is also possible to
apply these XAI methods not only from input to output but also between different layers.
This strategy enables a more detailed view on the hidden layers. This detailed view can
be broadly valuable for AI engineers who aim to better understand the inner workings of
their neural networks. However, the naïve solution of exploiting the gradient of the utility
function with respect to a certain input has two major shortcomings. First, saturation [116]
can cause the gradient to be almost zero. Thus, a change in the input will have no impact
on the output, even when it might be important. Second, discontinuities in the gradient can
cause sudden jumps in the importance scores over infinitesimal changes in the input [97].
Therefore, the gradient by itself is not feasible as a function of feature importance.

In order to overcome the problem of saturation within gradients, the Integrated Gradi-
ents [95] method interpolates between a baseline and the normal input. The baseline might
be an all black image or a vector consisting of only zeros for tabular data. The gradients at
each step of the interpolation are accumulated. This sum describes the importance of the
input feature. Another approach to address the gradient saturation problem is DeepLift [97].
The basic idea behind DeepLift is to calculate the difference in the output from a reference
output with respect to the difference in input from a reference input. This way, the gradient
can be zero if saturation has been reached, but the difference from the reference is nonzero.
The reference is chosen based on the problem at hand and can be compared to choosing the
baseline for the Integrated Gradients method. The feature importance can be interpreted as
the change in the output from the reference that is attributed by the change in the input
feature from the reference point.
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Backpropagation-based XAI. To understand what intermediate layers of convolu-
tional neural networks (CNNs) are responding to, Guided Backpropagation [94] has been
introduced. During the backward pass through a CNN network, all negative gradients are
deliberately set to zero. Therefore, only positive weights are considered. This action leads
to a better picture of the effect of the input on a particular output when compared to the
case of including negative weights. Even though this method was originally introduced
for CNNs, it can be applied to all other neural networks as long as they are differentiable.
Another model-specific XAI method is Layerwise Relevance Propagation [96], where its idea
stems from Kirchhoff’s Law for electric circuits. It dictates that the sum of currents flowing
into a node is equal to the sum of currents flowing out. Adapted to neural networks, this
law means that the relevance score of a neuron must be equal to the sum of relevance
scores of all connected neurons in the lower layer. Therefore, the relevance is redistributed
through all layers from the output to the input of the network.

Forward Propagation-based XAI. Erhan et al. [99] propose an approach, referred to as
Activation Maximization, based on the concept of forward propagation. The main objective
of Activation Maximization is to find an input which produces the highest activation in the
output layer. The higher the generated activation, the more important is the input feature. In
contrast to the backpropagation-based methods, the Activation Maximization method results
in global explanations. However, similar to the permutation-based methods, the Activation
Maximization method is computationally inefficient compared to the backward-propagation-
based methods because the forward propagation has to be calculated numerous times,
whereas the gradient during the backward propagation is only calculated once.

Human Concepts. Aside from forward and backpropagation-based XAI methods,
Testing with Concept Activation Vectors (TCAV) [98] is a global explanation method based
on human understandable concepts. The idea behind TCAV is to test whether a neural
network has learned a specific concept, for example, the concept of stripes in zebra images,
by identifying what activations it causes within a specific layer of the neural network.
Through TCAV, we can estimate the relative importance between a small set of concepts,
rather than ranking the importance of all possible features/concepts. The main advantage
of TCAV is that is requires no retraining or modifying the network. Specifically, users can
express their concepts of interest using examples, i.e., a set of data instances exemplifying
the concept. For instance, if the concept of interest is the gender, users can provide several
images of women. In this case, a linear classifier can learn the differences, within the
activations, between a data set containing the concept of interest and a random control
group which does not. In addition, the authors show that visual concepts, like stripes or
dots, appear more toward earlier network layers, whereas higher level concepts arise more
at later layers. The disadvantage of this method is that additional data for each concept is
needed to train classifiers for each individual concept. Hence, Ghorbani et al. [117] propose
a method to automatically derive concepts for each class of a trained classifier based on
a set of images of that particular class. Specifically, segments of different resolutions are
automatically extracted and clustered into concepts representing textures, objects, and
object parts. Subsequently, TCAV can be applied to the extracted concepts to investigate
what concepts the classifier has learned.

CNNs. The above described approaches are applicable for any type of neural network
architecture. However, some methods are focused on a specific type of architectures. A
common type of neural networks typically used for image data are CNNs. The idea
behind Deconvolution [118] is to inverse the layers of a CNN network. The authors propose
network layers which link the hidden feature maps back to the input pixels and show
which pixels caused an activation in the feature map. The larger the activation, the more
important is the input feature. Another piece of work in this direction is Class Activation
Map (CAM) [100] which shows regions within an input image which are important for
the prediction of a specific output class. Hereby, the prediction score is mapped back
from the output layer to the previous convolutional layer based on the linear weights.
However, this approach is only viable for CNNs without any fully connected layers.
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Therefore, Selvaraju et al. [101] propose Grad-CAM which is capable of creating CAM for a
wider range of CNN model architectures. By multiplying the CAM with the output from
Guided Backpropagation, it is possible to create both high-resolution and concept-specific
explanations. This step is broadly necessary because the CAM method has the same
resolution of the last convolutional feature map, e.g., for VGG [119], it is only 14×14 pixels.

Transformers & Attention Models. Recently, the transformer architecture [89] has
been the foundation of models like BERT [120] or GPT-3 [1] which have led to state-of-the-
art performances in the field of natural language processing. Subsequently, the architecture
has also been applied to the field of computer vision [4]. At its heart lies the attention
mechanism [121], which attributes pairwise importance scores between tokens within an
input sequence. Although, attention weights are easily interpretable, their usefulness for
explainability is a debated issue. On the one hand, Vashishth [122] argues that attention
scores can be used to explain the model behavior. On the other hand, Pruthi et al. [123]
show that they can be manipulated while still being relied on. This could be exploited to
deceive end-users with wrong explanations. Furthermore, attention weights are frequently
uncorrelated to feature importance values generated by gradient-based methods [124]. As a
result, Abnar and Zuidema [102] propose a method which goes beyond individual attention
scores. It computes importance values for input tokens at a specific layer by utilizing both
the raw attention scores of the focal layer and those from previous layers. The calculation
is based on a directed graph which resembles the structure of the transformer. Hidden
embeddings and inputs are modeled as nodes, whereas the attention values weight the
edges in-between. The authors provide two different ways of propagating the importance
scores through the graph to the inputs, namely Attention rollout and Attention Flow. Instead
of using a graph which linearly combines the attention weights, Chefer et al. [103] apply
the gradient to propagate attention scores through the network using the principles of
Layerwise Relevance Propagation and specifically adapting to the transformer architecture.

5.1.2. White-Box Models

Instead of interpreting the model predictions, another group of methods aims to
convert the original black-box model into an inherently explainable white-box model.
For instance, Craven et al. [105] propose a method to extract decision trees from neural
networks. Similarly, Zilke et al. [104] present how to extract decision rules from a deep
neural network. Along a similar line, Liu et al. [106] apply the concept of knowledge
distillation to transfer knowledge from a deep neural network to a decision tree. The neural
network acts as a teacher, and the white-box model tries to mimic its decisions. This gain
in interpretability comes at the cost of model accuracy, as the simpler model is not able
to capture high-level dependencies in the input data. Instead of transferring knowledge
to a simpler model, it is also possible to adjust the neural network architecture to make
its predictions more comprehensible. For example, Zhang et al. [125] modify the top
convolutional layer of a CNN to align the filters with different object parts existing in the
input image. By adding an attention layers before the convolutional layers, Seo et al. [107]
reveal which inputs are important for the CNN’s prediction. Similarly, Choi et al. [108]
apply the attention mechanism to the recurrent neural networks. In contrast to feature
importance methods, changing the model’s architecture requires a retraining of the network.
Therefore, this approach can lead to comparatively high computational effort, and thus is
more appropriate if there is no existing black-box model.

It is commonly believed that fuzzy rules are relatively easy to interpret [126]. However,
some research suggests that the large number of fuzzy rules required to adequately describe
a given context may make it difficult for humans to understand the model [127]. As a result,
several approaches have been proposed to improve the interpretability of fuzzy systems.
One strategy is to reduce the number of rules used, though this may negatively impact the
model’s performance. Alternatively, other methods involve using explanations in natural
language to enhance the interpretability of the fuzzy rules [128–130]. In addition, there
exist more advanced research works on nonmonotonic fuzzy reasoning and defeasible
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reasoning for explainability, which are getting increasing importance in the field of XAI
[131–133]. The traditional fuzzy logic and fuzzy rules are related to defeasible reasoning
in that they both allow for uncertainty and imprecision in the reasoning process. Fuzzy
logic is a form of many-valued logic that allows for degrees of truth rather than binary true
or false values, and fuzzy rules are used to encode fuzzy logic systems. It is often used in
situations where the available information is incomplete or imprecise, and it allows for the
possibility of multiple conclusions being reached based on different interpretations of the
information. Defeasible reasoning, however, is a type of logical reasoning that allows for the
possibility of revising or overruling conclusions based on new evidence. It is also known as
nonmonotonic fuzzy reasoning, and differs from fuzzy logic and fuzzy rules, which do not
allow for such revision. This type of reasoning is often used in legal and decision-making
contexts, where it is important to consider multiple pieces of evidence and be open to
revising conclusions based on new information. This is in contrast to classical logic, in
which conclusions are considered to be definitively true once they have been reached based
on the available evidence. Because defeasible reasoning allows for the possibility of revising
conclusions based on new information, it can be better suited to changing circumstances or
situations where new information is constantly emerging. Another advantage of defeasible
reasoning is that it can be more transparent and accountable than other types of reasoning.
Because it is based on the consideration of multiple pieces of evidence and allows for
the possibility of revising conclusions, it can be more easily understood and evaluated
by others. One way to represent and understand the relationships between rules in a
defeasible reasoning system is through the use of a graph, which can show the interactions
and influences between different rules. This can make it easier to understand and trace
the reasoning process and to identify any potential conflicts or inconsistencies in the
system [131–133].

5.1.3. Example-Based XAI

The concept behind example-based methods is to create explanations based on the
training data. The so-called Prototypes [109] are single data instances which are represen-
tative of all instances from a particular output class. They are identified by solving the
optimization problem of finding the point which has the lowest distance to all other points
in the data set [134–136]. The prototype can make a classification model more interpretable
by demonstrating the differences between the representative data points for every class.
In contrast, Criticisms [110] are examples where the machine learning model fails to fit the
data. In other words, a criticism is a data instance that is not well represented by the set of
prototypes. The authors argue that the combination with Prototypes can further enhance
the model understanding by illustrating the limitations of the model. However, the main
challenge of such methods is how to select the optimal configurations, such as the number
of prototypes and criticisms.

Another example-based method is Counterfactuals [111] is based on the concept of
contrastiveness, and it can be used to explain predictions of individual data instances [11].
Instead of explaining why a data point led to a certain decision of the black-box model, the
counterfactual explanation provides the user with suggestions of how a decision, made
by the machine learning model, can be altered via carrying out minimal changes to the
input features. Such changes have to occur in a feature that can be feasibly changed
by individuals [137]. For example, when applying for a bank credit, a counterfactual
explanation displaying the necessary amount of additional income, that is needed to
change the model’s decision, is more useful than a counterfactual suggesting the alteration
of the gender. As opposed to Prototypes, counterfactuals do not have to be actual instances
from the training data, but can be a new combination of feature values.

It is also necessary to differentiate between counterfactuals and adversarial examples
[138]. In general, the adversarial examples are input instances which lead to wrong model
predictions due to limitations of the model [139]. They are usually created from existing
instances for which the model can generate correct predictions by minimally changing the
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input until the model prediction changes. The major difference between counterfactuals
and adversarial examples is that counterfactuals typically have different target values
(usually the opposite), while adversarial examples have the same target values as the
original instances. Finally, it is important to highlight that there exist both model-agnostic
and model-specific counterfactual explanation methods.

5.1.4. Visual XAI

Some explanation techniques are based on purely visual concepts. Most prominently,
Partial Dependence Plot (PDP) [112] is a global and model-agnostic XAI method which
employs uses the partial dependence values to show the marginal effect of an input
feature on the outcome of a machine learning model. Specifically, PDPs demonstrates
whether the relationship between a feature and the prediction is linear, monotonic, or
more complex. For instance, in binary classification tasks where machine learning models
generate probabilities, PDPs shows the probability for a certain class given different values
of a certain feature. In this case, the feature importance can be deducted from the shape
of the curves in PDP plots. In particular, a flat PDP plot indicates that the feature is not
important, and the more the PDP varies, the more important the feature is. Despite being
simple and easy to interpret, PDP plots suffer in multiple scenarios, since they assume
that the features are not correlated. Accordingly, PDPs becomes less suitable if there
are interdependencies among the features. Moreover, PDPs usually fail to capture the
heterogeneous effects which occur when a certain feature has different impacts on the
prediction in different intervals, e.g., a positive association in one interval and a negative
association in a subsequent interval. In this case, the PDP plot of such a feature may
misleadingly show that the overall marginal effect is zero, since these two counteracting
associations may cancel each other out.

An extension of the PDP plot is the Individual Conditional Explanation (ICE) plot [113],
which also illustrates the relationship between an input feature and the target. To this end,
it plots the average predicted outcomes for different values of a feature while holding the
values of other features constant. In contrast to PDP, ICE shows the dependence for every
sample of a certain feature, whereas PDP only visualizes the average contribution. This fine
granularity level can be extremely helpful when heterogeneous effects within the features
exist in the data set. Similar to PDP, ICE plots also suffer from the assumption of feature
independence, which can result in misleading explanations. Moreover, it may become
difficult to digest an ICE plot, if the number of ICE lines in the plot is extremely large.
Similar to PDPs, the Accumulated Local Effects (ALE) plots [114] visualize the average effect
of an input feature on the outcome of a machine learning model. However, ALEs differ from
PDPs in computing the differences in predictions instead of showing the average values of
the predictions. Specifically, ALE divides each feature into multiple small windows, where
it estimates the prediction difference in each window. Afterward, it accumulates all the local
windows to gain a full picture of the impact of that feature on the outcome of the machine
learning model. The main advantage of ALE plots is that they are valid when the input
features are correlated. Nevertheless, ALE plots typically fail to interpret an effect across
windows. Moreover, there is a need to define an optimal number of windows for each
feature. Figure 6 demonstrates an example of applying the three methods, i.e., PDP, ICE, and
ALE, on the Breast Cancer data set (https://archive.ics.uci.edu/ml/datasets/breast+cancer,
accessed on 1 December 2022). In this data set, several features, computed from a digitized
image of a fine needle aspirate of a breast mass, are employed to differentiate between
malignant and benign cancer. To this end, we train a multilayer perceptron (MLP) classifier
with two hidden layers. For brevity, we selected only one feature, called the “mean texture”,
to show the difference among the three XAI methods. For instance, Figure 6a demonstrates
the partial dependence values for different values of the mean texture. For the ICE plot,
we limit to only 50 ICE curves to not overcrowd the plot. The dashed orange curve, which
represents the output of the PDP method, clearly shows that the mean texture has a slight
impact on the predictions of the MLP model. However, the ICE curves (light blue curves)

https://archive.ics.uci.edu/ml/datasets/breast+cancer
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depicts a number of exceptions where increasing the mean texture has a negative influence
on the output probabilities. Finally, Figure 6b demonstrates the first-order ALE plot of the
mean texture. The figure shows different impacts within each interval, i.e., part of the light
blue curves is above zero and another part is under zero. As a result, the average ALE
curve, i.e., black curve, shows a flat line resulted from balancing the contradicting impacts
in each interval.
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Figure 6. Examples of the visual-based XAI methods. (a) PDP & ICE curves. (b) ALE curves.

5.2. Explainable User Interface Design

After selecting a specific XAI method, the generated explanations need to be converted
into a concrete presentation that the application’s user can interact with. In the literature,
this interaction is referred to as explainable user interface (XUI) [63,140]. Apart from gen-
eral characteristics of human-friendly explanations like contrastiveness, truthfulness, and
selectiveness [39], Chromik et al. [63] propose four design principles for XUI, including:
(1) Combine texts and images to facilitate understanding and communicate effectively;
(2) Offer hierarchical or iterative functionality that efficiently allows follow-ups on initial
explanations; (3) Multiple explanation methods and modalities can help to triangulate in-
sights; and (4) Adjust explanations to the user’s mental model and context. Following these
principles can elevate the XAI application from pure method outputs to a user-friendly ap-
plication. Hence, we present our findings regarding the implementation of such principles
as well as further methods to enhance the user-friendliness of explanations, generated from
the XAI methods discussed in Section 5.1.

Feature Importance. Visualization is an important tool to create human-friendly
explanations. Heatmaps can be generated from every XAI method that generates feature
importance values for image data. The features can be individual pixels or a group of pixels
[88]. SmoothGrad [141] can visually enhance these heatmaps by reducing noise. For text
data, feature importance values can be visualized by highlighting individual tokens. For
transformer-based architectures, an interactive visualization of the self-attention can be
a useful tool [142]. For structured data, tornado diagrams can be applied to present the
importance values in a visually appealing way. However, visualization is not the only
way to deliver feature importance values to the end-user. For instance, in the realm of
explainable recommender systems, the researchers propose to generate textual explanations
from feature importance vectors. Specifically, the template-based approaches use presets of
sentences that are employed following simple rules dependent on the feature importance
values [143]. This allows a simple implementation and offers the XAI designer a complete
control of the explanation that the end-user will receive. The disadvantage of this approach
is that it might generate identical explanations when the decision rule between the templates
is not fine-granular. This can lead to mistrust into the system, as unique explanations
for unique data points might be expected by the end-user. Recently, Kim et al. [144]
propose a method to generate textual explanations with the help of a neural network. This
enables user-specific explanations by adapting the network’s linguistic style individually
and therefore adapting to the user’s mental model (design principle 4). In contrast to
template-based explanations, the designer has no way to control the output of the neural
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network. In the worst case, this can lead to wrong explanations or explanations that
might be linguistically offensive. Furthermore, training data is needed to train a generator
network, which leads to additional labeling effort. To combine the advantages from both
approaches, Li et al. [145] train a generator network whose explanations are restricted by a
surrounding template.

White-Box Models. The fundamental attribute of white-box models is their intrinsic
explainability. Regression models are typically used for structured data applications and
produce linear weights for input features. Therefore, the presented approaches for feature
importance methods can be applied for regression models as well. The basic structure of
decision trees can be depicted efficiently as long as the tree size is moderate. More refined
approaches [146] show the data distributions at each node, which makes the decision
process more transparent and also enables model debugging. Decision rules are commonly
presented as decision tables or rule sets in textual form. Ming et al. [147] propose an
interactive framework to depict decision rules for a better understanding. Hereby, the
authors use a combination of sankey diagrams and visualizations of data distributions.
Additionally, decision rules can be converted into decision trees [148] which enables the
application of the above-mentioned visualization techniques.

Example-based XAI. Example-based methods are inherently comprehensible for hu-
mans. However, prototypes and critisisms are likely to be insufficient on their own, as they
do not provide a local explanation. Therefore, it is recommended to combine these methods
with a local approach (design principle 3). Counterfactuals are easy to understand due to
their contrastive nature [39]. However, finding a good counterfactual can be challenging be-
cause the counterfactual example should slightly differ from the original data point. Keane
et al. [149] argue that counterfactuals from the original data set are more expressive than
randomly perturbated examples. However, natural counterfactuals are sparse; therefore,
they provide a method to artificially generate counterfactuals based on the characteristics
of natural counterfactuals in the data set.

6. Implementation Phase

Following the design phase, the next step in the development process is to implement
such a design. In fact, numerous open-source implementations of different XAI methods
are available. In this section, we provide an overview of popular XAI libraries written in
Python (cf. Table 2). This list makes no claim for completeness, but it is rather a starting
point for the implementation of the most prominent XAI methods. Most libraries provide
implementations of different types of explanations, although there is a general emphasis
on feature importance methods. Popular XAI methods, e.g., LIME or SHAP, are often
included in each package. Some libraries focus on a set of explainability methods or black-
box model architectures. For instance, Captum provides feature importance methods for
neural networks implemented in Pytorch. Another example is DiCE, which focuses on
the generation of counterfactuals. In PAIR Saliency, various methods are implemented to
generate feature importance maps for images. Similarly, Quantus is a package that focuses
on the quantitative evaluation of explanations, primarily for the task of image classification.
The authors provide more than 25 evaluation metrics that cover six different explanation
characteristics, for example, robustness, faithfulness, or complexity. Even though deep
neural models have become the state-of-the-art in many application fields, they are partially
supported in XAI libraries. Additionally, most libraries are framework-dependent in the
sense that they only focus on the implementation of XAI methods using either PyTorch or
TensorFlow frameworks. For the explanation of traditional machine learning algorithms,
most libraries rely on the model implementations from Scikit-learn [150].
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Table 2. Overview of popular XAI libraries.

Name Focus Feature Importance White-Box Models Example-Based XAI Visual XAI Framework

AIX 360 [151] General LIME, SHAP Decision Rules, Model
Distillation

Prototypes, Con-
trastive Explanations

— —

Alibi [152] General Anchors, Integrated Gradients, SHAP, — Contrastive Explana-
tions, Counterfactuals

ALE TensorFlow

Captum [153] Neural Networks DeepLift, Deconvolution, Integrated Gra-
dients, SHAP, Guided Backpropagation,
GradCam, Occlusion, PFI

— — — PyTorch

DALEX [154] General LIME, SHAP, PFI — — ALE, PDP —

DiCE [155] Counterfactuals — — Counterfactuals — —

InterpretML [156] General LIME, SHAP, Morris Sensitivity Analysis Explainable Boosting,
Decision Tree, Deci-
sion Rules, Regression

— PDP —

PAIR Saliency [157] Saliency Maps Integrated Gradients, GradCam, Occlu-
sion, Guided Backpropagation, Ranked
Area Integrals, SmoothGrad

— — — PyTorch,
TensorFlow

Skater [158] General Layerwise Relevance Propagation, LIME,
Integrated Gradients, Occlusion, PFI

Bayesian Rule List, De-
cision Tree

— PDP TensorFlow

Quantus [159] Quantitative
Evaluation

— — — — TensorFlow,
PyTorch

ExplainerDashboard [160] General SHAP, PFI Decision Tree — PDP Scikit-learn

Ecco [161] NLP Integrated Gradients, Saliency, DeepLift,
Guided Backprop

— — — PyTorch

XAITK [162] General Saliency Maps Decision Tree Explanation by Exam-
ple

— —

7. Evaluation Phase

In this section, we present our results of the literature review regarding the evaluation
of XAI methods. In general, the evaluation of XAI methods is a heavily-researched topic
without a general consent toward a common solution. Here, the main challenge is that
explanations are designed for humans, which makes the evaluation of such explanations
partially subjective. The explanation recipients can greatly vary with respect to expectations,
machine learning expertise, and domain knowledge. Therefore, the same explanation can
be satisfying for one user but totally overwhelming or incomprehensible for another.

With respect to our literature analysis, we recognize a broad variety of different
categorizations of evaluation levels and quality aspects [11,39,85,159,163–171]. However,
to provide a workable overview of the relevant evaluation options, we follow a common
way of classifying evaluation levels according to whether user involvement is required
(human-based) or not (computational) [171]. As a guideline, the choice of the evaluation
method might change depending on the advancement of the development process. At
the beginning, computational evaluation can help to select the appropriate XAI methods
without incurring high costs. With progress of the development process, the selected XAI
methods can be examined for general applicability by human lay users. At the end of
the development process, the XAI software has to be tested in its target setting, requiring
expert knowledge for evaluation. Below, we discuss a variety of different quality aspects
and evaluations metrics for both computational evaluation and human-based evaluation.

7.1. Computational Evaluation

This type of evaluation is performed automatically without human intervention and
mainly relies on a set of metrics to evaluate XAI methods. In fact, such level of automation
in the evaluation process, significantly reduces the costs in comparison to human-based
evaluation. However, automatic quality evaluation is still challenging due to the inherent
nature of explanations, being designed for humans. Moreover, ground truth explanations
are often not existent [42]. In this context, the automatic metrics usually focus on individual
properties of the explanations. Various explanation properties have been discussed in the
literature [11,166] as well as their association to quantitative metrics [39].

Robustness. An important characteristic of an explanation is its robustness toward
small changes in the input data. A good explanation is expected to be stable even when the
input is slightly perturbed [159] because a user would expect similar input data to result
in similar model behavior that can be explained in the same way. There are several imple-
mentations of such a concept, primarily for feature importance methods. The robustness
of the explanation can be measured among others by similarity scores [117], sensitivity
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analysis [172] and the variation between an explanation obtained from the original input
and its perturbed version [173].

Faithfulness. The term faithfulness describes whether the detected importance of
features is equivalent to their importance in the real world [42]. By removing important
variables, the predictive accuracy should decrease. The faster it decreases, the more faithful
the explanation method. Different strategies to implement this metric have been proposed
[172,174–176]. Most of them rely on adding noise to the focal variable as a mean to remove
the information it contains. The advantage of this approach is that the model does not
need to be retrained, which would be required if the feature is entirely removed. Therefore,
it truncates evaluation time, thanks to entirely avoiding the computationally-expensive
retraining process.

Complexity. The complexity metric of an explanation is often determined by the
amount of information that it contains, which is connected to its comprehensiveness
[166]. Silva et al. [177] argue that explanations should be succinct. However, the optimal
complexity might also differ between different types of end-users. Expert users might
prefer more complex explanations than lay users. In the context of feature importance
explanations, the term complexity relates to the number of important features on which the
model relies on for its prediction. Hereby, different implementations exist in the literature.
At their core, they rely on the importance distribution onto the entire set of features. For
example, Chalasani et al. [178] use the Gini-index of the feature attribution vector as a
measurement of its sparseness. The sparser the vector, the lower is the complexity of the
explanation, since fewer features are required to explain the model behavior. Bhatt et al.
[174] compute the entropy for the fractional attribution of each feature in relation to the
total attribution. Nguyen et al. [175] count the number of features which exceed a specific
attribution threshold.

Task-specific evaluation. Some evaluation metrics are only applicable for certain tasks.
For example, in a multiclass classification, the class sensitivity method describes whether the
explanation changes for different decisions [179]. A good explanation should be unique for
each concept it explains. Therefore, the explanation should vary for different classes. The
sensitivity can be measured by the similarity between the individual explanations for each
class. In the case of image classification, the localization metric measures the ability of the
XAI method to locate objects within an image, assuming that objects are usually important
concepts for an explanation [179]. It can be calculated as the intersection of the concepts
found by the XAI algorithm and objects found by an externally trained object detector [180].
If the goal of an XAI method is to increase the performance of the underlying AI model
through its better understanding, the quality of the explanation can be measured as the
difference in performance before and after making adequate changes based on the gained
insights [85].

Method-specific evaluation. These quantitative evaluation metrics are oftentimes
solely suited for a single type of explanations. In the case of feature importance methods,
several metrics have been introduced and categorized by Hedström et al. [159]. For the
evaluation of white-box models, which are extracted from an underlying black-box model,
one metric is of particular interest, referred to as the fidelity metric. Specifically, the fidelity
of a white-box model describes how well it matches the black-box model [41]. Hereby,
common similarity measures can be applied. The greater the similarity between the two
models, the more useful is the extracted model to explain the behavior of the original model.
However, higher fidelity is usually provided by more complex models, which in return
reduces their inherent explainability. Keane and Smyth [181] propose several evaluation
metrics for counterfactual explanations. For instance, the proximity metric describes the
similarity of the test instance to the generated counterfactual. It is assumed that a higher
similarity is related to a better explanation. If the generated counterfactual is closer to the
original data point, it is easier to comprehend the changes which would be necessary to
change the model outcome. In order to quantitatively evaluate it, common distance metrics
like the L1- or L2-norm can be used. Similarly, the sparsity metric describes the number
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of changed features in the counterfactual example. The authors argue that a range of one
to five changed features is reasonable. This measure is related to the complexity metric of
feature importance explanations. The relative distance metric compares the mean distance
of the generated counterfactuals to the mean distance of counterfactual instances, which
naturally occur in the data set, on the assumption that a lower distance results in better
explanations [181].

Sanity Checks. Adebayo et al. [182] provide two different approaches to sanity
check an explanation method, namely the model parameter randomization test and the data
randomization test. By measuring how strongly the explanation reacts to an increasing
randomization of the model parameters or the training data, it is possible to evaluate the
applicability of the XAI method on certain tasks. For example, if the explanations are
independent of the data or the model, then they are not suitable to be used in tasks that
depend on the model or the relationship between the inputs and the outputs.

7.2. Human-based Evaluation

Human-based evaluation within the XAI development process can be grouped into
three types, including goodness, user satisfaction, and mental model [85]. The goodness of an
explanation relies on a set of attributes that have been used by consensus to describe a useful
explanation. Thus, it does not account for the individual situation of the recipient. Wanner
et al. [165] suggest rating the goodness of an explanation by its intuitiveness, complexity,
trustworthiness, understandability, and sufficiency. Hoffmann et al. [85] additionally
examine—similar to Löfström et al. [169]—whether the explanation helps users to apply
the AI model and to estimate its reliability. In contrast to the context-averse evaluation
of goodness, user satisfaction is a contextualized measurement considering whether an
explanation is adequate in the user’s situation. It measures the “degree to which users feel
that they understand the AI model or process being explained to them” [85]. For example,
different users bring unique levels of background knowledge that require different kinds of
explanations. A highly-detailed explanation that might be demanded by someone who has
strong background in the AI field can be totally overwhelming for a layman. The user’s
mental model refers to the level of understanding of the underlying AI model [85]. A good
explanation should strengthen the user’s comprehension of the model behavior. This can
be evaluated by letting the user predict which circumstances might lead to a good or bad
model outputs given the explanations he has seen. This level of evaluations can usually be
carried out by lay users, i.e., no domain experts are required. In this case, the evaluation
can be performed through questionnaires, self-reports or interviews [41].

Depending on the maturity of the development process, the human-based evaluation
of XAI software can also be conducted on an application basis [171]. This evaluation
level involves conducting human experiments within a real application. In particular, the
quality of an XAI method is evaluated in the context of its end-task. In other words, the
application-grounded evaluation typically takes place during the final application of the
XAI method. Thus, testers need domain knowledge to reliably evaluate the explanations
within the application context. Requiring domain experts raises the evaluation cost, but
it is still a strong indicator for the success of the XAI application. In this context, the
evaluation criteria are use case specific, and they can be determined already within the
requirements phase.

8. Deployment Phase

During the deployment, the AI software moves from the experimental development
phase to the production phase. In this context, the deployment phase deals with enabling
interoperability between ML models and other pieces of software, especially software
that uses business logic. In fact, the deployment phase of XAI software has been rarely
addressed within the scope of the analyzed literature. One possible reason is that applica-
tion deployments are less common within research projects than in industrial settings. To
explore how organizations deploy explainability methods, Bhatt et al. [174] conducted fifty
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interviews with different stakeholders, e.g., data scientists, managers, and domain experts.
They found that the majority of deployments are not for end users affected by the model
but rather for data scientists, who use explainability to debug the model itself. Accordingly,
there is a large gap between explainability in practice and the goal of transparency, since
explanations primarily serve internal stakeholders rather than external ones. Moreover, the
survey show that data scientists mostly need XAI methods to carry out model debugging
(i.e., feature engineering to improve the model performance), model monitoring (i.e., early
detection of data drift in the deployment phase), model transparency (i.e., communicate
predictions to external stakeholders), and model audit (i.e., comply with regulations such
as GDPR and AI Act).

In general, there exist several reasons for the limited deployment of XAI software and
their use primarily as sanity checks for data scientists. First, several organizations prefer
to rely on the judgments of domain experts rather than on explanations generated by the
deployed models. Second, it becomes challenging to show explanations to the end users
in real time due to technical limitations, e.g., the latency incurred by the computational
complexity of the deployed XAI software or the difficulty of finding plausible counterfactual
datapoints. Furthermore, providing certain explanations can raise privacy concerns owing
to the risk of model inversion. Other reasons include the lack of causal explanations and the
risk of spurious correlations which can be reflected in the generated model explanations. In
[183], the authors conducted a study to understand the benefits of deploying XAI methods
in cybersecurity operations. They faced several challenges in deploying the XAI software.
For instance, there was a relatively low level of engagement from the intended end users,
i.e., security analysts in this scenario, due to the “location” of the XAI tool, where it was
embedded in an accordion menu in a supporting system. Moreover, the authors report
about the excessive time needed to generate the explanations. Aside from the challenges of
XAI deployment, the Python package explainerdashboard [160] enables a quick deployment
of a Web-based interpretability dashboard that explains the workings of traditional machine
learning models. Specifically, the interpretability dashboards are either exported to a static
HTML file directly from a running dashboard, or programmatically, as an artifact, as a part
of an automated CI/CD deployment process.

9. Discussion and Research Opportunities

By the means of a systematic literature review, we derived implications for the steps
necessary to develop XAI software. However, due to the early maturity of XAI software,
various research opportunities exist, and future work can address a variety of different
topics to improve the development of future applications. In this section, we shed light on
these research directions.

9.1. XAI Method Selection

As clearly observed in Section 5, in the literature exist plenty of XAI methods. These
methods differ in their approaches and may even provide different explanations that
complement each other in some scenarios. Accordingly, it is a challenge to select a well-
suited XAI method for a particular use case. However, it makes sense to first raise a question
of whether explanations of the model predictions are needed or simply documentations
of the data, the model, or the system. Some organizations tend to make their ML systems
transparent and accountable through documentation. Examples of such documentations are
model cards [184], data cards [185], data statements [186], datasheets for datasets [187], data
nutrition labels [188], system cards [189], and FactSheets [190]. All these documentation
methods strive to organize information to make the ML systems more transparent to
different stakeholders. Inspired by these documentation efforts, PAI [191] introduce an
XAI Toolsheet, a one-page summary format for comparing between different XAI tools.
For such comparisons, XAI Toolsheets adopt 22 dimensions falling under three major
categories, namely metadata, utility, and usability. Aside from documentations, Belaid et
al. [192] introduce Compare-xAI, a unified benchmark, with multiple use-cases, indexing
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+16 post-hoc xAI algorithms, +22 tests, and +40 research paper. Through Compare-xAI,
practitioners and data scientists can gain insights on which XAI methods are relevant to
their problems.

In fact, documentations and benchmarks are effective tools for comparing and deciding
upon the right XAI tools to adopt. Nevertheless, data scientists and practitioners should
be aware of a set of hierarchically-structured selection criteria to systematically filter out
irrelevant XAI tools. The main objective of such a set of criteria is to reduce the search space
while selecting the right XAI tool. In addition to the criteria identified in the requirement
analysis phase (cf. Section 4), data scientists and practitioners may also consider the scope
of explanations, i.e., global or local. It is worthwhile mentioning that some XAI methods,
such as SHAP, support both global and local explanations. In addition to the data type
as a selection criterion, the data size also plays an important role in the selection process,
especially for global XAI methods. As discussed in Section 5, several XAI methods, such as
permutation-based methods, suffer from scalability issues due to their high computational
costs. If the size of the data is large together with possessing limited computational
resources, then it makes no sense to adopt such XAI methods.

Another criterion is related to how complex patterns in the data can be explained.
Specifically, some XAI methods, e.g., SHAP, generate explanations, based on the individual
contribution of a given feature, as well as the interactions between features. While other
simple XAI methods, e.g., permutation methods, generate explanations for each feature
separately, which in turn leads to a limited understanding of nonlinear patterns that the
model has learned. Similarly, correlated features may have a significant impact on the
quality of the model explanation. Therefore, it is necessary to identify correlated features
in the data before generating explanations. Finally, the cardinality of the input features is
another criterion for selecting an XAI method. In particular, the impurity-based feature
importance for trees are strongly biased, where they typically favor high cardinality features
(which have many possible distinct values, i.e., numerical features) over low cardinality
features such as binary features or categorical variables with a small number of possible
classes. Below, we provide a set of directions for future research to address the gaps and
shortcomings identified throughout this study.

9.2. Future Directions

In this section, we express our thoughts on future research direction, formulated
in general and development phase-dependent aspects. A further overview of current
challenges and future research directions can be found in [19].

General. To date, not all phases of the development process are covered equally in
the literature. For example, there has been a strong focus on the design process. In contrast,
the deployment phase has not been a subject of research. Therefore, future work may aim
to resolve this imbalance. Previous works have focused on individual aspects of the XAI
development process. However, XAI software development has yet to be addressed in the
literature from a point of view to cover all steps of the development process. Therefore,
by applying this holistic view, future research might reveal potentials for synergies and
conflicts within the development process. Currently, experiences derived from real-world
implementations of XAI applications like from [193–195] are rare in the technical literature.
This makes the deduction of design guidelines unfeasible. Therefore, applied research, for
example, in the form of design science research [196], could help to close this gap.

Requirement Analysis Phase. Even though several starting points for generating
requirements for XAI software have been proposed in the literature, a unified requirements
catalog that addresses all major criteria is still missing. Hence, future research could
develop such a tool to perform a comprehensive requirement analysis and thereby enhance
the development of future XAI software.

Design Phase. Research towards XUI has been separated from XAI methods. How-
ever, from a practical perspective, it makes sense for XAI method designers to keep the
principles of UI design in mind in order to assure that the generated explanations are
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human-friendly. This can lead to better comprehensibility of XAI methods and higher qual-
ity of the XAI applications overall. Future research could further explore this intersection
between XAI methods and interfaces. It has not been studied how different kinds of XAI
techniques can be combined successfully to create a comprehensive explanation. Hence,
future research could address this issue in user studies which analyze the fit between
different types of explanations in order to increase the overall explanation quality.

Implementation Phase. So far, no implementation has been established as the go-to
solution. Instead, there are a lot of redundant open-source packages. A general package
that covers a great variety of explanations is yet not existent. This complicates the design of
multiple different types of explanations. What further complicates the development of XAI
software is that most packages only support one model backbone like PyTorch, textitTensor-
Flow, or Scikit-learn. Even though most developers may stick to one backbone, the usability
of the packages is restricted in general. Therefore, future implementations could aim to
unify existing approaches to support multiple explanation types and model architectures.
This could enable a great variety of XAI software. Current open-source packages primarily
focus on the implementation of XAI methods. In contrast, less address the evaluation of
explanations and the user interface. Hence, future implementations could focus on these
aspects to create a greater benefit for other developers and industry practitioners.

Evaluation Phase. Automated evaluation of explanation is inherently difficult; how-
ever, it has the potential to significantly decrease the human effort during the development
process. The development of automated evaluation metrics has primarily focused on fea-
ture importance methods. In contrast, other types of explanations have been less explored.
Additionally, researchers have criticized that user-studies were neglected during the devel-
opment of these metrics [9,181]. It is therefore not conclusively clear whether the automatic
metrics and the human perception of a good explanation match. This can be achieved by
conducting user studies. Hence, the field of automated explanation evaluation provides
numerous research opportunities. Furthermore, there is no evaluation methodology for
XAI applications which has been commonly identified as a standard method. Hence, future
work could address this issue by determining which evaluation approaches synergize well
together and can create a holistic assessment of an XAI method or software. Hereby, all
three evaluation levels proposed by Doshi-Velez and Kim [171] can be incorporated.

Deployment Phase. So far, researchers have not addressed the deployment of XAI
software. However, this could be expected. Usually, the code which results from research
projects is not deployed into real-world applications. Therefore, the researcher’s develop-
ment of XAI software usually stops after the evaluation process. In order to close this gap,
future work could accompany the deployment of real-world XAI software and describe
insights, challenges or best practices.

10. Conclusions

Explainability is an emerging interdisciplinary research field in the AI ecosystem.
There are several research initiatives toward solving the ethical and trust-building issues
surrounding the use of AI in its current form of real-world applications. Blind faith in
the results of powerful predictive models is not advisable by today’s standards due to
the significant impact of data bias, trustworthiness, and adversarial examples in AI. In
the spirit of holism, in this paper, we have first provided a comprehensive background
on the topic of XAI. In the interest of mapping the broad landscape around XAI research,
this paper has thoroughly reviewed a portfolio of explainability approaches by means of
a systematic meta-review. In the center of this paper, we leveraged the findings of our
literature analysis to derive insights for the development of XAI software and organized
them along the the five phases of the software development process. The findings show
that XAI has found its way into various application domains. However, we have seen
evidence throughout this work that there is a lack of practical experience derived from
real-world implementations of XAI software in the scientific literature. Moreover, we
recognized that not all phases of the software development process are covered equally
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by the literature. In essence, it has been noted that the current focus of XAI research is put
on developing new theoretical explainability methods, whereas the application of those
methods to real-world scenarios is sparse. It has then been concluded that considerable
future effort will be required to tackle the practical challenges with the development of XAI
software. In this paper, we aim to assist practitioners in incorporating XAI into real-world
applications by compiling relevant information from the scientific literature for each step
of the software development process. These resources may serve as starting points for
practitioners seeking to incorporate XAI into their projects. Along these lines, we plan to
extract further insights on the development of XAI software by applying the described XAI
methods to real-world application scenarios.
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