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Abstract: Knowledge Graphs (KGs), a structural way to model human knowledge, have been a
critical component of many artificial intelligence applications. Many KG-based tasks are built using
knowledge representation learning, which embeds KG entities and relations into a low-dimensional
semantic space. However, the quality of representation learning is often limited by the heterogeneity
and sparsity of real-world KGs. Multi-KG representation learning, which utilizes KGs from different
sources collaboratively, presents one promising solution. In this paper, we propose a simple, but
effective iterative method that post-processes pre-trained knowledge graph embedding (IPPT4KRL)
on individual KGs to maximize the knowledge transfer from another KG when a small portion
of alignment information is introduced. Specifically, additional triples are iteratively included in
the post-processing based on their adjacencies to the cross-KG alignments to refine the pre-trained
embedding space of individual KGs. We also provide the benchmarking results of existing multi-KG
representation learning methods on several generated and well-known datasets. The empirical results
of the link prediction task on these datasets show that the proposed IPPT4KRL method achieved
comparable and even superior results when compared against more complex methods in multi-KG
representation learning.

Keywords: knowledge graph; knowledge representation; knowledge graph embedding; knowledge
transfer; transfer learning

1. Introduction

Knowledge Graphs (KGs) are often viewed as large-scale semantic networks that store
facts as triples in the form of (subject entity, relation, object entity) or (subject entity, attribute,
value). Typically, KGs are built on top of different existing data sources to connect data.
In the industry settings, the downstream tasks and applications of KGs include, but are not
limited to, knowledge acquisition, natural knowledge understanding, recommendation sys-
tems, question answering, etc. While KGs provide a sensible and effective way of managing
knowledge, almost all of them suffer from heterogeneity and sparsity [1], including the
most widely used large-scale KGs, such as DBpedia [2], Freebase [3], and YAGO [4]. Most,
if not all, of the KG downstream tasks and applications rely on knowledge representation
learning and operate under the Closed World Assumption (CWA) [5], which assumes that
unobserved facts are false. Under the CWA, downstream tasks and applications usually
perform worse on sparser KGs. Fortunately, real-world KGs constructed from different
sources are sometimes complementary. Therefore, in this paper, we focused on the multi-
KG representation learning problem and propose an intuitive post-processing method
that facilitates knowledge transfer to a pre-trained KG to maximize the expressiveness of
knowledge graph embeddings.

Link Prediction (LP), a task that predicts new links in a KG based on existing
knowledge, has drawn increasing attention in recent years [6]. Recent advances in
Knowledge graph Representation Learning (KRL) are showing very promising results
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on this task, with the most-representative techniques being triple-based [7–10] and
neighbour-based embedding methods [11,12]. While these methods perform well on the
LP task, most work only on individual KGs and cannot harness the power of multiple
KGs with potentially complementary information. In domains such as finance, where
different data vendors are usually specialized in providing certain data types, performing
link prediction and knowledge representation learning on multiple overlapping KGs can
be very useful. To address this issue, several recent studies [13–16] have all focused on
representation learning over multiple KGs. However, most of the existing works exhibit
a relatively complex design in the knowledge transfer module, while they have been
validated only on limited datasets without horizontal comparison with similar methods.
This paper proposes a relatively simple and lightweight post-processing method for
representation learning over multiple KGs while also providing benchmarking results
against existing works on four different datasets.

This paper proposes an iterative post-processing method called IPPT4KRL to refine
the pre-trained knowledge graph embedding on individual KGs with a small number of
overlapping labels and extra triples from another KG. The overlapping labels between
KGs are usually known as seed alignments, representing a small portion of human-labelled
equivalent entity pairs between the KGs. Our method divides the multi-KG representation
learning into pre-training and post-processing stages. Knowledge graph embeddings are
trained during the pre-training stage on individual KGs to best capture “domain-specific”
knowledge. At the same time, additional relevant information from another KG is itera-
tively introduced in the post-processing stage to maximize knowledge transfer. During the
post-processing stage, seed alignments are utilized to regularize the distance between equiv-
alent entities in the embedding space. The pre-trained embedding space is post-processed
with extra information introduced by the new KG. In contrast, an extra loss term controls
the embedding space deviation from the original pre-trained embedding space. The extra
information (triples) from a separate KG is introduced iteratively based on the adjacency
to the seed alignments. As illustrated in Figure 1, entity Virginia and entity Washington
D.C. are the two entities in KG2 with the equivalent counterparts in KG1. Therefore, in the
first iteration of the post-processing stage, triples (Washington D.C., AdjacentTo, Virginia)
and (White House, LocateIn, Washington D.C.) are included. However, triple (Joe Biden, Work-
sAt, White House) is not included in the training until the second iteration because of the
adjacency to aligned entities. To validate and assess the knowledge transfer induced by
our proposed method in a life-like scenario, we generated a new dataset based on entity
alignment benchmarking dataset D-W-15K [17] with the sampling method introduced in
the work of Sun et al. [18], to create dangling entities (entities without alignment across
KGs) within KGs. Triples in the sampled KGs are further split into training, testing, and
validation sets for the embedding evaluation with the LP task. We also identified several
existing methods of multi-KG representation learning and benchmarked the results against
our proposed method across multiple datasets. To the best of our knowledge, this is the
first work that provides benchmarking results with multiple relevant works on multi-KG
representation learning under the same problem set. Experimental results on the generated
dataset and three other datasets showed that our relatively lightweight IPPT4KRL method
can achieve comparable and superior results against state-of-the-art models. A more de-
tailed description of our IPPT4KRL method is provided in Section 3, and the experimental
results on the empirical datasets and the ablation studies are shown in Section 4.

In summary, the main contributions of this paper are the following:

• A novel iterative post-processing method (IPPT4KRL) for knowledge graph represen-
tation learning and knowledge transfer over multiple KGs;

• A benchmark of state-of-the-art models in multi-KG representation learning;
• A newly generated empirical dataset with an existing sampling technique for the

multi-KG KRL task that simulates “in the wild” conditions with lower overlaps
between KGs.
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Extensive ablation studies were conducted to analyse the importance and effects of
each component in the proposed method.

Figure 1. An illustrative figure on how triples from KG2 are iteratively included in the post-processing.

2. Related Work
2.1. Knowledge Representation Learning

Knowledge Representation Learning (KRL) for generating knowledge graph embed-
ding has recently gained tremendous attention. This task aims to encode the entities and
relations of KGs into low-dimensional vectors. The popular techniques involved in KRL can
be broadly categorized into two groups, triple-based embedding and neighbour-based embedding.

Triple-based embedding exploits the local structural information within triples and cap-
tures the semantics of relation triples. Triple-based embeddings can be further categorized
into translation-based distance models and semantic matching models. Translation-based
distance models view the relation as translation in the vector space, while semantic match-
ing models use the scoring function based on semantic similarity to mine the potential
semantic association between entities and relationships.

The most widely used translation-based embedding is TransE [7], in which both entities
and relations are represented in the same embedding space and relations are represented
as translations in the embedding space. Specifically, given a triple (h, r, t), where h, r,
and t denote head, relation, and tail, respectively, TransE assumes that the sum of head
embedding and relation embedding should be close to the tail embedding,
i.e.,
−→
h + −→r ≈ −→t . Inspired by TransE while trying to improve its flexibility, many

translation-based knowledge embedding methods have been proposed, including but
not limited to TransH [19], TransR [8], TransD [9], etc. Recently, some translation-based
embedding methods such as RotatE [20] and HAKE [21] have been proposed on a polar
coordinate system, where relations are represented as rotations from the source entities to
the target entities in the complex vector space.

Another popular and widely used triple-based embedding technique is called the
semantic matching model. Nickel et al. [22] was one of the first to propose a semantic-
matching-based approach, RESCAL, for embedding KGs. RESCAL uses the tensor factor-
ization method to model the inherent structure of KGs in the model. Using ideas from
RESCAL as a foundation, DistMult [10] and HolE [23] were then proposed to improve the
performance and scalability of semantic matching models. Many other embedding models
such as ANALOGY [24], ComplEx [25], TuckER [26], and QuatE [27] also fall into the cate-
gory of semantic matching models and have shown promising results in embedding-based
tasks such as link prediction and node classification.
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Neighbour-based embedding employs the graph structure to propagate information
between adjacent entities and encode them into embeddings. The learnt entity embeddings
are able to capture additional structural information about their neighbouring entities and
relations. R-GCN [12], as a variant of the Graph Convolutional Network (GCN) [11], is one
of the most widely used graph neural network models that encodes relational knowledge
graphs into embeddings. R-GCN [12] employs an encoder–decoder structure for the
link prediction task. In the encoder, entity embeddings are generated with the message
propagation mechanism of the R-GCN. At the same time, in the decoder, knowledge
assumptions such as TransE and DistMult are applied to generate relation embeddings
and perform link prediction tasks. The analysis of neighbour-based embedding techniques
across multiple KGs is beyond the scope of this work due to the extra complexity of message
passing in the encoding phase. However, this could be an important future direction as we
explore representation learning across multiple KGs.

2.2. Multi-KG Knowledge Representation Learning

Compared to KRL on individual KGs, KRL across multiple KGs is a relatively under-
explored area. Several works have been proposed under similar problem settings to tackle
this problem.

Trivedi et al. [13] proposed LinkNBed, a deep relational learning framework that can
perform representation learning across multiple KGs. Basic vector representations are
created for entities, relations, types, and attributes in a KG and then aggregated by a set of
aggregator functions to incorporate this contextual information into a deep representation.
In the training process, LinkNBed combines deep representation learning across KGs with
the entity alignment task, jointly optimizing both tasks.

Sourty et al. [14] proposed KD-MKB, a model that tackles the multi-graph representa-
tion learning from the knowledge distillation perspective. Concretely, KD-MKB mutually
and jointly trains the knowledge graph embedding for multiple KGs, where each KG learns
embeddings with its own context. A mimicry knowledge distillation process between
KGs achieves the knowledge exchange. Unlike traditional one-way knowledge distillation,
where the role of student and teacher is fixed, in KD-MKB, each KGs takes turns becoming
a teacher and student in the distillation process. However, KD-MKB assumes both entity
alignment and relation alignments are available between KGs when performing mutual
knowledge distillations, which limits the method’s applicability to some extent.

Additionally, Wang et al. [15] proposed ATransN, an Adversarial embedding Trans-
fer Network that aims to facilitate the knowledge transfer from a pre-trained embed-
ding of a teacher KG to a student KG with a set of seed alignments. Like most other
methods with similar problem settings, ATransN aims to facilitate knowledge transfer
between KGs with multi-task training of knowledge representation and entity alignment.
In AtransN, an adversarial adaption module is employed to handle the potential dis-
tribution difference between the teacher KG and student KG. The discriminator of the
adversarial module is used to assign a consistency score for a pair of seed alignments.
This score is later used to weigh the contribution of alignment constraints imposed by
seed alignments.

Most of the existing methods in multi-KG KRL exhibit a fairly complicated design
in the knowledge transfer module, and the training can sometimes become very time-
consuming. We hope to demonstrate a relatively simple method that does not require
a complex design, but uses pre-training and post-processing strategies and knowledge
representation learning to achieve the same knowledge transfer between KGs.

3. Iterative Post-Processing
3.1. Preliminaries

The framework of multi-KG knowledge representation learning tasks involves two or
more KGs. Without loss of generality, we considered the multi-KG KRL task between two
KGs. We formalized two heterogeneous KGs as (KG1 = {E1, R1, T1}, KG2 = {E2, R2, T2}),
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where Ei, Ri, Ti, respectively, represent the entity set, relation set, and fact triple set of
the KG. A small set of seed alignments between KGs, known before training, is denoted
by SKG1,KG2 = {(e1, e2) : (e1, e2) ∈ E1 × E2e1 ∼ e2}, where ∼ denotes the equivalence
relation. Let {hei , hri} denote the embeddings for entity ei and relations ri, respectively.
In our problem setting, we pre-trained the entity and relation embeddings of KG1 under
an arbitrary triple-based embedding model, such as TransE [7]. The post-processing
stage aims to facilitate the knowledge transfer between KGs and improve the knowledge
graph embedding of KG1 when triple facts T2 and seed alignment SKG1,KG2 are introduced.
The improvement of knowledge graph embedding can be evaluated with a link prediction
task, discussed in Section 4.

3.2. Methods
3.2.1. The Iterative Inclusion of New Triples

We pre-trained knowledge graph embeddings for KG1 as our base for post-processing.
The pre-trained embeddings on KG1 were further processed by including triples T2 from
KG2 in an iterative manner based on the adjacency to seed alignments, as demonstrated in
Figure 1. Formally, for a node ei ∈ E2, we considered NK(ei) = {ej ∈ E2 : d(ei, ej) == K} as
the Kth-hop neighbouring entities around node ei ∈ E2, where d : |E2| × |E2| → N denotes
the shortest path distance between nodes in a KG. We then define TNK (ei) = {(h, r, t) :
t ∈ NK−1(ei), r ∈ R, h ∈ NK(ei)} as the set of triples involved in connecting (K− 1)th-hop
neighbours and Kth-hop neighbours of entity ei.

Let SKG1 and SKG2 denote the set of KG1 and KG2 entities in seed alignment SKG1,KG2

and Tf denote the set of triples used for multi-KG embedding training. Therefore, Tf was
set to be T1 during the pre-training process of KG1. During post-processing, we first set
Tf = T1 ∪ TN1(SKG2), where TN1(SKG2) = {TN1(ei) : ei ∈ SKG2} denotes the triples that
connect aligned entities SKG2 and their one-hop neighbours. The embeddings are then
trained under the same triple-based embedding model assumption until convergence.
After that, we set Tf = T1 ∪ TN1(SKG2) ∪ TN2(SKG2) to include the triples in KG2 that
connect 1-hop neighbours and 2-hop neighbours of aligned entities SKG2 . Then, the same
training process on the embedding space is repeated. In practice, the same process is
repeated k times, where k is a hyper-parameter.

3.2.2. Loss Functions for Embedding Training

Three different losses are optimised in the iterative post-processing of the original
embedding space.

Triple-based margin loss: During the post-processing, the triple-based margin loss is
used for optimizing the knowledge representation task. The scoring function we used in
the post-processing stage is consistent with the triple-based loss function used to pre-train
embeddings for KG1. The loss function is written as:

LT = Σti∈Tf ,t′i∈T′f
E(ti)− E(t′i) + γ, (1)

where T′f denotes the negative samples created from corrupting the head or tail entity in
triple ti; E(ti) denotes the energy function for TransE or a similar triple-based embedding
model for triple ti; γ denotes the margin, which is a hyper-parameter describing the
ideal distance between positive triples and negative triples. To better facilitate knowledge
transfer, we also enabled the option to include extra training triples in the post-processing
stage using parameter swapping: for triple (e1, r, e′1), if (e1, e2) ∈ SKG1,KG2 , then triple (e2, r, e′1)
will be included in set Tf for training knowledge representation.

Alignment loss: The alignment loss is used to ensure the learnt embeddings of the
same entity in different KGs are close. Alignment loss can also be viewed as a regularization
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technique when training knowledge representation across KGs. The alignment in the post-
processing can be written as:

LA = Σ(e1,e2)∈SKG1,KG2
d(he1 , he2), (2)

where d(he1 , he2) denotes the distance function between embeddings of entities e1 and e2.
The distance function can be either directly computed by using a typical distance function
(i.e., Manhattan, Euclidean, etc.) or derived from cosine similarity using d(he1 , he2) =
1− cos(he1 , he2).

Embedding space preservation loss: One of the important assumptions we make
in this post-processing training is that the original pre-trained embedding space of KG1
already captures the local semantic information in KG1 relatively well. Therefore, when
including new fact triples and alignments from KG2, we introduced this embedding space
preservation loss to prevent the post-processed embedding space from deviating too much
from the originally trained embedding space. The embedding space preservation loss can
be written as:

LP = Σei∈E1 d(hei , he′i
), (3)

where e′i denotes the pre-trained embedding for entity ei in KG1.

3.2.3. Training

The overall loss term optimized during the training is the combination of the three
loss terms discussed above:

L = LT + αLP + βLA, (4)

where α and β are the hyper-parameters controlling the contributions of embedding space
preservation loss and alignment loss to the overall loss during training.

At each iteration of inclusion of new triples TNk (SKG2) into the post-processing train-
ing set Tf , the embedding post-processing is conducted until convergence. In practice,
the convergence is determined by the decreased link prediction performance of embed-
dings on the validation set. Moreover, the embedding space we produced at the end of the
post-processing iteration is then used as a base to further post-process with newly included
triples in the next iteration.

4. Experiments
4.1. Datasets and Experiment Settings

Environment: We carried out the experiments on a desktop computer running Ubuntu
Linux with an AMD Ryzen 3700x 3.6Ghz CPU, 32GB of RAM memory, and an NVIDIA
GeForce GTX 1070 GPU (8GB).

Datasets: Our experiments were conducted on four different datasets: two mono-
lingual datasets, D-W-15K-LP(generated) and DBP-FB [28]; and two multi-lingual datasets,
CN3l (EN-DE) and WK3l-15k (EN-FR) [29]. All of the datasets we chose were originally
designed for benchmarking entity alignment algorithms; thus, seed alignments between
KGs are readily available. The detailed statistics about the datasets can be found in Table 1.
In D-W-15K-LP and DBP-FB, 70% of the triples are reserved for the training set, 10%
for the validation set, and 20% for the test set. In CN3l (EN-DE) and WK3l-15k (EN-
FR), the percentages are 60%, 20%, and 20% for the training, validation, and test sets,
respectively. Relation alignments are available in the two multilingual datasets, but not in
the two mono-lingual datasets.
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Table 1. Dataset statistics; alignment ratio denotes the ratio of seed alignments against the total
number of alignments.

Dataset
Name KG1 KG2 Entities Relations Triples Alignment

Ratio
Shared

Relations

D-W-15K-LP DBpedia 12,750 160 55,038 24.71% 7

Wikidata 12,750 118 61,806 24.71% 7

DBP-FB DBpedia 29,861 406 96,414 51.32% 7

Freebase 25,542 882 111,974 59.99% 7

CN3l ConceptNet
(DE) 4302 7 12,780 90.84% 3

ConceptNet
(EN) 4316 43 32,528 93.67% 3

WK3l-15k Wikipedia
(FR) 15,393 2422 170,605 15.97% 3

Wikipedia
(EN) 15,169 2228 203,502 16.45% 3

D-W-15K-LP generation: D-W-15K-LP is a dataset generated from the entity align-
ment benchmarking dataset D-W-15K [17]. The sources of the two KGs are DBPedia and
WikiData, with 15,000 entities in each KG. However, because D-W-15K was generated
for the entity alignment task, every entity has an alignment across KGs. We argue that
such a scenario is extremely rare in the real world because KGs from different sources
rarely exhibit a large proportion of overlaps, and seed alignment annotations between KGs
are very expensive, given the size and scale of real-world KGs. Therefore, we decided to
employ the sampling strategy proposed in the work of Sun et al. [18] to create dangling
entities (entities without alignment across KGs) within KGs. In the sampling process, triples
containing removed entities are excluded by removing part of the alignments from KGs.
This results in a more sparse dataset with dangling entities in KGs. Concretely, we created
30% dangling entities in our base dataset D-W-15K; only 30% of the remaining 70% aligned
entities (3150 entities) were used as seed alignments to create a more life-like scenario for
the experiment.

Settings: The problem set of the experiment is consistent with what we discussed
in Section 3: for knowledge graphs KG1 and KG2, the goal is to improve the knowledge
graph embedding and its performance on LP tasks for KG1 with information from KG2
and seed alignments between them. We chose to compare our IPPT4KRL method against
ATransN [15] and MD-MKB [14]. To the best of our knowledge, these two open-source
methods achieve state-of-the-art performance in multi-KG KRL settings. In addition, two
baseline models, Individual and Connected, were also included in the experiment. For the
baseline Individual, we simply trained the knowledge graph embeddings on KG1 and
evaluated the embeddings with their performance on the LP task with test triples in KG1.
The baseline Individual was also used as the pre-trained embeddings for the post-processing
stage of our IPPT4KRL method. The second baseline Connected was generated by connecting
two KGs with seed alignments. Concretely, if there exists entity seed alignment (e1, e2),
where e1 ∈ E1 and e2 ∈ E2, we then merge two entities and replace all entity occurrences e2
in triples T2 with entity e1. Knowledge graph embeddings are then trained on the connected
KG and evaluated on the LP task with test triples in KG1. We used TransE as the knowledge
graph embedding model for all methods in the experiments for the fairness of comparison.
However, all the multi-KG KRL methods in the experiments can be extended to incorporate
other triple-based embedding methods for knowledge representation. The pre-training
and baseline experiments were conducted using the OpenKE framework [30] with uniform
negative sampling.

In the D-W-15K-LP dataset, the DBpedia KG is KG1, and the Wikidata KG is added into
the post-processing following an iterative manner. In DBP-FB, we chose the DBpedia KG to
be KG1 and the Freebase KG to be KG2. The German and French KGs were selected to be
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KG1 for CN3l (EN-DE) and WK3l-15k (EN-FR), respectively, while the English KGs of each
dataset were included to provide knowledge transfer in the IPPT4KRL. Because ATransN
employs a teacher–student setting in the training, naturally, KG1 in our setting was regarded
as the “student” KG in ATransN. KD-MKB treats each KG equally. Hence, no special
configuration was needed in our benchmarking experiments.

Hyper-parameters: For the fairness of comparison, we set the embedding dimension
to be the same across all models for a dataset. The embedding size dimension n was set to
be 100 for D-W-15K-LP, 200 for DBP-FB, and 200 for CN3l (EN-DE) and Wk3l-15k (EN-FR)
(CN3l(EN-DE) and Wk3l-15k (EN-FR) were also reported in the experiments in the ATransN
paper. Thus, we set the embedding dimension to be 200 for the ease of reproducing their
best model performance on these two datasets). lrke denotes the learning rate for the overall
knowledge representation. The best learning rate for D-W-15K-LP (DBP-FB, WK3l-15K,
CN3l) is 1e−3(1e−21e−5, 1e−3). For D-W-15K-LP, the best-performing IPPT4KRL model
employed hyper-parameters γ = 5.0, α = 1, β = 0.1, and k = 2; for DBP-FB, γ = 12.0,
α = 2, β = 1, and k = 2; for WK3l-15K, γ = 8.0, α = 1, β = 0.1, and k = 2; and for CN3l,
γ = 16.0, α = 10, β = 0.1, and k = 1. In the iterative inclusion of the k-hop neighbours of
KG2, the triple-based margin loss would consider more entities as k increases. As a result,
triple-based margin loss increases the most every time the neighbour size is increased. We
tried to assign different α for each hop, to account for the change in the trade-off between
loss terms as k iteratively increases. However, in our experiment, assigning different α for
each hop only provided marginal gains in performance.

Evaluation: We used a link prediction task to evaluate and compare the performance
of the trained embeddings. The Entity Ranking (ER) protocol was employed for this
evaluation: for a test triple (h, r, t), the ER protocol uses the embedding model to rank all
possible answers to link prediction queries (?, r, t) and (h, r, ?) and employs the rank of
the correct answer for embedding evaluation. The standard filtered Hit@m(m = 1, 3, 10),
Mean Ranks (MRs), and Mean Reciprocal Rank (MRR) metrics are reported in the result
tables. The reported results were averaged across multiple runs of the fine-tuned models.
(Although we used the two datasets from the ATransN paper in our evaluation, we do not
report the results from the ATransN paper. This is because we found a small issue in the
open-sourced ATransN code for computing the filtered metrics on the link prediction tasks.
Therefore, we followed the hyper-parameters provided in the ATransN paper to generate
the embeddings and evaluate them against the corrected, filtered metrics.) The best entries
for each metric are highlighted in bold in each of the table.

4.2. Results and Analysis

From the result Tables 2 and 3, we can observe that our IPPT4KRL model achieved
comparable and even superior results against the best performers in each dataset. Table 2
shows the experimental results on the generated D-W-15K-LP and DBP-FB. On these two
monolingual datasets with no relation alignment available, we extended the original KD-
MKB and created KD-MKB*, in which we share the relation knowledge between embedding
models of each KG. A more detailed description of the modification can be found in the
Appendix B. On D-W-15K-LP, IPPT4KRL outperformed all the baseline models across
all metrics. Compared to other multi-KG KRL methods, IPPT4KRL achieved the best
performances on the MRR, Hit@1, and Hit@3 while producing a very similar performance
against the top performer KD-MKB* on the MR and Hit@10. An important aspect is
that IPPT4KRL achieved this comparable performance while requiring less than 1

10 of the
training time of KD-MKB*. Concretely, one complete run of the training process for KD-
MKB* on this dataset took 12 hrs on our workstation, while the training for IPPT4KRL only
took 1.5 hr, including the pre-training of individual embeddings on KG1. D-W-15K-LP is a
scenario that was deliberately generated to mimic real-life mono-lingual multi-KG learning.
The significant margin that IPPT4KRL produced against the baselines indicated that our
model could facilitate positive knowledge transfer even when the seed alignment ratio is
low. At the same time, ATransN’s performance on this dataset was unsatisfactory. One
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possible reason is that ATransN usually performed well when the teacher KG in their model
holds richer information than their student KG, which is not the case for our generated
dataset D-W-15K-LP. On DBP-FB, we observed similar performance trends: IPPT4KRL
achieved the best performance on the MRR, MR Hit@1, and Hit@3 metrics, while having
comparable performance against the top performers on Hit@10. An interesting observation
is that, although the alignment ratio was larger in DBP-FB than in D-W-15K-LP, the margins
gained by the multi-KG KRL methods were smaller and inconsistent. This indicates that
is is “harder” to transfer knowledge between KGs for the dataset DBP-FB. We believe the
main driver behind this observation is that DBpedia and Freebase, two KGs, are constructed
by two isolated parties, while for D-W-15K-LP, DBpedia and Wikidata practically come
from very similar sources. This observation provided a meaningful indicator for our plans
for the next steps, which we will discuss more in Section 6.

Table 2. Results on the D-W-15K-LP and DBP-FB datasets, with KD-MKB* representing the modified
version of KD-MKB on the datasets without relation alignments.

D-W-15K-LP DBP-FB

MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

Individual 0.3417 577 23.88% 40.54% 52.15% 0.3509 523 25.04% 40.93% 52.49%
Connected 0.3500 750 24.39% 41.42% 53.82% 0.3508 497 24.50% 41.46% 53.36%
KD-MKB* 0.3748 309 27.46% 43.36% 55.19% 0.3439 646 21.65% 42.86% 56.35%
ATransN 0.3361 321 23.29% 39.45% 52.26% 0.3368 584 24.85% 38.49% 49.07%

IPPT4KRL 0.3764 335 27.64% 43.71% 55.16% 0.3782 397 27.58% 43.85% 55.67%

Table 3. Results on the WK3l-15K and CN3l datasets.

WK3l-15K(EN-FR) CN3l (EN-DE)

MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

Individual 0.3819 449 28.17% 42.87% 58.10% 0.1796 708 6.28% 25.84% 37.25%
Connected 0.3793 518 27.92% 42.44% 58.04% 0.2014 670 6.75% 30.14% 40.57%
KD-MKB 0.3856 554 27.48% 44.34% 59.50% 0.2093 494 6.70% 30.58% 45.56%
ATransN 0.3734 417 27.78% 41.37% 56.54% 0.1840 507 1.86% 31.14% 44.76%

IPPT4KRL 0.3823 446 28.22% 42.86% 58.10% 0.2245 473 10.31% 30.44% 42.78%

Table 3 shows the experiment results on CN3l (EN-DE) and WK3l-15K (EN-FR).
On CN3l (EN-DE), we can observe that IPPT4KRL outperformed the rest of the models on
the MRR, MR, and Hit@1 metrics, while also achieving similar performance on the other
metrics compared to the top performers. CN3l (EN-DE) has a relatively large alignment
ratio compared to the other three datasets, which usually implies a smaller difference
between KGs. IPPT4KRL was also able to match and even outperform the top performers
in this case as well. WK3l-15K is one of the harder datasets for multi-KG KRL in the work of
Wang et al. [15], mainly because of (1) the lack of alignments and (2) the relatively dense
and rich information already existing in the French KG. From Table 3, we can still observe a
similar trend that IPPT4KRL achieved a similar performance level compared to other multi-
KG KRL methods. However, on WK3l-15K (EN-FR), the margins between all multi-KG
KRL methods and the baselines were minimal, which is fairly consistent with the findings
in the ATransN paper. The fact that WK3l-15K contains many more relations than the other
two datasets might also contribute to this result.

An interesting observation from the performance of the baseline Connected is that it
outperformed the baseline Individual by a significant margin on the CN3l dataset, but the
same trend was not observed on the generated D-W-15K-LP. Compared to the CN3l dataset,
D-W-15K-LP has a relatively smaller alignment ratio and several aligned entities not visible
to the models during training. We view the difference in the baseline performances as



Mach. Learn. Knowl. Extr. 2023, 5 52

evidence showing that the D-W-15K-LP dataset provides a more “life-like” scenario and is
better suited for benchmarking multi-KG representation learning.

To test the generality of IPPT4KRL, we also experimented with our method on the D-
W-15K-LP dataset with the roles of KG1 and KG2 flipped. From Table 4, we can see that after
flipping the KGs, our method still consistently outperformed all of the baselines, showing
consistent success in facilitating positive knowledge transfer across KGs in both directions.

Table 4. Results on the D-W-15K-LP dataset, reversing the order of KG1 and KG2.

MRR MR Hit@1 Hit@3 Hit@10

Individual 0.3215 598 23.29% 37.46% 47.51%
Connected 0.3263 649 23.48% 38.10% 48.33%

IPPT4KRL 0.3453 410 25.98% 39.35% 49.50%

5. Ablation Studies
5.1. Contribution of Each Component

In Table 5, we report the results from ablation studies to better understand each
component’s contribution to the proposed framework. We conducted ablation studies on
datasets D-W-15K-LP and CN3L(EN-DE), where our method showed substantial learning
from the baseline models. In the table, no-preservation refers to when the embedding space
preservation loss was removed from the proposed framework; non-iterative refers to when
the iterative inclusion of new triples based on neighbouring order was removed and instead
included all new information at once; and no-pretraining refers to when the pre-training
stage of KG1 was omitted. Both KGs were trained from scratch with uniform negative
sampling. Overall, the proposed post-processing method outperformed all ablation models
across all metrics with exceptions on the Hit@3 and Hit@10 metrics on CN3l(EN-DE). It
can be observed that the embedding space preservation loss provided a more considerable
gain in performance when the alignment ratio between KGs was high (CN3L). In con-
trast, iterative inclusion provided a larger margin in performance when the alignment
ratio was relatively low (D-W-15K-LP). In practice, a higher alignment ratio implies more
new entities and triples being introduced to the pre-trained embedding space in the first
iteration of post-processing. In a high-alignment-ratio scenario, preservation loss showed
effectiveness in preventing the embedding space from being “overwhelmed” by a large
amount of new information, while in a low-alignment-ratio scenario, iterative inclusion
showed effectiveness in restricting the model to learn from the relatively more important
information first. From the results, we can also observe that the inclusion of pre-training
also had a substantial gain over the performance. We believe this rationale is very similar
to our iterative inclusion strategy. In the pre-training stage, the model could focus on
individual KGs before utilizing extra information, which helped the convergence to a better
local minimum.

Table 5. Ablation study results.

D-W-15K-LP CN3l (EN-DE)

MRR MR Hit@1 Hit@3 Hit@10 MRR MR Hit@1 Hit@3 Hit@10

IPPT4KRL 0.3764 335 27.64% 43.71% 55.16% 0.2245 473 10.31% 30.44% 42.78%
No-preservation 0.3716 350 27.16% 43.12% 54.90% 0.1971 493 5.30% 29.85% 43.31%
Non-iterative 0.3694 421 26.96% 43.09% 54.48% 0.2106 490 8.53% 29.57% 41.75%
No-pretraining 0.3303 442 22.28% 39.93% 51.69% 0.2110 565 8.06% 30.89% 41.86%

5.2. Varying Seed Alignment Ratio

We experimented with different seed alignment ratios to better understand the nature
of knowledge transfer between KGs. Figure 2 compares the best performances between
IPPT4KRL and the baseline Connected with varying alignment ratios on the D-W-15K-LP
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dataset. In a similar study, ref. [15] used ATransN, where they framed the baseline Connected
as the upper bound of improvement. This is because they assumed that seed alignments used
by the models include all possible alignments between KGs. We argue this is extremely
unlikely in reality. Therefore, in our study, we kept the total number of aligned entities
between KGs constant while varying the number of seed alignments available to the model
during training. The best performance for IPPT4KRL was obtained with negative sampling
turned off for scenarios with less than a 50% alignment ratio and negative sampling turned
on for scenarios with more than a 50% alignment ratio. It can be observed that, as the
alignment ratio increased, the performance of both models increased across all metrics.
At the same time, IPPT4KRL consistently outperformed the baseline Combined in all metrics,
except Hit@10, on which the two models achieved very similar performances.

Figure 2. Performance comparison between IPPT4KRL and the Connected baseline with varying
visible seed alignments on dataset D-W-15K-LP.

5.3. Effect of Negative Sampling

Negative sampling is one of the most-effective techniques in knowledge graph repre-
sentation learning. In our IPPT4KRL framework, we employed uniform negative sampling
for the pre-training stage of KG1. In the post-processing stage, we observed some incon-
sistencies in the effects of including negative sampling: including negative sampling in
the post-processing stage did not always provide knowledge gains to the representation
learning of KG1. In Table 6, we present the experiment results demonstrating the effect
of negative sampling during the post-processing stage. From the results, it can be ob-
served that negative sampling tended to be more beneficial for knowledge transfer for
datasets with higher seed alignment ratios (CN3l, DBP-FB), while on the datasets with
lower seed alignment ratios (D-W-15K-LP, Wk3l), additional negative sampling during
the post-processing stage limited the amount of knowledge transfer between the KGs. We
further validated this observation on the D-W-15K-LP dataset with varying alignment
ratios, comparing model performance with the inclusion and exclusion of negative sam-
pling in the post-processing stage. From Figure 3, it can be observed that, as the alignment
ratio increased, the model with negative sampling enabled during the post-processing
stage gradually outperformed the model without negative sampling enabled in all metrics.
We believe this could be a very good starting point for future research on characterizing
positive and negative knowledge transfer between KGs.
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Table 6. Model performance comparison including vs. excluding negative sampling in the post-
processing stage.

Dataset Negative Sampling MRR MR Hit@1 Hit@3 Hit@10

D-W-15K-LP 7 0.3764 335 27.64% 43.71% 55.16%
3 0.3486 539 24.33% 41.30% 53.38%

CN3l (EN-DE) 7 0.2136 501 11.03% 28.17% 38.40%
3 0.2238 479 10.17% 30.61% 42.68%

WK3l-15K(EN-FR) 7 0.3823 446 28.22% 42.86% 58.10%
3 0.3817 447 28.17% 42.81% 58.08%

DBP-FB 7 0.3591 428 25.81% 41.82% 53.44%
3 0.3782 397 27.58% 43.85% 55.67%

5.4. Representation Learning on KG2

In IPPT4KRL, most of the focus is on improving the embedding training of KG1,
while the training of KG2 embeddings is overlooked. In Table 7, we report the link pre-
diction results on KG2 embeddings obtained by pre-training/post-processing KG1 and
pre-training/post-processing KG2. In the model where pre-training and post-processing
were conducted on KG1, to obtain the best possible results for KG2, we modified the
convergence criteria of the method to stop the iterations once we observed a drop in the
validations set of KG2. The results indicated that, under this framework, the knowledge
transfer tends to be more directional towards the initial KG being pre-trained and post-
processed, and better embeddings of KG2 can be obtained if we switch the role and instead
apply IPPT4KRL on KG2. Directional knowledge transfer is one of the unsatisfactory
characteristics of the proposed framework. However, in the scenarios where bi-directional
knowledge transfer is desired, the pre-training and post-processing stages of both KGs can
potentially be parallelized in practice.

Table 7. Comparison of KG2 embedding obtained by treating different KGs as the initial KG to
pre-train and post-process.

Dataset Initial KG MRR MR Hit@1 Hit@3 Hit@10

D-W-15K-LP KG1 0.3045 374 22.88% 34.15% 44.25%
KG2 0.3453 410 25.98% 39.35% 49.50%

CN3l (EN-DE) KG1 0.2192 540 13.29% 27.15% 35.93%
KG2 0.2199 497 12.19% 28.35% 37.93%

Figure 3. Performance comparison between IPPT4KRL w/ and w/o negative sampling enabled in
the post-processing stage with varying visible seed alignments on dataset D-W-15K-LP.
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6. Conclusions and Future Work

In this paper, we proposed an iterative post-processing method (IPPT4KRL) for multi-
KG knowledge representation learning. Furthermore, we provided benchmarking results
against other state-of-the-art multi-KG representation learning methods on existing and gen-
erated empirical datasets. Compared to the previously proposed multi-KG KRL methods,
our method splits the multi-KG representation learning into the pre-training and post-
processing stages, focusing on representation learning on individual KGs and knowledge
transfer between KGs, respectively, in each stage. As shown in Tables 2 and 3, IPPT4KRL
achieved a comparable and superior knowledge transfer while being flexible and relatively
lightweight. Apart from the performance of our model, we believe this idea could be very
valuable in real life as it could potentially serve as an inexpensive process for assessing the
knowledge gained in the industrial application of fused KGs.

We also generated a new mono-lingual dataset for the multi-KG representation learn-
ing following a previously proposed sampling technique [18]. We believe this dataset
simulates “in the wild” conditions for multi-KG KRL well with the creation of dangling
entities and low overlaps between KGs. More datasets with a different number of seed
alignments in KGs can be easily generated with the same technique.

As shown in the ablation studies, although effective, the performances of the pro-
posed method still rely on the existence of high-quality seed alignments, which are
usually difficult to obtain for large-scale KGs. In the future, we plan to explore the
possibility of incorporating the predictions of entity alignments into the multi-KG KRL
process and, therefore, alleviate the burden of the manual annotation of alignments.
Moreover, with the rapid development in graph neural networks for knowledge represen-
tation, existing GNN-related work [16] has already shown some success in multi-graph
KRL, and we plan to extend the research work to explore more models with GNN-based
encoders under a multi-KG KRL setting.
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Appendix A. Additional Ablation Study Results

We also conducted experiments with different seed alignment ratios, comparing the
proposed IPPT4KRL against the several ablation models we used in the ablation study.
Figure A1 shows the plots of the performance of the proposed IPPT4KRL, ablation model
no-preservation, and ablation model non-iterative with different seed alignment ratios on
dataset D-W-15K-LP under the same negative sampling setting. Overall, the proposed
IPPT4KRL consistently outperformed the two ablation models across all metrics under all
seed alignment ratios.
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Figure A1. Performance comparison between IPPT4KRL and ablation models with varying visible
seed alignments on D-W-15K-LP.

Appendix B. Modification of KD-MKB

In the KD-MKB paper, the relation distillation loss was formalized as
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where Ie(i, j) denotes the entity seed alignments, D denotes the distillation function such
as the KL divergence, r(ex ,·,ey) denotes a categorical variable with relation alignment Ir(i, j)
values, and P(r

(ej
x ,·,ej

y)
θ j) denotes the categorical distribution generated from the embedding

model. The loss function for entity distillation follows the same pattern while swapping
the role of aligned entities Ie(i, j) and aligned relations Ir(i, j). The main idea behind KD-
MKB is to distil knowledge on mutually “shared” information between KGs. However,
as indicated in the formula, this requires both KGs to have aligned entities Ie(i, j) and
aligned relations Ir(i, j). To adapt KD-MKB to datasets without relation alignments, we
created modified KD-MKB*, where Ir(i, j) are changed to be the union of relations in two
KGs instead of relation alignments. This implicitly requires the embedding models of
each KG to learn representations for links unique to other KGs. These representations
are trained indirectly via the knowledge distillation process. This empirically results in
substantial knowledge gain compared to the baselines, and we decided to report the results
of KD-MKB* on the datasets without aligned relations.
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