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Abstract: The emergence of black-box, subsymbolic, and statistical AI systems has motivated a
rapid increase in the interest regarding explainable AI (XAI), which encompasses both inherently
explainable techniques, as well as approaches to make black-box AI systems explainable to human
decision makers. Rather than always making black boxes transparent, these approaches are at
risk of painting the black boxes white, thus failing to provide a level of transparency that would
increase the system’s usability and comprehensibility, or even at risk of generating new errors (i.e.,
white-box paradox). To address these usability-related issues, in this work we focus on the cognitive
dimension of users’ perception of explanations and XAI systems. We investigated these perceptions
in light of their relationship with users’ characteristics (e.g., expertise) through a questionnaire-based
user study involved 44 cardiology residents and specialists in an AI-supported ECG reading task.
Our results point to the relevance and correlation of the dimensions of trust, perceived quality of
explanations, and tendency to defer the decision process to automation (i.e., technology dominance).
This contribution calls for the evaluation of AI-based support systems from a human–AI interaction-
oriented perspective, laying the ground for further investigation of XAI and its effects on decision
making and user experience.

Keywords: explainable AI; decision support systems; ECG; artificial intelligence; XAI

1. Introduction

We are witnessing a continuous and, indeed, accelerating move from decision support
systems that are based on explicit rules conceived by domain experts (so-called expert
systems or knowledge-based systems) to systems with behaviors that can be traced back to
a potentially huge number of rules that have been automatically learned on the basis of
correlative and statistical analyses of large quantities of data. This is the shift from symbolic
AI systems to subsymbolic ones, which has made the black-box nature of these latter
systems an object of a lively and widespread debate in both technological and philosophical
contexts [1,2]. The main assumption motivating this debate is that making subsymbolic
systems explainable to human decision makers makes them better and more acceptable
tools and supports.
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This assumption is widely accepted [3–5], although there are a few scattered voices
against it (see e.g., [6–9]). For instance, explanations were found to increase complacency
toward the machine advice [10], increase (or not reduce) automation bias [11–14], and
groundlessly increase confidence in one’s own decision [15,16]. Understanding or partici-
pating in this debate, which characterizes the scientific community that recognizes itself in
the expression “explainable AI” and in the acronym “XAI”, is difficult for the seemingly
disarming heterogeneity of definitions of explanation, and the variety of characteristics that
are associated with “good explanations” [17], or of the systems that generate them [18].

In what follows, we adopt the simplifying approach recently proposed in [18], where
explanation is defined as the metaoutput (that is, an output that describes, enriches, or
complements another main output) of an XAI system. From this perspective, good expla-
nations are those that make the XAI system more usable, and therefore a useful support.
The reference to usability suggests that we can assess explanations (and explainability) on
different levels, by addressing complementary questions, such as Do explanations make
the sociotechnical, decision-making setting more effective [19], in that they help decision
makers commit fewer errors? Do they make it more efficient, by making decisions easier
and faster, or just by requiring fewer resources? Last but not least, Do they make users
more satisfied with the advice received, possibly because they have understood it more,
and thus made them more confident about their final say?

Although some studies [13,20] have already considered the psychometric dimension
of user satisfaction (see, e.g., the concept of causability [21], related to the role of expla-
nations in making advice more understandable from a causal point of view), here we
would like to focus on effectiveness (i.e., accuracy) and other cognitive dimensions (than
understandability), both regarding the support (e.g., trust and utility) and the explanations
received. In fact, explanations can be either clear or ambiguous (cf. comprehensibility),
either tautological and placebic [22] or instructive (cf. informativeness), either pertinent or
off-topic (cf. pertinence), and, as obvious as it may seem, either correct or incorrect, as any
AI output can be. Therefore, otherwise good explanations (that is persuasive, reassuring,
comprehensible, etc.) could even mislead their target users. This is the so-called white-box
paradox, which we have already begun investigating in previous empirical studies [23,24].
Thus, investigating if and how much users find explanations “good” [25] (and in the next
section we will make this term operationally clear) can be related to focusing on the possible
determinants of machine influence (i.e., also called dominance), automation bias, and other
negative effects related to the output of decision support systems on decision performance
and practices.

In what follows, we will present the findings from a user study conceived to investigate
the role of AI advice and textual explanations in the medical task of ECG reading and inter-
pretation. In particular, we chose the use case of ECG reading because the (semi)automatic
interpretation and classification of biosignals has been gaining traction recently. Indeed,
a number of studies have reported the successful application of AI systems in accurately
detecting abnormalities and diagnosing cardiovascular diseases [26]. Notable examples
include the use of highly accurate deep learning algorithms [27,28], which in some in-
stances achieved performances that are comparable or superior to expert ECG readers. At
the same time, the accuracy of such high-performing AI systems is often coupled with a
requirement for explainability [29], with the double aim of fostering trust in the AI system
and confidence in the final human (AI-supported) decision, as well as to enrich the AI
predictions with further information (i.e., the “why” behind such predictions). The XAI
techniques applied to biosignals, and more in general time-series data [30], are various
in the nature of their output, including rule-based [31], semantic data [32] and feature
importance-based [33] explanations. In the following, we will adopt text-based explana-
tions as our baseline approach for a survey experiment involving human ECG readers, in
order to assess the impact of AI advice coupled with textual explanations on the task of
ECG reading aimed at diagnosis. Finally, we remark that this work must be interpreted
within the broader context of a study in which an international and multidisciplinary team
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(including data and computer scientists and medical doctors) explores the role of XAI
explanations in AI-supported ECG reading. In a previous study, we investigated the role
of visual explanations (in terms of saliency maps, see [34]), whereas here we focus on
textual explanations.

2. Methods

To investigate how human decision makers perceive explanations, we designed and
conducted a questionnaire-based experiment in which we involved 44 cardiologists of vary-
ing expertise and competence (namely, 25 residents and 19 specialists) from the Medicine
School of the University Hospital of Siena (Italy), in an AI-supported ECG reading task,
not connected to their daily care practice. The readers were invited to classify and an-
notate 20 ECG cases, previously selected by a cardiologist from a random set of cases
extracted from the ECG Wave–Maven repository (https://ecg.bidmc.harvard.edu/maven/
mavenmain.asp, accessed 5 March 2023) on the basis of their complexity (recorded in the
above repository), so as to have a balanced dataset in terms of case type and difficulty. The
study participants had to provide their diagnoses both with and without the support of
a simulated AI system, according to an asynchronous Wizard of Oz protocol [35]. The
support of the AI system included both a proposed diagnosis and a textual explanation to
back the former one. We give two examples here of explanations associated with an ECG
identified as normal, and a case associated with a pneumothorax condition (a condition
of great significance and severity), respectively. The normal ECG includes a heart rate
of 60 beats per minute, normal axis (+53°) and intervals within normal limits, normal
P wave, QRS complex and repolarization apparently physiological. The pneumothorax
includes low voltages in lateral leads, vertical cardiac axis, the presence of nonsignificant
anterior and inferior ST-segment elevation. The experiment was performed by means of a
Web-based questionnaire set up through the LimeSurvey platform (version 3.23), to which
the readers had been individually invited by personal email (see Figure 1).

The ECG readers were randomly divided into two groups, which were equivalent for
expertise and were supposed to interact with the AI system differently (see Figure 2). In
doing so, we could comparatively evaluate potential differences between a human-first and
an AI-first configuration. In both groups, the first question of the questionnaire asked the
readers to self-assess their trust in AI-based diagnostic support systems for ECG reading.
The same question was also repeated at the end of the questionnaire to evaluate potential
differences in trust caused by the interaction with the AI system.

For each ECG case, the readers in the human-first group were first shown the trace of
the ECG together with a brief case description, and then they had to provide an initial diag-
nosis (in free text format). After that this diagnosis had been recorded, these respondents
were then shown the diagnosis proposed by the AI; after having considered this latter ad-
vice, the respondents could revise their initial diagnosis; then they were shown the textual
explanation (motivating the AI advice) and asked to provide their final diagnosis in light of
this additional information. In contrast, the participants enrolled in the AI-first group were
shown the AI-proposed diagnosis together with the ECG trace and case description; only
afterward, they were asked to provide their own diagnosis in light of the received advice.
Finally, ECG readers were shown the textual explanation, and asked whether they wanted
to revise their initial diagnosis or confirm it.

https://ecg.bidmc.harvard.edu/maven/mavenmain.asp
https://ecg.bidmc.harvard.edu/maven/mavenmain.asp
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Figure 1. Screenshot taken from one of the pages of the online questionnaire was used in the user
study. The top of the image shows part of the ECG shown to participants for a clinical case and,
particularly on the left, a magnified portion of the trace from the "magnifying glass" feature that
could be activated by simply hovering the pointer over the image. Visible below is the advice given
by the AI (in this case, “atrial fibrillation”) and in the area below the explanation provided (in this
case, “absence of P waves and irregularities in the frequency of the QRS complexes”). At the bottom,
one can see the question item by which the user could confirm the diagnosis given previously (on
the previous page), or choose the diagnosis provided by the AI, or enter another diagnosis (different
from the one entered previously).

Figure 2. BPMN representation of the study design. Information collected is represented as data
objects, coming from collection tasks. Its name is denoted by the name of the main actor. After the
initial collection of the perceived “trust in AI” (Initial Trust, IT), the subprocess is repeated for each
ECG case, where HD1, AI, HD2, XAI, and FHD items are collected, together with comprehensibility,
appropriateness, and utility; these acronyms denote (see the abbreviations list at the end of the article)
the first diagnosis humans provide (HD1) before receiving the AI advice (AI), the diagnosis recorded
immediately after receiving this AI advice (HD2), the information regarding the XAI support (XAI),
and the final and definitive diagnosis (FHD). Finally, a posttest “trust in AI” is collected again (Final
Trust, FT).
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For each textual explanation, we asked the participants to rate its quality in terms of
its comprehensibility, appropriateness, and utility, in this order (so as to reflect a natural
sequence through perception, interpretation, and action). In particular, while comprehen-
sibility and utility were considered self-explanatory terms, we pointed out in a written
comment that appropriateness, to our research aims, would combine the respondents’
perception of pertinence and correctness together. That is, that dimension would reflect the
extent to which “the explanation had something to do with the given advice” and, with
regard to the latter, “it was plausible and correct.” In other words, we asked the participants
to judge the quality of the explanation with respect to the advice and to the case at hand by
means of two different constructs - appropriateness and utility, respectively.

The accuracy of the simulated AI—that is the proportion of correct diagnostic advice—
was 70% with respect to the ECG Wave–Maven gold standard. This rate was considered
appropriate because in a previous study [36] we observed a slightly lower average accuracy
in a similar population of readers.

To avoid negative priming and ordering bias [37,38], and hence avoid fostering unnec-
essary distrust in the AI, the first five cases of the questionnaire shown to the participants
were all associated with a correct diagnosis and a correct explanation from the XAI support.
Although the participants had been told that the explanations were automatically generated
by the AI system, like the diagnostic advice, these had been prepared by the same cardiolo-
gist who also selected the cases. In particular, 40% of the explanations were incorrect or not
completely pertinent to the cases. More precisely, for the five cases classified as simple, all
explanations were correct, for the nine cases of medium complexity, four explanations were
wrong, and for the remaining six cases denoted as difficult, four explanations were wrong.

Based on the collected data, we then considered the following research questions.

(RQ1): Does the readers’ expertise have any effect in terms of either basal trust, difference
in trust by the readers, or final trust (RQ1a)? Does the interaction protocol
(human-first vs. AI-first) have any effect on differences in trust by the readers, or
final trust (RQ1b)?

(RQ2): Is there any difference or correlation between the three investigated psychometric
dimensions (i.e., comprehensibility, appropriateness, utility)? A positive answer
to this latter question would justify the use of a latent quality construct (defined
as the average of the psychometric dimensions) to simplify the treatment of other
research questions.

(RQ3): Does the readers’ expertise, diagnostic ability (i.e., accuracy), and the adopted
interaction protocol have any effect in terms of differences in perceived expla-
nations’ quality? Similarly, does the perceived quality of explanations correlate
with the basal or final trust? Regarding diagnostic ability, we stratified readers
based on whether their baseline accuracy (cf. HD1, see Figure 2) was either
higher or lower than the median.

(RQ4): Is there any correlation between the explanations’ perceived quality and the
readers’ susceptibility to technology dominance [39,40]? Although technological
dominance is a multifactorial concept, for our practical aims, we express it
in terms of the rate of decision change due to exposition to the output of an
AI system. Moreover, we distinguished between positive dominance, when
changes occur from initial wrong decisions (e.g., diagnoses) to eventually correct
ones and negative dominance, for the dual case, when the AI support misleads
decision makers.

(RQ5): Finally, does the correctness of the explanation (and of the associated classifica-
tion) make any difference in terms of either perceived explanations’ quality or
influence (i.e., dominance)?
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The abovementioned research questions were evaluated through a statistical hypoth-
esis testing approach. In particular, correlations were evaluated by means of Spearman
ρ (and associated p-values), so as to properly take into account for monotone (and not
necessarily linear) relationships between ordinal variables and continuous ones. In regard
to research questions 1 and 3, on the other hand, paired comparisons were performed by
applying the Wilcoxon signed-rank test, whereas unpaired comparisons were performed
by applying the Mann–Whitney U test. In both cases, effect sizes were evaluated through
the rank biserial correlation (RBC). In all cases, to control the false discovery rate due to
multiple hypothesis testing, we adjusted the observed p-values by using the Benjamini–
Hochberg procedure. Significance was evaluated at the 95% confidence level. All statistical
analysis and data processing was implemented by using the Python language (v. 3.10.6)
and the libraries scipy (v. 1.9.1), pingouin (v. 0.5.2), pandas (v. 1.4.4), and scikit-posthocs
(v. 0.7.0), as well as the libraries matplotlib (v. 3.5.2) and seaborn (v. 0.11.2) for generating
the data visualizations.

3. Results and Discussion

After having closed the survey, we collected a total of 1352 responses from the 44 ECG
readers involved, of which 21 had been enrolled in the human-first protocol and the
remaining 23 in the AI-first protocol.

3.1. RQ1—Effect of Expertise and Interaction Protocol on Trust

In regard to RQ1a (“Does the readers’ expertise have any effect in terms of either
basal trust, difference in trust by the readers, or final trust?”), the results concerning the
differences in self-perceived trust are reported in Figure 3, stratified by expertise (on the
left) and interaction protocol (on the right). The difference between initial and final trust
was significant for novice readers (adjusted p, 0.004; RBC, 0.92), but not for the expert
ones (adjusted p, 0.407; RBC, 0.35). Furthermore, even though the difference in initial
trust between novice and expert readers was not significant (adjusted p, 0.439; RBC, 0.15),
the difference in final trust was instead significant (adjusted p, 0.009; RBC, 0.54), with
the novice readers reporting, on average, a higher final trust than the expert ones. This
is in line with previous studies in the field of human–AI interaction [23,24,41,42], which
showed how novice readers are more willing to accept the support of an AI-based system,
and better appreciate its output. An explanation for this widely reported observation can
be traced back to the literature in the Theory of Technological Dominance (TTD) [39], in
which a previous finding from Noga and Arnold [43] identified user expertise as one of the
main determinants of dominance and reliance, of which trust is a determinant. Although a
tenet of TTD holds that decision aids are especially beneficial to professionals thanks to a
bias mitigation effect [44], the study by Jensen et al. [45] displayed a diverging beneficial
effect of decision support, with novices benefiting more in comparison to experts who, in
turn, often discounted the aid’s support. This is in line with our findings, which point to
more experienced decision makers possibly being less favorably impacted by such systems,
possibly due to a lower level of familiarity or a higher prejudice against the machine (see
also [46]).

As for RQ1b (“Does the interaction protocol, human-first vs. AI-first, have any effect
on differences in trust by the readers, or final trust?”), we point out that we did not observe
any significant effect due to the interaction protocol on initial trust. This result does not
come unexpectedly, and was in fact desirable. Indeed, readers were randomly assigned
to one of the two considered protocols. Interestingly, the interaction protocol seemingly
did not have an effect on final trust either, despite the fact that the adoption of different
interaction protocols may have a significant effect in terms of the overall accuracy of
the hybrid human–AI team [47]. In fact, differences between the two cohorts were not
significant, neither in terms of initial trust (adjusted p, 0.090; RBC, 0.33) nor in terms of final
trust (adjusted p, 0.787; RBC, 0.05), although in the first case the effect size was medium.
In this sense, it appears that even though the order of the AI intervention was certainly
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impactful in regard to the overall diagnostic performance (this is an effect that is not entirely
trivial and calls for further study to understand its causes), it might be perceived by the
user as a secondary element compared to other trust-inducing or trust-hindering factors.
Nonetheless, we found that both interaction protocols had a large effect on trust difference.
In particular, human-first protocols led to a significant increase between the initial and final
trust (adjusted p: 0.016, RBC: 0.81), but not so for the AI-first cohort (adjusted p, 0.078; RBC,
0.60), even though both effect sizes were large. A possible explanation for this difference
can be found in the accuracy level of the AI system, which in this user study was 70%, i.e.,
well over the average accuracy of the readers and thus likely to lead to a positive interaction
for the study participants and hence an increased sense of trust in the decision support.
An accuracy rate of 70%, far from being infallible, was nonetheless effective in increasing
trust. This is in line with [48], according to which AI systems should be optimized for
team performance rather than accuracy per se, going far as affirming that “predictable
performance may be worth a slight sacrifice in AI accuracy” whereas the most accurate AI
“may not lead to highest team performance”.

Figure 3. Violin plots of the distributions of the initial (pretest, IT in Figure 2) and final (posttest,
FT in Figure 2) trust scores reported by the study participants, stratified by (left) readers’ expertise
(novices vs. experts), and (right) interaction protocol (human-first vs. AI-first).

3.2. RQ2—Correlation between the Psychometric Dimensions

Concerning RQ2 (“Is there any difference or correlation between the three investigated
psychometric dimensions?”), we briefly note that, as reported in Figure 4, the three psycho-
metric dimensions that we investigated (i.e., comprehensibility, appropriateness, utility)
were indeed strongly correlated between each other (appropriateness vs. comprehensibility,
ρ, 0.86; appropriateness vs. utility, ρ, 0.82; comprehensibility vs. utility, ρ, 0.80), and all of
the correlations were significant (adjusted p-values < 0.001). This result, although inter-
esting, is not totally unexpected because, intuitively, an appropriate and comprehensible
explanation is likely to be found also useful. Conversely, for an explanation to be useful it
should be at least also be comprehensible. Notably, the observed value of the Cronbach
α (which measures the internal consistency of the questionnaire, in regard to the three
psychometric items) was 0.93, which is higher than Nunnally’s reliability threshold for
applied studies (i.e., 0.8; see [49]). Thus, the internal consistency of our test was sufficiently
high to guarantee its reliability, but not so much as to suggest redundancy and hence un-
dermine its validity [50]. In particular, we believe that these results justify the aggregation
of the three psychometric dimensions into a latent quality construct (defined as the average
between appropriateness, comprehensibility, and utility), which was then considered in the
statistical analysis.
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Figure 4. Scatter plots of the correlations observed between the appropriateness, comprehensibility,
and utility scores associated with each explanation provided by the XAI module of the AI support.

3.3. RQ3—Perceived Explanations’ Quality with Respect to Expertise, Accuracy, Interaction
Protocol, and Possible Correlation with Basal or Final Trust

The aforementioned perceived quality level was analyzed in RQ3 first with respect
to user expertise, their accuracy, and the interaction protocol (“Do the readers’ expertise,
their diagnostic ability, as well as the adopted interaction protocol, have any effect in terms
of differences in perceived explanations’ quality?”). The results are reported below in
Figure 5.

Figure 5. Violin plots of the explanations’ quality, stratified by (left) readers’ expertise, (center)
interaction protocol, and (right) readers’ baseline accuracy.

As expected, the difference in explanations’ quality between human-first and AI-first
interaction protocols (adjusted p, 0.981; RBC, 0.01) was not significant and was associated
with only a negligible effect. Indeed, as mentioned previously in regard to trust, readers
were assigned randomly to the two interaction protocols which, aside from when the
AI advice was shown, were essentially equivalent in terms of the given explanations.
By contrast, even though the difference in explanations’ quality with respect to readers’
baseline accuracy was similarly nonsignificant (adjusted p, 0.155), the relationship between
the two variables was associated with a medium-to-large effect size (0.36). Furthermore,
the difference in explanations’ quality between novice and expert readers (adjusted p: 0.012,
RBC: 0.51) was associated with a large effect size and was also statistically significant. These
results highlight how readers’ proficiency in the ECG reading task (as measured by either
self-reported expertise or, more quantitatively, by basal accuracy) might have a significant
effect on the perception of explanatory advice. A possible explanation for this observation,
which was already mentioned above in reference to trust and previously observed in the
literature [51], might be related to an increased acquaintance with AI and XAI systems
for the less expert readers (who were also less accurate). Furthermore, less expert readers
(e.g., the students and residents) might have found the explanations’ quality higher due to
their perceived usefulness in helping them identify characteristics of interest in an ECG
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that they were not able to interpret alone. More experienced or more accurate readers,
who by definition were more well-versed in the interpretation of ECG diagrams, might
have missed this novelty element of explanations, which might have led to a lower, on
average, perceived quality. Importantly, it appears that the users’ initial attitude had little
influence on the perceived quality of explanations, as investigated in the second part of
the research question (“Does the perceived quality of explanations correlate with the basal
or final trust?”). As reported in Figure 6, the explanations’ quality was weakly correlated
with the readers’ basal trust in AI-based support systems (Spearman ρ: 0.27, adjusted p:
0.086), but significantly and strongly correlated with final trust (Spearman ρ: 0.71, adjusted
p < 0.001). We conjecture this to be a consequence of the fact that the explanations were
evaluated for their intrinsic value, rather than for a halo effect (due to trust) [52].

As for final trust, by contrast, the observed improvement is likely due to a simple
reason: the support was perceived as a worthy addition to the decision-making process.
Due to how the user experiment was constructed, we cannot decouple the contribution of
XAI from plain AI. However, given that the accuracy of the decision support was higher
than that of the readers but overall not particularly high (equaling 70%), we conjecture that
the explanations themselves were an important contributing factor to the trust increase,
for its novelty and appropriability [53] when compared to a simple categorical advice.
Because the increase in final trust is highly dependent, and significantly so, on explanation
quality, this finding reinforces the idea that explanations do influence trust. We believe
that this relevant finding also provides an alternative and complementary explanation of
the observed effect of readers’ expertise on final trust and trust difference. Indeed, this
latter effect could be explained as arising from the fact that less experienced readers rated
more favorably the quality of explanations than the more expert readers. In light of the
strong relationship between explanations’ quality and final trust, this might explain why
we observed a larger increase in trust for novices than for experts.

Figure 6. Scatter plots of the correlations observed between the scores of explanations’ perceived
quality and (left) initial (pretest) trust, (right) final (posttest) trust.

3.4. RQ4—Correlation between Perceived Quality of Explanation and Technology Dominance

The two final research questions—RQ4 and RQ5—further delve into the effect of
explanations, by adopting the lens of the theory of technology dominance [39,40] through
which we investigated possible correlations between the readers’ susceptibility to this
phenomenon (which, in this article, was operationalized through the rate of decision
change due to exposition to the output of an AI system. More precisely, we considered
the number of decision changes between HD2 and FHD, as we were interested in the
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differential dominance induced by explanations) and explanations’ perceived quality and
actual correctness.

The correlation between dominance (distinguishing between positive and negative
dominance) and the perceived explanations’ quality is reported in Figure 7. Quality was
moderate to strong and significantly correlated with dominance (Spearman ρ, 0.57; adjusted
p, 0.007) and also with the positive component of dominance (Spearman ρ, 0.52; adjusted p,
0.025); by contrast, it was only moderately correlated with negative dominance (Spearman
ρ, 0.39; adjusted p, 0.077). Furthermore, this latter correlation was not significant.

As clearly shown above in Figure 7, explanation quality strongly influences dominance,
and especially positive dominance, and also significantly so.

Figure 7. Scatter plots of the correlations between dominance (both positive and negative) and
explanations’ quality. Dominance is defined as the number of decision changes occurring between
HD2 and FHD.

3.5. RQ5—Relationship between the Correctness of Explanations and Dominance

In Figure 8, we introduced the relationship between the the correctness of the asso-
ciated classifications and their dominance, as well as the effect the perceived quality of
these latter, and their dominance, which aid us in answering our fifth research question
(“Does the correctness of the explanation make any difference in terms of either perceived
explanations’ quality or dominance?”).

Figure 8. Violin plots showing the effect of the classifications’ and explanations’ correctness on (left)
perceived explanations’ quality and (right) dominance.
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Both the average perceived quality and dominance increased when the classification
or explanations were correct, as compared to when these latter ones were wrong. The
differences in terms of quality were not significant (adjusted p-values, AI, 0.791; XAI, 0.791),
and the associated effect sizes were small (RBC, AI, 0.03; XAI, 0.06). Similarly, the difference
on dominance due to the correctness was not significant (p, 0.791) and associated with a
small effect size (0.07). By contrast, the difference in dominance due to the correctness of the
classification was significant (p, < 0.001) and associated with a medium-to-large effect size
(RBC, 0.52). For this reason, we further investigated the combined effect of the explanation
and classification on dominance. The four cases were significantly different in terms of
dominance (Kruskal test, p, < 0.001). The results of the post-hoc comparison between the
combination (in terms of adjusted p-values and effect sizes) is represented in Figure 9.
All effect size were medium-to-large or large, whereas only the combination of a correct
explanations with a correct classification reported a significant increase in dominance (as
compared with the other possible combinations).

Figure 9. Matrix of the pairwise comparisons of the effects of the classifications’ and explanations’
correctness on dominance. Cells under the diagonal denote the p-value (Nemenyi post-hoc test) for
the given pair of configurations, whereas cells above the diagonal report the corresponding effect
size (RBC). Brighter shades of red (resp. blue) denote significance (resp. strength of the effect).

We believe this finding to be of particular interest because it confirms that high-quality
explanations, especially when associated with correct classifications, can increase the
persuasion potential of an XAI system—and especially so for the good (see, in particular,
the rightmost panel in Figure 8 and the significance results in Figure 9). Nonetheless, as
can be noticed from the rightmost panel in Figure 7, perceived quality can influence the
users for the worse, as highlighted by the fact that explanations’ quality was moderately
associated with negative dominance (hence, opinion changes from a correct to an incorrect
diagnosis), and especially so when a misleading explanations was associated with an
otherwise correct classification (see Figure 8).
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As observed in [54], which discusses the results of a user study on ML recommenda-
tions for clinician treatment selection, explainability may lead to lower accuracy in case of
incorrect recommendations compared to black-box systems, with the introduction of expla-
nations proving ineffective or insufficient in preventing dominance. A possible explanation
for this effect can be traced back to the imperfect ability of the readers’ in discriminating
a correct explanation from a wrong one in terms of perceived quality (see the left panel
in Figure 8). In turn, such an effect could motivate the emergence of biases and cognitive
effects associated with automation, and especially so those that are directly related to
the role of XAI, as in the case of the white-box paradox [23,24]. Despite the relevance
of these results, we remark, however, that further research should address whether this
correlation also holds in the case of placebic information (i.e., not semantically sensible,
nor structurally consistent, but still perceived as valuable) as described by Langer [22],
leveraging this concept from the psychological sphere of interpersonal communication to
that of human–computer interaction.

3.6. Limitations and Further Research

Concluding our discussion, we remark that this study is exploratory; hence, its main
limitations regard the relatively small sample of cases considered, if not of readers involved.
In fact, in regard to participation, this study can leverage the perceptions and opinions of
tens of cardiologists of different competencies and expertise. However, the study regards a
serious game where the doctors involved knew no harm could be caused to real patients.
More generally, our study being focused on a specific task (i.e., ECG reading), we do not
have ambition on generalizability of the hard conclusions beyond the setting at hand.
Nonetheless, we are confident that our general findings (i.e., the correlations between
explanation quality and confidence and trust) can inspire further research in other settings,
both in medicine and other domains. In this sense, three main possible areas where further
research could extend our results regard the stratification by explanation types, the analysis
of the impact of explanations on the readers’ confidence, and the generalization of our
findings to other settings. On the one hand, explanations should be distinguished according
to a reference taxonomy, for instance, those recently proposed in [18,55–57] to see if different
types of explanations can have different effects on decision making. We recall that in this
study we focused on textual explanations of a justificatory and causal kind [18]. Moreover,
explanations can be wrong in different ways. For instance, an explanation can be wrong
because it does not regard (or is badly fitted to) either the case at hand or the machine’s
advice, or because it expresses a wrong way of reasoning. This macrodistinction reflects
the typology proposed in [58], in which lapses and mistakes, respectively, regard errors in
perception or attention, and the latter ones regard errors in reasoning and the application
of domain knowledge. The explanations provided in the study presented in this paper
were of various kinds, depending on the case at hand and the ECG to read, including
both correct and incorrect explanations. Our explanations were not really produced by an
XAI system, but rather by the human expert selecting the cases to present in the survey,
various types of errors can affect both the original black-box system, as well as the XAI
system producing the explanations (e.g., affecting their fidelity, stability, or other relevant
properties as highlighted in [59] for a set of popular model-agnostic post-hoc explainability
methods). On the other hand, as mentioned above, we did not collect confidence scores
at each human decision step (i.e., HD1, HD2, and FHD, see Figure 2). For this reason, we
cannot address the research question of whether explanations would improve confidence
in the decision reported or not. Related to this research question, the debate around XAI for
medical applications [54,60] has highlighted how explanations coupled with XAI advice
can have positive (e.g., improved confidence in the final decision) as well as negative (e.g.,
persuade decision makers to trust bad AI-generated advice) impacts, and explainability
is often highly sought after in AI applications to the medical domain because of its early
examples of “expert systems” [61], which were not even based on black-box machine
learning algorithms. For these reasons, further research should be aimed at investigating the
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confidence construct, and its relationship with perceived user experience and satisfaction
and ultimately the increase in the adoption of AI systems that are associated with promises
to make healthcare more sustainable and efficient in virtue of their capability to detect
otherwise-hidden diagnostic features in biosignals, as in the case of [62]. In this case, an AI
reading low-cost and easily acquired ECGs was found to accurately predict subtypes of
long QT syndromes that would usually require costly and time-consuming genetic testing
to be diagnosed. Finally, even though our findings shed some light on the potential utility
of explainable system, we note that these only refer to a specific setting. Future research
should be devoted to the evaluation of the generalizability of our findings to other settings
and domains.

4. Conclusions

The current interest in XAI is ostensibly and programmatically motivated by the need
to make AI systems more transparent, understandable, and thus usable. However, in
light of some empirically grounded findings, presented, among others, in the literature on
naturalistic decision making [63,64], this interest appears to be more instrumental to the
rising prevalence and diffusion of automated decision making (ADM) systems, especially
when their use is anticipated in contexts for which the main legislative frameworks (e.g.,
the EU GDPR) require these systems to also provide reasons for their output whenever
this latter can have legal effects (see, e.g., the debate around ADM and human-in-the-
loop decision making in the risk assessment domain [19,65,66], which uses ADM. This
addresses a requirement for justification, rather than explanation, although these two
concepts are often conflated (for a line of reasoning on the difference between explanation
and justification, see [18]).

In this light, it is important to note that, metaphorically speaking, providing AI with
explainability, that is the capability to properly explain its own output, is more akin to
painting the black box of inscrutable algorithms (such as deep learning or ensemble models)
white, rather than making them transparent. What we mean with this metaphoric statement
is that XAI explanations do not necessarily explain (as by definition or ontological status)
but rather describe the main output of systems aimed at supporting (or making) decisions.
This is why we described XAI explanations as a metaoutput. As such, explanations can fail
to make the output they relate to more comprehensible, or its reasons explicit. They can
even be wrong. For example, a previous study [10] noted how users who interacted with a
transparent model, while seemingly being more able to simulate its behaviour, still failed
to align their predictions to those of the model when it would be beneficial to do so or also
to detect and correct even the model’s most remarkable errors.

This trivial observation is seldom emphasized, and it should motivate researchers to
embrace a wider idea of explainability. In this light, an explainable system would not be a
system that merely gives explanations, whether in the form of either statements or images.
It would rather be a system that provides users with elements that can help them not only
to understand why the system suggests a certain judgment or classification, but also with
elements whose aim is to foster the reasoning process of the user by, e.g., estimating the
probability that the system is right, appraising the complexity of the automated decision (by
going beyond the self-reported confidence scores), assessing the extent to which the training
data are representative and reliable, and the similarity of the case under consideration
to those available, by letting users focus on the possible commonalities and differences
between these.

In short, we then make our own design recommendations and principles highlighted
in [67], where explainability does encompass the capability of a system to explain itself and
its advice. More broadly, it regards whether the system is usable and understandable. In this
light, an adequate, explainable system increases the understandability and interpretability
of a case (not of itself) by a specific user working in a specific context, and is capable to
improve situated decisions about specific cases.
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This is why it is important to make research and development initiatives in the XAI
discourse more human-centered [68] and more focused on the relationships [69] and
interactions [65] that are established and continuously configured between the practitioners
and their tools, which are aimed at supporting cognition, in particular judgment and
prospection (that is, the action of looking forward into the future). This requires the
adoption of methodologies and methods to assess usability along the traditional dimensions
of decision-making effectiveness (that is, accuracy of the hybrid decision making [70]),
efficiency (e.g., the extent providing explanations makes decision making more or less
time-consuming), and decision-maker satisfaction (the extent to which decision makers find
the additional information useful, or at least they feel more confident in their decision after
consuming an explanation), as well as the failure modes and the impact these technologies
have on both decision-making practices (e.g., considering patterns of reliance and risks of
overreliance) and the subjects involved (i.e., the people who are affected by the decisions).

In particular, our findings suggest that we should not take the perceived and actual
utility of explainable systems for granted. These qualities should be assessed in an ongoing
manner, and in vivo rather than in labo, ensuring that quantitative measures of performance
such as error rates, throughput, and execution times do not take undue precedence over
the evaluation of user experience [71]. Rather, we should ground our design choice to make
AI systems explainable (that is, capable of supplying explanations) on empirical evidence
on the basis of the fit (or cognitive congruence) between the user and the artifact (i.e., trust
and expectations), user and task (i.e., skill-difficulty match, expertise), and artifact and task
to support, as proposed in the theory of dominance [39,40].

By evaluating the quality and usefulness of explanations in relation to user perception
and performance, rather than in isolation, our study brought to light some paradoxical
effects related to the introduction of explanations into diagnostic AI systems. Therefore our
study aims at contributing to the discussion around the necessity of a relational approach to
AI design and evaluation. Following Virginia Dignum [69], we also call for greater attention
to the dynamics of decision-making settings, as well as to how humans and machines come
to interact, and even “collaborate”, in so-called hybrid human–artificial intelligence ensem-
bles [70,72]. This leads to our belief that, even more so than from engineering and computer
science, the greatest advances for AI are likely to emerge from a multidisciplinary effort
gathering relevant contributions from the scholarly fields of cognitive ergonomics [73,74],
social psychology [75], human–computer interaction [68], computer-supported cooperative
work [76,77], naturalistic decision-making [78] and human factors [79,80].

Author Contributions: Conceptualization: F.C. and A.C.; Methodology: F.C. and A.C.; Software:
A.C.; Validation: F.C., A.C., C.N., E.P. and L.R.; Data Curation: L.R. and M.C.; Writing-Original Draft
Preparation: F.C., A.C., C.N. and E.P.; Writing-Review and Editing: F.C., A.C., C.N., E.P., L.R. and
M.C.; Visualization: F.C. and A.C.; Supervision: F.C. and M.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has been supported by the Italian Ministry of Health through project
“Ricerca Corrente”.

Data Availability Statement: All code and data is publicly available on GitHub at https://github.
com/MUDILab/evaluate-human-ai-interaction accessed on 19 December 2022.

Acknowledgments: The authors are grateful to the anonymous cardiologists and cardiology residents
of the Specialization School of the University of Siena, Italy, and in particular to Giulia Mandoli and
Maria Concetta Pastore for their coordination and support in the empirical study.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

https://github.com/MUDILab/evaluate-human-ai-interaction
https://github.com/MUDILab/evaluate-human-ai-interaction


Mach. Learn. Knowl. Extr. 2023, 5 283

Abbreviations

ADM Automated Decision Making
BPMN Business Process Model and Notation (i.e., the OMG standard on process modelling)
AI Artificial Intelligence
ECG ElectroCardioGram
EU European Union
FHD Final Human Decision
GDPR General Data Protection Regulation (cf. EU 2016/679)
HD Human Decision
ML Machine Learning
RBC Rank Biserial Correlation
QT QT interval, i.e., the time from the start of the Q wave to the end of the T wave in an ECG
RQ Research Question
TTD Theory of Technological Dominance
XAI eXplainable AI

References
1. Calegari, R.; Ciatto, G.; Omicini, A. On the integration of symbolic and sub-symbolic techniques for XAI: A survey. Intell. Artif.

2020, 14, 7–32. [CrossRef]
2. Springer, A.; Hollis, V.; Whittaker, S. Dice in the black box: User experiences with an inscrutable algorithm. In Proceedings of the

2017 AAAI Spring Symposium Series, Stanford, CA, USA, 27–29 March 2017.
3. Cinà, G.; Röber, T.; Goedhart, R.; Birbil, I. Why we do need Explainable AI for Healthcare. arXiv 2022, arXiv:2206.15363.
4. Gerlings, J.; Shollo, A.; Constantiou, I. Reviewing the need for explainable artificial intelligence (xAI). arXiv 2020, arXiv:2012.01007.
5. Goebel, R.; Chander, A.; Holzinger, K.; Lecue, F.; Akata, Z.; Stumpf, S.; Kieseberg, P.; Holzinger, A. Explainable AI: The new

42? In Proceedings of the International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Hamburg,
Germany, 27 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 295–303.

6. De Bruijn, H.; Warnier, M.; Janssen, M. The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-
making. Gov. Inf. Q. 2022, 39, 101666. [CrossRef]

7. Janssen, M.; Hartog, M.; Matheus, R.; Yi Ding, A.; Kuk, G. Will algorithms blind people? The effect of explainable AI and
decision-makers’ experience on AI-supported decision-making in government. Soc. Sci. Comput. Rev. 2022, 40, 478–493.
[CrossRef]

8. Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and
slippery. Queue 2018, 16, 31–57. [CrossRef]

9. Schemmer, M.; Kühl, N.; Benz, C.; Satzger, G. On the Influence of Explainable AI on Automation Bias. arXiv 2022, arXiv:2204.08859.
10. Poursabzi-Sangdeh, F.; Goldstein, D.G.; Hofman, J.M.; Wortman Vaughan, J.W.; Wallach, H. Manipulating and measuring model

interpretability. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13
May 2021; pp. 1–52.

11. Zhang, Y.; Liao, Q.V.; Bellamy, R.K. Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision
making. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January
2020; pp. 295–305.

12. Bansal, G.; Wu, T.; Zhou, J.; Fok, R.; Nushi, B.; Kamar, E.; Ribeiro, M.T.; Weld, D. Does the whole exceed its parts? The effect of ai
explanations on complementary team performance. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–16.

13. Buçinca, Z.; Malaya, M.B.; Gajos, K.Z. To trust or to think: Cognitive forcing functions can reduce overreliance on AI in AI-assisted
decision-making. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–21. [CrossRef]

14. Suresh, H.; Lao, N.; Liccardi, I. Misplaced trust: Measuring the interference of machine learning in human decision-making. In
Proceedings of the 12th ACM Conference on Web Science, Southampton, UK, 6–10 July 2020; pp. 315–324.

15. Eiband, M.; Buschek, D.; Kremer, A.; Hussmann, H. The impact of placebic explanations on trust in intelligent systems. In
Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK,
4–9 May 2019; pp. 1–6.

16. Ghassemi, M.; Oakden-Rayner, L.; Beam, A.L. The false hope of current approaches to explainable artificial intelligence in health
care. Lancet Digit. Health 2021, 3, e745–e750. [CrossRef]

17. Finzel, B.; Saranti, A.; Angerschmid, A.; Tafler, D.; Pfeifer, B.; Holzinger, A. Generating Explanations for Conceptual Validation of
Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs. KI-Künstl. Intell.
2022, 36, 271–285. [CrossRef]

18. Cabitza, F.; Campagner, A.; Malgieri, G.; Natali, C.; Schneeberger, D.; Stoeger, K.; Holzinger, A. Quod erat demonstrandum?-
Towards a typology of the concept of explanation for the design of explainable AI. Expert Syst. Appl. 2022, 213, 118888.
[CrossRef]

http://doi.org/10.3233/IA-190036
http://dx.doi.org/10.1016/j.giq.2021.101666
http://dx.doi.org/10.1177/0894439320980118
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1145/3449287
http://dx.doi.org/10.1016/S2589-7500(21)00208-9
http://dx.doi.org/10.1007/s13218-022-00781-7
http://dx.doi.org/10.1016/j.eswa.2022.118888


Mach. Learn. Knowl. Extr. 2023, 5 284

19. Green, B.; Chen, Y. Disparate interactions: An algorithm-in-the-loop analysis of fairness in risk assessments. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, Atlanta, GA, USA, 29–31 January 2019; pp. 90–99.

20. Shin, D. The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. Int. J.
Hum.-Comput. Stud. 2021, 146, 102551. [CrossRef]

21. Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [CrossRef] [PubMed]

22. Langer, E.J.; Blank, A.; Chanowitz, B. The mindlessness of ostensibly thoughtful action: The role of “placebic” information in
interpersonal interaction. J. Personal. Soc. Psychol. 1978, 36, 635. [CrossRef]

23. Cabitza, F.; Campagner, A.; Simone, C. The need to move away from agential-AI: Empirical investigations, useful concepts and
open issues. Int. J. Hum.-Comput. Stud. 2021, 155, 102696. [CrossRef]

24. Cabitza, F.; Campagner, A.; Famiglini, L.; Gallazzi, E.; La Maida, G.A. Color Shadows (Part I): Exploratory Usability Evaluation
of Activation Maps in Radiological Machine Learning. In Proceedings of the International Cross-Domain Conference for Machine
Learning and Knowledge Extraction, Vienna, Austria, 23–26 August 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 31–50.

25. Parimbelli, E.; Peek, N.; Holzinger, A.; Guidotti, R.; Mittelstadt, B.; Dagliati, A.; Nicora, G. Explainability, Causability, Causality,
Reliability: The many facets of “good” explanations in XAI for health. In Proceedings of the Challenges of Trustable AI and
Added-Value on Health, Nice, France, 27–30 May 2022; EFMI: Nice, France, 2022.

26. Ebrahimi, Z.; Loni, M.; Daneshtalab, M.; Gharehbaghi, A. A review on deep learning methods for ECG arrhythmia classification.
Expert Syst. Appl. X 2020, 7, 100033. [CrossRef]

27. Huang, J.S.; Chen, B.Q.; Zeng, N.Y.; Cao, X.C.; Li, Y. Accurate classification of ECG arrhythmia using MOWPT enhanced fast
compression deep learning networks. J. Ambient. Intell. Humaniz. Comput. 2020, 1–18. [CrossRef]

28. Chen, C.Y.; Lin, Y.T.; Lee, S.J.; Tsai, W.C.; Huang, T.C.; Liu, Y.H.; Cheng, M.C.; Dai, C.Y. Automated ECG classification based on
1D deep learning network. Methods 2022, 202, 127–135. [CrossRef] [PubMed]

29. Bond, R.; Finlay, D.; Al-Zaiti, S.S.; Macfarlane, P. Machine learning with electrocardiograms: A call for guidelines and best
practices for ‘stress testing’ algorithms. J. Electrocardiol. 2021, 69, 1–6. [CrossRef]

30. Rojat, T.; Puget, R.; Filliat, D.; Del Ser, J.; Gelin, R.; Díaz-Rodríguez, N. Explainable Artificial Intelligence (XAI) on TimeSeries
Data: A Survey. arXiv 2021, arXiv:2104.00950.

31. Raza, A.; Tran, K.P.; Koehl, L.; Li, S. Designing ECG monitoring healthcare system with federated transfer learning and explainable
AI. Knowl.-Based Syst. 2022, 236, 107763. [CrossRef]

32. Panigutti, C.; Perotti, A.; Pedreschi, D. Doctor XAI: An ontology-based approach to black-box sequential data classification
explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20), Barcelona, Spain,
27–30 January 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 629–639. [CrossRef]

33. Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.W.; Newman, S.F.; Kim, J.; et al.
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760.
[CrossRef]

34. Neves, I.; Folgado, D.; Santos, S.; Barandas, M.; Campagner, A.; Ronzio, L.; Cabitza, F.; Gamboa, H. Interpretable heartbeat
classification using local model-agnostic explanations on ECGs. Comput. Biol. Med. 2021, 133, 104393. [CrossRef] [PubMed]

35. Dahlbäck, N.; Jönsson, A.; Ahrenberg, L. Wizard of oz studies—Why and how. In Proceedings of the 1993 International Workshop
on Intelligent User Interfaces, Orlando, FL, USA, 4–7 January 1993; pp. 4–7.

36. Ronzio, L.; Campagner, A.; Cabitza, F.; Gensini, G.F. Unity Is Intelligence: A Collective Intelligence Experiment on ECG Reading
to Improve Diagnostic Performance in Cardiology. J. Intell. 2021, 9, 17. [CrossRef]

37. Nourani, M.; King, J.; Ragan, E. The role of domain expertise in user trust and the impact of first impressions with intelligent
systems. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, Hilversum, The Netherlands,
25–29 October 2020; Volume 8, pp. 112–121.

38. Kim, A.; Yang, M.; Zhang, J. When Algorithms Err: Differential Impact of Early vs. Late Errors on Users’ Reliance on Algorithms.
ACM Trans. Comput.-Hum. Interact. 2020. [CrossRef]

39. Arnold, V.; Sutton, S.G. The theory of technology dominance: Understanding the impact of intelligent decision aids on decision
maker’s judgments. Adv. Account. Behav. Res. 1998, 1, 175–194.

40. Sutton, S.G.; Arnold, V.; Holt, M. An Extension of the Theory of Technology Dominance: Understanding the Underlying Nature,
Causes and Effects. Causes Eff. 2022. Available online: https://www.nhh.no/globalassets/centres/digaudit/activities/sutton-
arnold-and-holt-2022-april-an-extension-of-the-theory-of-technology-dominance.pdf (accessed on 30 April 2022). [CrossRef]

41. Glick, A.; Clayton, M.; Angelov, N.; Chang, J. Impact of explainable artificial intelligence assistance on clinical decision-making of
novice dental clinicians. JAMIA Open 2022, 5, ooac031. [CrossRef] [PubMed]

42. Paleja, R.; Ghuy, M.; Ranawaka Arachchige, N.; Jensen, R.; Gombolay, M. The Utility of Explainable AI in Ad Hoc Human-Machine
Teaming. Adv. Neural Inf. Process. Syst. 2021, 34, 610–623.

43. Noga, T.; Arnold, V. Do tax decision support systems affect the accuracy of tax compliance decisions? Int. J. Account. Inf. Syst.
2002, 3, 125–144. [CrossRef]

44. Arnold, V.; Collier, P.A.; Leech, S.A.; Sutton, S.G. Impact of intelligent decision aids on expert and novice decision-makers’
judgments. Account. Financ. 2004, 44, 1–26. [CrossRef]

http://dx.doi.org/10.1016/j.ijhcs.2020.102551
http://dx.doi.org/10.1002/widm.1312
http://www.ncbi.nlm.nih.gov/pubmed/32089788
http://dx.doi.org/10.1037/0022-3514.36.6.635
http://dx.doi.org/10.1016/j.ijhcs.2021.102696
http://dx.doi.org/10.1016/j.eswax.2020.100033
http://dx.doi.org/10.1007/s12652-020-02110-y
http://dx.doi.org/10.1016/j.ymeth.2021.04.021
http://www.ncbi.nlm.nih.gov/pubmed/33930574
http://dx.doi.org/10.1016/j.jelectrocard.2021.07.003
http://dx.doi.org/10.1016/j.knosys.2021.107763
http://dx.doi.org/10.1145/3351095.3372855
http://dx.doi.org/10.1038/s41551-018-0304-0
http://dx.doi.org/10.1016/j.compbiomed.2021.104393
http://www.ncbi.nlm.nih.gov/pubmed/33915362
http://dx.doi.org/10.3390/jintelligence9020017
http://dx.doi.org/10.2139/ssrn.3691575
https://www.nhh.no/globalassets/centres/digaudit/activities/sutton-arnold-and-holt-2022-april-an-extension-of-the-theory-of-technology-dominance.pdf
https://www.nhh.no/globalassets/centres/digaudit/activities/sutton-arnold-and-holt-2022-april-an-extension-of-the-theory-of-technology-dominance.pdf
http://dx.doi.org/10.2139/ssrn.4101835
http://dx.doi.org/10.1093/jamiaopen/ooac031
http://www.ncbi.nlm.nih.gov/pubmed/35651525
http://dx.doi.org/10.1016/S1467-0895(02)00034-9
http://dx.doi.org/10.1111/j.1467-629x.2004.00099.x


Mach. Learn. Knowl. Extr. 2023, 5 285

45. Jensen, M.L.; Lowry, P.B.; Burgoon, J.K.; Nunamaker, J.F. Technology dominance in complex decision making: The case of aided
credibility assessment. J. Manag. Inf. Syst. 2010, 27, 175–202. [CrossRef]

46. Cabitza, F. Biases affecting human decision making in AI-supported second opinion settings. In Proceedings of the International
Conference on Modeling Decisions for Artificial Intelligence, Milan, Italy, 4–6 September 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 283–294.

47. Cabitza, F.; Campagner, A.; Ronzio, L.; Cameli, M.; Mandoli, G.E.; Pastore, M.C.; Sconfienza, L.; Folgado, D.; Barandas, M.;
Gamboa, H. Rams, Hounds and White Boxes: Investigating Human-AI Collaboration Protocols in Medical Diagnosis. Artif. Intell.
Med. 2022, submitted. [CrossRef]

48. Bansal, G.; Nushi, B.; Kamar, E.; Horvitz, E.; Weld, D.S. Is the most accurate ai the best teammate? optimizing ai for teamwork.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35,
pp. 11405–11414.

49. Nunnally, J.; Bernstein, I. Psychometric Theory, 3rd ed.; McGraw-Hil: New York, NY, USA, 1994.
50. Cho, E.; Kim, S. Cronbach’s coefficient alpha: Well known but poorly understood. Organ. Res. Methods 2015, 18, 207–230.

[CrossRef]
51. Gaube, S.; Suresh, H.; Raue, M.; Merritt, A.; Berkowitz, S.J.; Lermer, E.; Coughlin, J.F.; Guttag, J.V.; Colak, E.; Ghassemi, M. Do as

AI say: Susceptibility in deployment of clinical decision-aids. NPJ Digit. Med. 2021, 4, 31. [CrossRef] [PubMed]
52. Brill, T.M.; Munoz, L.; Miller, R.J. Siri, Alexa, and other digital assistants: A study of customer satisfaction with artificial

intelligence applications. J. Mark. Manag. 2019, 35, 1401–1436. [CrossRef]
53. Yang, J.; Hurmelinna-Laukkanen, P. Benefiting from innovation–Playing the appropriability cards. In Innovation; Routledge:

Abingdon, UK, 2022; pp. 310–331.
54. Jacobs, M.; Pradier, M.F.; McCoy, T.H.; Perlis, R.H.; Doshi-Velez, F.; Gajos, K.Z. How machine-learning recommendations

influence clinician treatment selections: The example of antidepressant selection. Transl. Psychiatry 2021, 11, 108. [CrossRef]
55. Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38. [CrossRef]
56. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,

R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

57. Vilone, G.; Longo, L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf. Fusion 2021,
76, 89–106. [CrossRef]

58. Reason, J. Human error: Models and management. BMJ 2000, 320, 768–770. [CrossRef] [PubMed]
59. Parimbelli, E.; Buonocore, T.M.; Nicora, G.; Michalowski, W.; Wilk, S.; Bellazzi, R. Why did AI get this one wrong?—Tree-based

explanations of machine learning model predictions. Artif. Intell. Med. 2023, 135, 102471. [CrossRef] [PubMed]
60. Amann, J.; Vetter, D.; Blomberg, S.N.; Christensen, H.C.; Coffee, M.; Gerke, S.; Gilbert, T.K.; Hagendorff, T.; Holm, S.; Livne, M.;

et al. To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems. PLoS Digit. Health
2022, 1, e0000016. [CrossRef]

61. Shortliffe, E.H.; Davis, R.; Axline, S.G.; Buchanan, B.G.; Green, C.C.; Cohen, S.N. Computer-based consultations in clinical
therapeutics: Explanation and rule acquisition capabilities of the MYCIN system. Comput. Biomed. Res. Int. J. 1975, 8, 303–320.
[CrossRef]

62. Bos, J.M.; Attia, Z.I.; Albert, D.E.; Noseworthy, P.A.; Friedman, P.A.; Ackerman, M.J. Use of artificial intelligence and deep
neural networks in evaluation of patients with electrocardiographically concealed long QT syndrome from the surface 12-lead
electrocardiogram. JAMA Cardiol. 2021, 6, 532–538. [CrossRef] [PubMed]

63. Klein, G.; Hoffman, R.; Mueller, S. Naturalistic Psychological Model of Explanatory Reasoning: How people explain things to
others and to themselves. In Proceedings of the International Conference on Naturalistic Decision Making, San Francisco, CA,
USA, 17–21 June 2019.

64. Gunning, D.; Aha, D. DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 2019, 40, 44–58.
65. Green, B.; Chen, Y. The principles and limits of algorithm-in-the-loop decision making. Proc. Acm Hum.-Comput. Interact. 2019,

3, 1–24. [CrossRef]
66. Vaccaro, M.; Waldo, J. The Effects of Mixing Machine Learning and Human Judgment: Collaboration between humans and

machines does not necessarily lead to better outcomes. Queue 2019, 17, 19–40. [CrossRef]
67. Mueller, S.T.; Veinott, E.S.; Hoffman, R.R.; Klein, G.; Alam, L.; Mamun, T.; Clancey, W.J. Principles of explanation in human-AI

systems. arXiv 2021, arXiv:2102.04972.
68. Shneiderman, B. Human-centered artificial intelligence: Reliable, safe & trustworthy. Int. J. Hum.–Comput. Interact. 2020,

36, 495–504.
69. Dignum, V. Relational Artificial Intelligence. arXiv 2022, arXiv:2202.07446.
70. Reverberi, C.; Rigon, T.; Solari, A.; Hassan, C.; Cherubini, P.; Cherubini, A. Experimental evidence of effective human–AI

collaboration in medical decision-making. Sci. Rep. 2022, 12, 14952. [CrossRef] [PubMed]
71. Holzinger, A.T.; Muller, H. Toward Human–AI Interfaces to Support Explainability and Causability in Medical AI. Computer

2021, 54, 78–86. [CrossRef]

http://dx.doi.org/10.2753/MIS0742-1222270108
http://dx.doi.org/10.1016/j.artmed.2023.102506
http://dx.doi.org/10.1177/1094428114555994
http://dx.doi.org/10.1038/s41746-021-00385-9
http://www.ncbi.nlm.nih.gov/pubmed/33608629
http://dx.doi.org/10.1080/0267257X.2019.1687571
http://dx.doi.org/10.1038/s41398-021-01224-x
http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2021.05.009
http://dx.doi.org/10.1136/bmj.320.7237.768
http://www.ncbi.nlm.nih.gov/pubmed/10720363
http://dx.doi.org/10.1016/j.artmed.2022.102471
http://www.ncbi.nlm.nih.gov/pubmed/36628785
http://dx.doi.org/10.1371/journal.pdig.0000016
http://dx.doi.org/10.1016/0010-4809(75)90009-9
http://dx.doi.org/10.1001/jamacardio.2020.7422
http://www.ncbi.nlm.nih.gov/pubmed/33566059
http://dx.doi.org/10.1145/3359152
http://dx.doi.org/10.1145/3358955.3363293
http://dx.doi.org/10.1038/s41598-022-18751-2
http://www.ncbi.nlm.nih.gov/pubmed/36056152
http://dx.doi.org/10.1109/MC.2021.3092610


Mach. Learn. Knowl. Extr. 2023, 5 286

72. Dellermann, D.; Calma, A.; Lipusch, N.; Weber, T.; Weigel, S.; Ebel, P. The future of human-ai collaboration: A taxonomy of
design knowledge for hybrid intelligence systems. In Proceedings of the Hawaii International Conference on System Sciences
(HICSS), Maui, HI, USA, 8–11 January 2019.

73. Andrews, R.W.; Lilly, J.M.; Srivastava, D.; Feigh, K.M. The role of shared mental models in human-AI teams: A theoretical review.
Theor. Issues Ergon. Sci. 2022, 2, 1–47. [CrossRef]

74. Neerincx, M.A.; Waa, J.v.d.; Kaptein, F.; Diggelen, J.v. Using perceptual and cognitive explanations for enhanced human-agent
team performance. In Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics,
Las Vegas, NV, USA, 15 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 204–214.

75. Cooke, N.J.; Lawless, W.F. Effective Human–Artificial Intelligence Teaming. In Systems Engineering and Artificial Intelligence;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 61–75.

76. Liu, B. In AI we trust? Effects of agency locus and transparency on uncertainty reduction in human–AI interaction. J.
Comput.-Mediat. Commun. 2021, 26, 384–402. [CrossRef]

77. Wang, D.; Churchill, E.; Maes, P.; Fan, X.; Shneiderman, B.; Shi, Y.; Wang, Q. From human-human collaboration to Human-AI
collaboration: Designing AI systems that can work together with people. In Proceedings of the Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–6.

78. Klein, G. A naturalistic decision making perspective on studying intuitive decision making. J. Appl. Res. Mem. Cogn. 2015,
4, 164–168. [CrossRef]

79. Asan, O.; Choudhury, A. Research trends in artificial intelligence applications in human factors health care: Mapping review.
JMIR Hum. Factors 2021, 8, e28236. [CrossRef] [PubMed]

80. Parasuraman, R.; Sheridan, T.B.; Wickens, C.D. A model for types and levels of human interaction with automation. IEEE Trans.
Syst. Man Cybern.-Part A Syst. Humans 2000, 30, 286–297. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/1463922X.2022.2061080
http://dx.doi.org/10.1093/jcmc/zmab013
http://dx.doi.org/10.1016/j.jarmac.2015.07.001
http://dx.doi.org/10.2196/28236
http://www.ncbi.nlm.nih.gov/pubmed/34142968
http://dx.doi.org/10.1109/3468.844354

	Introduction
	Methods
	Results and Discussion
	RQ1—Effect of Expertise and Interaction Protocol on Trust
	RQ2—Correlation between the Psychometric Dimensions
	RQ3—Perceived Explanations' Quality with Respect to Expertise, Accuracy, Interaction Protocol, and Possible Correlation with Basal or Final Trust
	RQ4—Correlation between Perceived Quality of Explanation and Technology Dominance
	RQ5—Relationship between the Correctness of Explanations and Dominance
	Limitations and Further Research

	Conclusions
	References

