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Abstract: Polyethylene terephthalate (PET) bottle recycling is a highly automated task; however,
manual quality control is required due to inefficiencies of the process. In this paper, we explore
automation of the quality control sub-task, namely visual bottle detection, using convolutional neural
network (CNN)-based methods and synthetic generation of labelled training data. We propose a
synthetic generation pipeline tailored for transparent and crushed PET bottle detection; however, it
can also be applied to undeformed bottles if the viewpoint is set from above. We conduct various
experiments on CNNs to compare the quality of real and synthetic data, show that synthetic data can
reduce the amount of real data required and experiment with the combination of both datasets in
multiple ways to obtain the best performance.
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1. Introduction

The recycling of PET bottles is usually performed by conveyor belts that perform
washing, cap and label removal, crushing, shredding, sorting and melting of the plastic.
Due to inefficiencies in the process, humans perform quality control, which consists of
sorting plastic bottles in piles based on factors, such as type or colour of plastic, cleanli-
ness and absence of a cap, a label or a bottle ring. More specifically, the task of quality
control could be subdivided into visual bottle localization, classification, pose estimation,
grasping and relocation, performed in that order. Optimising this task would require an
automatic visual-based robotic grasping approach [1]. In this paper, we only focus on
automating the first two steps of quality control, namely visual multiple object localization
and classification, i.e., multi-class object detection.

In recent years, one of the key competencies for process optimization has been con-
nected to smart systems and their integration [2]. In addition, several different kinds of
smart robot control methods have been proposed. [3]. The respective experiments per-
formed in this article are a first step in the overall development of a robotic pick and place
pipeline, whereas the main goal of this article is to detect objects in 2D images that are
the most promising to end up in a successful grasp. The information acquired by object
detection can be further used in grasp pose estimation, enabling the process of picking and
moving, e.g., throwing the waste bottles to a specified location [4].

Deep learning methods for object detection, such as CNNs, have long proven their
effectiveness on visual object detection benchmarks, such as ILSVRC [5], PASCAL VOC [6]
and MS COCO [7]. However, their biggest drawback is the requirement for large datasets
of labelled images to train successful models. For tasks such as the detection of common
objects, vehicles or animals, large pre-made datasets such as ImageNet or MS COCO
already exist; however, in niche applications, such datasets can be small or may not even
exist. For our application, we found a few similar datasets for plastic waste classification [8],
waste classification [9], waste detection [10,11] and PET bottle detection [12]; however, they
cannot be used directly due to differences in purpose, their small in size, or they are not
publicly available.
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Our goal is to create a long-term solution that can adapt to plastic bottles through
retraining; thus, we focus on reducing the effort needed during data collection. For our
task of visual quality control of plastic bottles, manual dataset collection would consist of
randomly placing plastic bottles in piles in different environments, photographing and
labelling bottle positions, sizes and classes. As most of this manual work can be automated
by the physics engine, we turned to synthetic data generation.

Similar to the synthetic data generation pipelines proposed in [13–15], we developed
a synthetic data generation pipeline tailored for the task of visually recognizing piles of
plastic bottles. For 3D physics and rendering engine, we uses the open-source Blender
3D creation suite [16], which provides Python API that allows automating virtual scene
construction and rendering. We reconstructed a virtual environment from 2D photos
of the scene containing a rectangular planar surface. Due to notable difficulty in 3D
scanning of transparent objects, we only reconstructed bottles as planar objects with the
2D texture of real bottles. This solution does not harm our application as plastic bottles
are expected to be crushed, i.e., flattened; however, for undeformed bottles, a camera can
be placed above the scene. An overview of our proposed pipeline is given in Figure 1.
The proposed data generation methodology can also be applied to different kinds of
objects and materials as long as 3D models of objects of interest are available. The code
and data for the synthetic data generator and for reproducing all results are availableat
https://pubgit.edi.lv/vitalijs.fescenko/synthetic-data-for-pet-bottle-detection, accessed
on 19 October 2022.

Figure 1. Proposed approach of generating synthetic data for detecting transparent bottles in piles.

The contribution of our work consists of:

• Photo-realistic synthetic data generation pipeline tailored to the task of visually de-
tecting piles of flattened plastic multi-class bottles.

• Detailed quality evaluation of the generated synthetic data against a real dataset
gathered in a conventional way by comparing the performance of object detection in
both cases.

The rest of this paper is organized as follows: Section 2 reviews related works on
synthetic data generation and object detection. Section 3 describes our methodology of
generating synthetic data as well as the collection of real data. Experimental results are
shown and discussed in Section 4. Section 5 gives the conclusion.

2. Related Work
2.1. Object Detection

Object detection is one of the main computer vision tasks and refers to the identification
and localization of objects in images or videos, with a wide range of applications such

https://pubgit.edi.lv/vitalijs.fescenko/synthetic-data-for-pet-bottle-detection
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as medical diagnosis systems, video analysis and monitoring systems and autonomous
robotic systems.

Nowadays, artificial neural networks (ANN) prevail in object detection tasks due to
state-of-the-art performance of classical CNN methods, such as Fast R-CNN [17], Faster
R-CNN [18], YOLO family [19–23] and SSD [24], as well as more recent EfficientDet [25]
and visual transformer methods, such as DETR [26].

The YOLO family of object detectors is known for a good trade-off between perfor-
mance and speed when compared to other methods. According to [19], YOLO performs
slightly worse than Fast R-CNN and Faster R-CNN on the PASCAL VOC dataset while
performing significantly faster. YOLOv3 performs similarly to SSD on MS COCO, while
performing three times faster [21]. More recent YOLO incarnations include YOLOv4 [22]
and Ultralytics’ “YOLOv5” repository [23].

In this paper, we use the “YOLOv5” repository as it is implemented in PyTorch, thus
simplifying experimentation, deployment and re-training of the object detector. More-
over, YOLOv3 has already been successfully applied to PET bottle detection on conveyor
belts and classification by colour [12], proving the applicability of YOLO detectors for a
similar task.

2.2. Synthetic Data

Synthetic data are a tempting alternative to manual collection on a large scale due
to the ease of data generation after an initial effort to set up the generator. The goal is to
generate synthetic data that generalizes to the real domain.

In visual object detection tasks, synthetic data consist of images generated by placing
foreground objects on background scenes, i.e., composition, with an additional variation,
such as change of object and camera position, illumination, object texture and shape. Object
placing can be random, using out-of-context backgrounds [27–29], with additional contex-
tual guidance [30,31] or realistic placing using rules or physical simulation [13,15,32,33].

Methods, such as [27,28,30], use 2D cut-and-paste techniques for data generation,
where objects are cut from images and placed on top of a separate set of background
images. In [30], the authors used pre-made datasets of segmented objects; Ref. [28] used
computer vision algorithms for segmentation, while [27] trained a dedicated segmentation
model. Similar methods are only suitable for generation of 2D labels, such as bounding
boxes or segmentation mask; however, they are often simpler in terms of complexity and
data acquisition.

With the availability of large datasets of 3D CAD models, such as “3D Warehouse”
(3D CAD model warehouse: https://3dwarehouse.sketchup.com/, accessed on 19 October
2022) and ShapeNet [34], datasets of 3D scanned models [35] and advances in computer
graphics, recent work in synthetic data [13–15,31,32,36,37] has shifted to 3D graphical
engines that allow easy integration of 3D background scenes and 3D objects, enabling more
variation and more realistic scene reconstruction and object placement. Some work uses
pre-made 3D background scenes [13,14], while others use complex 3D scanning techniques
to recreate the target environment [15]. Older methods use 2D background images for 3D
object placement [31]; however, additional scene analysis or manual labelling is required for
realistic object placement. Objects can also be taken from pre-made datasets [13,14,29,31]
and reconstructed either manually [32] or by scanning real objects for more realism [15].

For a custom task, the reuse of pre-made datasets might not be possible. Thus, similar
to [15,27], our work presents a full pipeline of collecting objects and backgrounds as well as
a method that allows generating an object detection dataset for a cluttered scene. However,
our solution is tailored more to the detection of flat transparent objects, such as crushed
plastic bottles. We use photos of backgrounds and bottles. We follow a realistic object
placement approach by reconstructing a virtual 3D scene in Blender from a background
photo using a rectangular surface and performing a 3D physics simulation.

https://3dwarehouse.sketchup.com/
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Most recent work on synthetic data either train models on generated data exclu-
sively [28,29,32,38] or simply merge real and generated datasets in some proportions due
to superior performance [13–15,27,39]. However, it might introduce bias in favour of
synthetic data due to larger dataset size. Therefore, we propose to use a multi-task [40]
inspired loss function that views synthetic and real datasets as equal tasks and balances
their contribution by weighting respective gradients.

3. Methods
3.1. Synthetic Data Generation

Our proposed synthetic dataset generation approach can be summarized as follows.
First, we collect and label datasets of background and bottle photos. Then, we generate
synthetic data in a 3D modelling software by reconstructing a virtual environment from
the background photos, reconstructing bottle objects from the bottle photos, simulating
cluttering of the bottle objects and render the final scene with bounding box labels. An
overview of our approach is given in Figure 1.

3.1.1. Background Dataset Creation

A background dataset is required for the composition of backgrounds and foreground
objects. We further describe our approach to collecting and processing backgrounds.

Collecting background scene photos: We take different photos of the same scene from
above with slight variations in perspective and illumination. This camera placement provides
the best visibility of flattened bottles and enables the use of undeformed bottles. We limit
photos to just one scene, which consists of an experimental setup of a table with a robot arm
attached and a rectangular plastic tray for placing bottles; however, our approach can also be
used with multiple scenes, assuming they all contain planar rectangular surfaces such as a
tabletop, conveyor belt or a floor.

Labelling: The label for each photo consists of the dimensions and corner points of
the rectangular surface. This information is necessary for a realistic up-to-scale virtual
scene reconstruction described in Section 3.1.3. Label calculation can be automated using
pose estimation of fiducial markers, e.g., Aruco markers [41].

The described background dataset creation approach is simple for the end user, as
it only requires a photo from the desired viewpoint and a label, while not requiring any
3D software knowledge or a complex pipeline for the 3D scene reconstruction. How-
ever, the main drawback is object placement only in a predefined region with predefined
physical constraints.

3.1.2. Bottle Dataset Creation

For foreground objects, we collect, scan and process transparent bottles in a specific
way suitable for the proposed synthetic data pipeline.

Collecting bottle instances and photos: We collected 136 PET bottles of common
beverages and bottled water. Bottles were manually flattened to correspond to expected
conditions. Then, for each bottle instance, we took multiple photos at varying illumination
from different flat sides on a uniform background. The colour of the background should
not be included in the object for proper post-processing described later in this paper. We
mostly used green and blue backgrounds.

Segmentation: Segmentation is necessary for bottle localization in a photo and for
establishing a hard boundary. For this purpose, we developed a GUI Python application
using OpenCV [42] computer vision library. Clear separation of a background from a bottle
by intensity threshold is not always possible due to transparency and varying colours of the
background; thus, we used an edge-based method that we empirically found to work well
for transparent bottles on a uniform background (Figure 2a). For our segmentation method,
we used Laplacian pyramid [43] which acts as a band-pass filter for certain frequency
features. The first layer keeps only high-frequency features, such as edges or noise, while
the last layer keeps lower-frequency features. We converted both layers to binary images
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(Figure 2b,c) and performed a pixel-wise AND binary operation (Figure 2d) to leave only
pronounced edges while filtering out noise. The user of our application is required to
eyeball the depth of a pyramid, such that only noise is filtered, while enough edges are
preserved. Then, in case of a discontinuity of the object’s edges, we compute a convex hull
from all remaining edges (Figure 2e). Convex hull preserves the bounding box of an object,
which suits our task of object detection; however, for the segmentation task, additional
effort would be required for computing a more precise boundary.

Figure 2. Bottle segmentation steps (left to right): (a) input grayscale image; (b) binary first Laplacian
pyramid layer; (c) binary last (4th) Laplacian pyramid layer; (d) pixel-wise AND of (b,c); (e) con-
vex hull.

Image matting: The extraction of opacity information of a foreground object, such as
a bottle, from an image is known as image matting. We use Blender’s implementation of
the image matting algorithm by chroma keying [44] designed to work with transparent or
translucent objects. We wrap it in a Python script that accepts the image and chroma key
the RGB value as arguments. The chroma key value is calculated as an average intensity
of a background. However, we found that the results of this algorithm depend on the
background illumination and can leave part of the background translucent. This can be
mitigated to some extent by masking the result with a segmentation mask or selecting a
better chroma key value. For this reason, we do not consider this step to be fully automated
yet, and further research into better image matting methods should be conducted.

Labelling: We manually label bottle size and class for each bottle instance. In this
paper we consider four classes determined by the presence of a cap or a label: both present,
only cap, only label and none. Approximate bottle size can also be computed automatically
knowing the pixel/centimetre ratio.

Overall, this approach could be simple for the end user, assuming less manual in-
tervention in image matting and segmentation would be required. In comparison with
the conventional labelling approach, where the amount of labels required is equal to
the total occurrences of objects in all images, our method only requires a label for each
object instance.

3.1.3. Composition

We create a Python script with the Blender-API that automatically generates a synthetic
dataset. For each synthetic image, it performs the composition of background scenes and
bottles inside Blender. For composition, we introduce multiple simulated sources of
variation, namely the bottle’s colour, hue and size variations, scene illumination and an



Mach. Learn. Knowl. Extr. 2023, 5 19

amount of uniquely cluttered scenes per dataset as a way to augment the dataset and deal
with missing or imprecise information, as well as to make our detector robust against small
changes in terms of variation. This approach, although on a smaller scale, follows a similar
principle to domain randomization [32], namely extensive simulation of variation in the
hope of also covering the real domain. We further describe our composition script and its
key steps.

Scene reconstruction: Our script launches Blender software and loads a random
background photo from the background dataset described in Section 3.1.1. It matches the
perspective and scale of a background to a virtual 3D camera object using a Blender add-on
for camera calibration [45], which uses perspective views of rectangles for estimating cam-
era position based on the algorithm introduced in [46]. Then, our script sets up a physical
constraints box that prevents objects from falling outside the labelled rectangular surface.
We do not reconstruct correct illumination as it is challenging to extract from a single photo;
instead, our script creates a 3D light object with varying softness and brightness.

Loading bottles: Next, our script samples a few bottle instances from the bottle
dataset described in Section 3.1.2 and for each bottle loads its dimensions, chroma-keyed
textures and segmentation masks. For each sampled bottle instance, the script creates a 2D
rectangular object that matches the real-life size and randomly samples one of the bottle’s
chroma-keyed photos to use as the bottle object’s texture. For physical simulation stability,
an additional thin 3D bounding box is created around each bottle object. All bottle objects
are stacked vertically without overlap on top of a constraints box. For each synthetic image,
the rotation and position of bottle objects and their hue and size. The number of bottles to
load is varied. We also vary the amount of uniquely cluttered scenes per dataset; namely,
we either select bottles randomly for each scene in the dataset or repeat one bottle selection
in multiple scenes.

Simulation and rendering: Cluttering is achieved by applying a force of gravity
to bottle objects and running a physical simulation during which objects fall inside the
constraints box. After simulation, our script renders and saves the final scene using
Blender’s Cycles physically based rendering engine.

Label generation: Our final goal is to acquire bounding box labels for unobstructed,
i.e., topmost bottles, which represent pickable bottles. For this task, each bottle’s outline
is computed from the segmentation mask and is projected onto the camera’s image plane.
Then, using the Python Shapely library [47] for manipulation and analysis of planar
geometric objects, overlapping bottles are determined via intersection over union (IOU)
between their outlines. Bottles that do not overlap are considered unobstructed, while
for overlapping pairs we determine the topmost bottle by comparing their altitude in a
simulated environment with respect to the virtual camera. Finally, bounding boxes of the
unobstructed bottles are computed and exported to the YOLO label format.

3.2. Datasets

We further describe synthetic and real datasets we have collected for training object
detectors in multiple scenarios. See Figure 3 for samples from those datasets.
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Figure 3. Samples from different datasets. For the synthetic set, we show samples generated using all
sources of variation.

3.2.1. Synthetic Datasets

Using the approach described in Section 3.1, we generated several synthetic datasets
with various sources of variation consisting of 5000 images each. Unless stated otherwise,
we use synthetic data with all sources of variation enabled. We use 80% for training and
the rest for validation.

3.2.2. Real Datasets

Real data were collected in the same environment described in Section 3.1.1. We
manually clutter the plastic tray on the table with the same bottles used in synthetic dataset
generation and take photos with a camera mounted above. Then, with the help of our
colleagues, we manually labelled bounding boxes and classes.

Real set: We denote a real set as data collected for training and validation. It consists of
2031 photos taken in bright illumination from a single viewpoint and with a small amount
of uniquely cluttered scenes, where in-between photos capture the consecutive addition or
removal of a few bottles from the tray, which yields significant overlap in nearby photos in
terms of pixel values. We split the dataset consecutively using the first 80% of photos for
training and the rest for validation, as we found random splitting harms generalization due
to overlap in training and validation sets. While this data collection method does not fully
represent our target domain as it contains a smaller amount of variation than we expect
our object detector to cover, it is easier to manually collect and label data in this way in the
real environment, where regular retraining is expected.

Test set: The test set consists of real data that captures all the variation we expect from
a good object detector to cover, in other words, it represents our target domain. It consists
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of 51 uniquely cluttered scenes with 3 illumination conditions (bright lamp, dim lamp,
ambient light) and 4 camera positions from above, 612 images in total.

3.3. Object Detector

For all experiments, we use Ultralytics “YOLOv5” object detector, specifically the small-
est architecture available named “YOLOv5s” with weights pre-trained on ImageNet. All size
models use the same architecture with the only difference being depth and width scaling
factors, which add more layers in-depth or add more parameters at each layer, respectively.

For each prediction, “YOLOv5” outputs bounding box coordinates and confidence and
classification score. Similarly to YOLOv3, class probabilities and confidence are computed
using independent logistic classifiers. Confidence, i.e., objectiveness, score is trained to
have a value of 1 if the predicted bounding box overlaps best with ground truth. During
prediction, confidence is used as a proxy for assessing the quality of the predicted bounding
box. Similarly to YOLOv3, “YOLOv5” predicts bounding box coordinates as (bx, by) for the
top-left corner and bw, bh for dimensions; however, the formula used to convert the output
into bounding box coordinates slightly differs to improve stability during training:

bx = (2 · σ(tx)− 0.5) + cx
by = (2 · σ(ty)− 0.5) + cy

bw = pw · (2 · σ(tw))2

bh = ph · (2 · σ(th))
2

(1)

where pw, ph is the anchor’s width and height, (cx, cy) is the anchor’s offset from the top
left corner of the image, (tx, ty) are predicted offsets with regard to the anchor’s position,
and tw, th are predicted scaling ratios with regard to the anchor’s dimensions. Anchors are
computed by clustering bounding boxes in a dataset using k-means. “YOLOv5” by default
uses anchors pre-trained on the MS COCO dataset adopted from [21].

For evaluation of the object detector, we use the mAP@0.5:0.95 performance metric
implementation provided in “YOLOv5” based on code from [48] that uses a 101-point
interpolation for precision × recall curve approximation. The mean average precision (mAP)
metric is often used for the evaluation of object detectors’ performance in competitions;
mAP is computed as the mean of average precision (AP) scores per object class. The
standard AP metric considers the predicted bounding box as true positive if it overlaps
with ground truth by at least 50% from their total covered area, i.e., their intersection over
union (IOU) threshold is 50%. The mAP@0.5:0.95 computes the mean value of 10 mAP
scores with IOU thresholds varying in a range of 50% to 95% with steps of 5% [48]. In
contrast to standard mAP, the mAP@0.5:0.95 metric better depicts the localization precision
of predicted bounding boxes.

3.4. Training

We train all models using default hyper-parameters and configuration in the “YOLOv5”
implementation, namely 300 training epochs, mini-batch gradient descent with Nesterov
momentum of 0.937 [49] and mini-batch size of 32 images, weight decay, cosine learning rate
decay strategy [50] from 0.01 to 0.002 at the final epoch and a learning rate and momentum
warmup heuristic [50] for 3 initial epochs. For image augmentations, “YOLOv5” by default
uses mosaic augmentation [22], random HSV colour space adjustment and horizontal flip.
For evaluation on the test set, we only select the best weights among all epochs in terms of
mAP@0.5:0.95 performance on the respective validation set.

During experiments, we train multiple object detector model variants. For each
model variant, we trained 6 models in order to reduce noise in the results. We measure
mAP@0.5:0.95 metrics on the test set.

We further refer to models trained on either synthetic or real datasets as single dataset
models or synthetic and real models, respectively. For models trained on both synthetic
and real datasets, we refer to them as either concatenated or combined models depending
on the method (see further discussion).
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Concatenated model: The simplest way of combining two datasets is to merge, i.e.,
concatenate, train sets and validations, sets respectively. We trained two concatenated
model variants. The first variant validates on concatenated validation sets from both
datasets. The second one only validates on a real validation set, but due to similar per-
formance and for a fair comparison with the combined models (explained in the next
paragraph), we only report the latter model.

Combined model: Synthetic data are usually more abundant than real data. Thus,
simply merging both datasets “synthetic” gradient can suppress the “real” gradient during
optimization. We use a multi-task-inspired loss function to balance the contribution of
“real” and “synthetic” gradients. More specifically, we scale the “YOLOv5” mini-batch loss
l(B) using the following expression:

`′(B) =


|DS |+|DR |

2|DR | `(B) · α, if B ⊆ DR

|DS |+|DR |
2|DS | `(B) · (1− α), if B ⊆ DS

(2)

where DS and DR denote synthetic and real training sets, respectively, B is a mini-batch
sampled from either set, and α ∈ [0, 1] is an additional scaling parameter that weights
the contribution of each set to the gradient. In experiments, we use α = 0.5 for equal
contribution unless stated otherwise. A bigger α value means a larger real set contribution,
while a smaller value means a larger synthetic set contribution. We save best weights by
only validating on a real validation set as it facilitates our goal to generalize the detector to a
real domain and frees us from additionally weighting validation performance on both sets.

4. Results

We perform multiple experiments in order to evaluate our generated data against data
collected in a conventional way.

4.1. Synthetic Data versus Real

First, we compare the performance of models trained on real, synthetic and combined
datasets. Figure 4 shows the results of our experiment.

Results show that models that use a combination of synthetic and real data perform
better on average. Combined models on the test set achieved 30 mAP@0.5:0.95 on average
which is 1.36 times more than real models and 1.25 times more than concatenated.

We perform an additional experiment to confirm that the worse performance of single
dataset models on the test set is not caused by smaller datasets, i.e., fewer mini-batch
weight updates. Combined and concatenated models use 5624 training images, thus having
176 mini-batches per epoch or 52,800 for 300 epochs. Synthetic models have 125 mini-
batches per epoch, and real models have 51. Thus, for an equal number of weight updates,
synthetic and real models should train for 423 and 1035 epochs, respectively. We train each
model variant for 1000 epochs and plot performance on the test set for each epoch (see
Figure 5). As can be seen from the figure, even at a similar number of weight update steps,
the performance of the synthetic and real models is similar to that reported in Figure 4 and
becomes worse due to overfitting.
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Figure 4. Average performance of models. Lines represent one standard deviation.

Figure 5. Test performance with respect to epochs with time measured on Nvidia Quadro RTX 4000.

4.2. Ablation Study

To study the significance of the simulated variation in the synthetic data, we perform
an ablation study by restricting some sources of variation during data generation. Sources
of variations we explore are random colour (hue), multiple camera viewpoints, random
illumination, multiple photos for each bottle and the amount of uniquely cluttered scenes.
To remove the variation introduced from multiple camera viewpoints or bottle photos,
we restrict backgrounds to one viewpoint and bottles to one photo. To remove random
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illumination, we fix Blender’s light object to one position and brightness. To reduce the
variation from uniquely cluttered scenes, we use only 50 unique bottle selections per
dataset. For each synthetic dataset variant, we train both the synthetic and combined
models. Table 1 summarizes our results.

Table 1. Ablation studies on the sources of variation in the synthetic dataset. We generate various
synthetic datasets by restricting one or more sources of variation and evaluate the performance of
models trained on these datasets.

Random Camera Bottle Random Unique Test Set
Hue Views Photos Light Cluttering (Avg ± Std)

Synthetic-only models
All (baseline) 10.7 ± 1.1
Original Color X 7.2 ± 1.0
Single Camera Viewpoint X 9.1 ± 0.8
Single Bottle Photo X 6.5 ± 0.5
Single Light X 8.2 ± 0.9
Repeat Bottle Selections X 11.1 ± 0.8
All off X X X X X 3.9 ± 0.2

Combined dataset models
Real + All (baseline) 30.7 ± 2.0
Real + Original Color X 31.1 ± 0.3
Real + Single Camera Viewpoint X 28.1 ± 1.0
Real + Single Bottle Photo X 26.3 ± 0.9
Real + Single Light X 29.6 ± 1.7
Real + Repeat Bottle Selections X 32.2 ± 1.5
Real + All off X X X X X 23.4 ± 3.3

For the synthetic-only models, results show that all sources of variation except for
uniquely cluttered scenes improve performance. The most significant sources of variations
are multiple photos of each bottle and random colours. Uniquely cluttered scenes harm
the performance.

For the combined dataset models, only multiple camera viewpoints and multiple
photos of each bottle provide significant improvement. Uniquely cluttered scenes and
random colour harm the performance.

Overall, results suggest that variation plays an important role in generalization, es-
pecially in the synthetic-only models. Using multiple photos of each bottle significantly
improves the performance; however, such variation is manually collected rather than simu-
lated. Among simulated variation, randomization of bottles’ colour provides improvement
when trained without real data, while slightly harming performance in combination with
real data. Randomization of illumination in a simulated environment tends to slightly
improve performance on the target domain. Using a unique selection of bottles per scene
hurts the performance as reusing the same bottle selection performs better; however, we do
not explore this phenomenon further.

4.3. Comparison of Dataset Sizes

In order to find out whether the combined model’s performance could be traded away
in favour of a smaller real dataset size, we experiment with different sizes. We divide the
real dataset into three subsets, namely 25%, 50% and 75%, by taking only the corresponding
percentage of data from the beginning of the full dataset for both training and validation
sets. We additionally train the real models on those subsets to confirm that reducing data
reduces performance, which might not be the case if images contained a lot of redundant
information due to overlap. For the combined models, we use a full synthetic dataset.
Table 2 summarizes our results.
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Table 2. Performance (mAP@0.5:0.95) with respect to real dataset size.

Dataset Test Set
(Avg ± Std)

Real 25% 13.6 ± 2.0
Real 50% 16.8 ± 1.5
Real 75% 18.8 ± 0.9
Real 100% 22.3 ± 1.0
Synthetic + Real 25% 22.4 ± 1.0
Synthetic + Real 50% 23.0 ± 3.5
Synthetic + Real 75% 28.6 ± 2.4
Synthetic + Real 100% 30.7 ± 2.0

The best results are achieved by the combined models trained on 100% of real data.
The combined models with only 25% of real data achieve a similar performance to the
real models on the test set, which suggests that in our case the amount of real data can be
reduced by a factor of four if trained in combination with synthetic data. However, for the
validation set, only 25% of the real data can be removed without performance loss.

4.4. Contribution of Datasets

We perform additional tests to find an optimal contribution ratio between synthetic
and real training sets, more specifically we train combined models with multiple α values
in the combined loss (Equation (2)). A bigger α value means more real set contribution,
while a smaller value means more synthetic set contribution. For models with α = 0.5
we reuse combined models from previous experiments, while α = 1 and α = 0 models,
corresponding to the real and synthetic models, respectively, are trained from scratch due
to minor differences from using combined loss. Results are summarized in Figure 6.

Figure 6. Box plot of the combined models with respect to alpha values in combined loss. Average
performance is shown above the boxes. Grey dashed line represents average performance of the
concatenated models.

Models with α ranging from 0.4 to 0.8 achieve good results with minor differences;
however, favouring real data slightly more (α = 0.6) gives the best result. By favouring
synthetic data four times more (α = 0.2), we obtain worse results than by favouring real
data by the same amount (α = 0.8), confirming the real data is more important. As expected,
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α ∈ {0, 1}models score similar performance to their regular loss function analogues (see
Figure 4); however, both are outperformed by α ∈ {0.2, 0.8} models, suggesting that even a
small contribution from an opposite set significantly improves performance.

By simply merging both datasets, performance should be close to α = 0.29 models
due to having a 1624/5624 ≈ 0.29 proportion of real training data among the whole
concatenated training set. However, surprisingly, we observed worse performance for
concatenated models, which might be caused by different loss scales due to the use of
combined loss. Nevertheless, even α = 0.29 models perform worse than by favouring real
data, confirming that balancing the contribution of datasets is useful when using larger
synthetic datasets.

5. Conclusions

We show promising results that the proposed synthetic data generation method can
be used for the visual detection of transparent bottles. From our results, we conclude that
generated synthetic data are not a good replacement for real data on its own due to worse
performance; however, it can provide additional information due to the vast amount of
variations. We also show that in our case, synthetic data can substitute 75% of real data
without performance loss, suggesting our generator could ease data collection under the
assumption that preparing datasets for the generator will become more automated.

We also show that balancing both datasets achieves performance 1.36 times better
than models trained only on real data and 1.25 times better than by simply merging both
datasets. We also show the importance of amplifying real dataset gradient during training
for better generalisation to the real target domain, which cannot be achieved by simply
merging both datasets if synthetic data is more abundant.

Thus, future work includes fully automating our proposed pipeline, specifically seg-
mentation and chroma keying steps, and bridging the gap between real and synthetic
domains.
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