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Abstract: Variational auto-encoders (VAEs) are deep generative models used for unsupervised
learning, however their standard version is not topology-aware in practice since the data topology
may not be taken into consideration. In this paper, we propose two different approaches with the aim
to preserve the topological structure between the input space and the latent representation of a VAE.
Firstly, we introduce InvMap-VAE as a way to turn any dimensionality reduction technique, given
an embedding it produces, into a generative model within a VAE framework providing an inverse
mapping into original space. Secondly, we propose the Witness Simplicial VAE as an extension of the
simplicial auto-encoder to the variational setup using a witness complex for computing the simplicial
regularization, and we motivate this method theoretically using tools from algebraic topology. The
Witness Simplicial VAE is independent of any dimensionality reduction technique and together
with its extension, Isolandmarks Witness Simplicial VAE, preserves the persistent Betti numbers of a
dataset better than a standard VAE.

Keywords: variational auto-encoder; topological machine learning; non-linear dimensionality
reduction; topological data analysis; data visualization; representation learning; Betti number;
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1. Introduction

Topological data analysis (TDA) is a recent field in data science aiming to study the
“shape” of data, or, in other words, to understand, analyse, and exploit the geometric
and topological structure of data, in order to obtain relevant information. For that pur-
pose, it combines mathematical notions essentially from algebraic topology, geometry,
combinatorics, probability, and statistics, with powerful tools and algorithms studied in
computational topology. Algebraic topology identifies homeomorphic objects, that is for
example objects that we can deform continuously (without breaking) from one to the
other, and computational topology studies the application of computation to topology by
developing algorithms aiming to construct and analyse topological structures.

Nowadays, the two most famous deep generative models are the Generative Adver-
sarial Network [1] and the variational auto-encoder (VAE) [2,3]. In this paper, we focus
on the latter. The VAE, like its deterministic counter-part the auto-encoder (AE), allows
to compress high dimensional input data into a lower dimensional space called the latent
space, and then reconstructs the output from this compressed representation. In addition to
its ability to generate new data, the VAE can, thus, be used for many applications, especially
for dimensionality reduction which is useful for signal compression, high dimensional data
visualisation, classification tasks, or clustering in a lower dimensional space, etc.

This paper presents in a more concise way our main work developed during Med-
bouhi’s master thesis [4] and provides an extension of the Witness Simplicial VAE method.
We investigate here the use of TDA in order to modify the VAE with the hope that it will lead
to an improvement of its performance. In particular, we try to improve its latent represen-
tation. A large part of this work is at the intersection between machine learning and TDA,
this bridge is an emerging field referred to as “topological machine learning” [5]. Thus,
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this paper is part of the cross-talk between topologist and machine learning scientist [6].
Although the research carried out here is quite theoretical, it can potentially lead to many
concrete applications in very different fields and, in particular, in robotics. For example,
in a robotic context the latent space of a VAE could represent the space of configurations
of a robot or the states of a system composed by a robot and its environment. In such
case, an interpolation between two points in the latent space can represent a trajectory of
the robot. As the input space is generally high dimensional, it might be hard to realize
interpolations there. However, with a VAE one can represent the data in the latent space
with less dimensions, perform interpolations in this latent space, and then generate the
trajectories for motion planning. Thus, having a VAE which takes into account the data
topology could help to better perform interpolations in its latent space in order to do
robotics motion planning. On one side, preserving 0-homology would allow one to avoid
to perform “meaningless” interpolations between two points from different connected
components. On the other side, preserving 1-homology enables to keep track of possible
“loops” or cyclic structures between the input and the latent space. That is why we are
interested in preserving several homology orders.

The question we try to answer is: how to preserve the topology of data between
the input and the latent spaces of a variational auto-encoder? Our assumption is that
preserving the topology should lead to a better latent representation and this would help
to perform better interpolations in the latent space. This rises many underlying questions:
what exactly do we want to preserve? What kind of topological information should we
keep? How do we find relevant topological information in the data? Does that depend on
the problem and the data? How to preserve such topological information in a variational
auto-encoder framework? Algebraic topology gives topological invariants such as the
Betti numbers which are discrete whereas training a VAE implies to optimize a loss which
needs to be differentiable and thus continuous. So how can we incorporate such discrete
topological invariant in a continuous function?

The paper is structured as follows. Section 2 gives preliminary concepts of computa-
tional topology needed to understand some related work, our problem formulation and
our method called Witness Simplicial VAE. Section 3 highlights the related work about
non-linear dimensionality reduction techniques, variational auto-encoders and topology
preservation. Section 4 gives implementation details for reproducibility of the experiments.
Section 5 formulates the problem and shows that the standard VAE is not topology-aware in
practise. Section 6 presents our first method called InvMap-VAE with its results. Section 7
does the same with our second method called Witness Simplicial VAE and its extension
Isolandmarks Witness Simplicial VAE. These methods are discussed in Section 8. Finally,
conclusions and future work directions are given in Section 9.

2. Notions of Computational Topology

In this section, we present briefly some notions of Computational Topology that
are relevant to our work. For a complete introduction, we refer the reader to any book
of computational topology, such as the one by Edelsbrunner and Harer [7], or to the
theoretical background of our master thesis [4] which is self-contained. Computational
topology aims to compute and develop algorithms in order to analyse topological structures,
that is the shapes of considered objects. For that purpose, we introduce some notions
related to simplicial complexes. The latter allow us to decompose a topological space
into many simple pieces, namely the simplices, well suited for computation. In particular,
we present the simplicial map and the witness complex which provides a topological
approximation, both notions are used in our Witness Simplicial VAE. Then, we give a high-
level understanding of algebraic topological invariants in which we are interested: the Betti
numbers. Finally, we see how these notions can be used in topological data analysis, that
is when the considered objects are datasets, through the concept of filtration in persistent
homology which leads to the notion of persistent Betti numbers.
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2.1. Simplicial Complexes

The smallest pieces from which we build upon are the simplices, as illustrated in
Figure 1.

Definition 1. Let u0, u1, ..., uk be points in Rd. A k-simplex σ (or k-dimensional simplex) is the
convex hull of k + 1 affinely independent points. We denote σ = [u0, u1, ..., uk] the simplex spanned
by the listed vertices. Its dimension is dim(σ) = k and it has k + 1 vertices.

A face of a simplex is the convex hull of an arbitrary subset of vertices of this simplex.

Figure 1. Examples of simplices: a point (dimension equal to 0, or 0-simplex), a line segment
(dimension equal to 1, a 1-simplex), a triangle (dimension equal to 2, a 2-simplex) and a tetrahedron
(dimension equal to 3, a 3-simplex). Image from [7].

Under some conditions, several simplices put together can compose a greater structure
called simplicial complex. The latter is very practical because it can be complex enough to
approximate a more complex topological space, while it is composed by simple pieces (the
simplices) which is beneficial for efficient computations. Examples of valid and non-valid
geometric simplicial complexes are given in Figure 2.

Definition 2. A (geometric) simplicial complex K is a non-empty set of simplices respecting the
following conditions:

• Each face of any simplex of K is also a simplex of K.
• The intersection of any two simplices of K is either empty or a face of both simplices.

The dimension of K is the maximum dimension of any of its simplices. The underlying
topological space is denoted |K| and is the union of its simplices together with the induced topology
(the open sets of Rd) inherited from the ambient Euclidian space in which the simplices belong.

(a) (b)

Figure 2. (a) A valid (geometric) simplicial complex. (b) A non-valid (geometric) simplicial complex.
On the left we can see a valid geometric simplicial complex of dimension three (image from [8]), on
the right we can see a non-valid geometric simplicial complex (image from [9]) because the second
condition of the Definition 2 is not fulfilled.

Now, we introduce the simplicial map which is a key notion used for the simplicial
regularization of our Witness Simplicial VAE method.

Definition 3. A simplicial map f : K → L between simplicial complexes K and L is a function
f : VertK → VertL from the vertex set of K to that of L, such that, if [u0, u1, ..., uq] span a simplex
of K then [ f (u0), f (u1), ..., f (uq)] span also a simplex of L.
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It is important to note here that a simplicial map f between two simplicial complexes
K and L induces a continuous map f̃ between the underlying topological spaces |K| and
|L|. Indeed, for all points x in |K|, because x belongs to the interior of exactly one simplex
in K, we can express this simplex by [u0, ..., uq] using its vertices and x can be written
as x = ∑

q
i=0 λiui with (λ0, ..., λq) ∈ Rq

+ such that ∑
q
i=0 λi = 1. With these notations, the

continuous map f̃ induced by the simplicial map f can be defined as: f̃ : x 7→ f̃ (x) =

f̃ (∑
q
i=0 λiui) = ∑

q
i=0 λi f (ui). It follows that the induced continuous map f̃ is completely

determined by f so f̃ and f can actually be identified. The reader can refer to “Section 5:
Simplicial Complexes” of the course [10] for the proofs of the continuity of this induced
continuous simplicial map. Finally, we can highlight here that a simplicial map between
two simplicial complexes is a linear map on the simplices.

If we think about the topology of a dataset, we can notice that usually not all the points
are needed to know the underlying topology. Moreover, constructing simplices from just
a subset of the data points is less computationally expensive than considering the whole
dataset. These ideas motivated Vin de Silva and Gunnar Carlsson when they introduced
the witness complex in [11]: a subset of the data points, called the landmarks points, is
used to construct the simplices “seen” by the witnesses which are the rest of the points of
the dataset. (The reader is invited to look at the mentioned paper [11] for a complete view
on witness complexes, because here we make some simplifications and define the witness
complex as a particular case of the original definition.)

Definition 4. Let S be a finite set of points in Rd and write Br(x) for the closed d-dimensional ball
with centre x ∈ Rd and radius r ∈ R. Let L ⊂ S be a subset of the points in S, that we call the
landmarks. We define the witness complex of S, L, and r ∈ R as:

Wr(S, L) =
{

σ = [u0, ..., uk] with {u0, ..., uk} ⊂ L |∃w ∈ S s.t. ∀i ∈ J0; kK, ui ∈ Br(w)
}

.

An example of the construction of a witness complex is given in Figure 3 and we
explain it here:

On the left, we can see the 11 points with the landmarks points in green. The landmarks
points are chosen arbitrarily here. Then, for a given radius r we check if any of the balls
(here the 2-dimensional balls are disks) centred at the points of S contains a set of landmarks.
In that case the centre of the disk is called a witness (encircled in red), and the set of the
corresponding landmarks points form a simplex which is added to Wr(S, L). Here only the
balls around the witnesses are represented.

On the top right in blue, we can see a simplicial complex built by joining all the
points. It is actually the 1-nearest neighbour graph and consists of 11 0-simplices (all the
points of the dataset), and 11 1-simplices (the edges). On the bottom right in green, we
can see the Witness complex Wr(S, L) constructed as explained above. This one consists
of five 0-simplices (the landmarks points), six 1-simplices (the edges), and one 2-simplex
(the triangle).

As we see in this example of Figure 3, it is important to note that the witness complex,
although being composed of simplices corresponding to vertex sets of only a subset of
landmarks points L ⊂ S, can still capture the topology of the whole dataset S. However,
this is true in this example but it may not be always the case and it mainly depends on
the choice of the landmarks L and the radius r. In order to construct a witness complex,
the landmarks can be chosen for example arbitrarily or randomly (another method called
“maxmin” is also given in [11] to select the landmarks in an iterative way). Regarding the
choice of the radius r, this is addressed below when we mention the concept of filtration
used in persistent homology.
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Figure 3. Example of the construction of a witness complex Wr(S, L) for a dataset S ⊂ R2 of 11 points
using a subset L ⊂ S of 5 landmarks points and for a given radius r ∈ R.

2.2. Betti Numbers

A topologist is interested in classifying different objects (topological spaces to be
more precise) according to their shape. Two objects are topologically equivalent if there
exists a homemorphism between them, that is a continuous map with continuous inverse.
Algebraic topology provides the mathematical theory for such classification thanks to
algebraic topological invariants. As suggested by their name, the latter do not change
between topologically equivalent spaces. Computational topology allows us to compute
efficiently such topological invariants, in particular with the help of previously defined
notions of simplicial complexes. Examples of algebraic topological invariants in which
we are interested are the Betti numbers. We give here the intuition, for the mathematical
formalism (rank of the p-th homology group etc.) the reader is invited to look at the
references mentioned in the introduction of this section.

We can say that the p-th Betti number, denoted βp, counts the number of p-dimensional
holes: β0 is the number of connected components, β1 the number of tunnels, β2 the number
of voids, etc. It is indeed a topological invariant and one can intuitively notice that the
Betti numbers of an object do not change when we deform this object continuously, such as
changing its scale. Thus, they can be used to classify objects of different topologies. For
a topologist, a sphere and the surface of a cube are identified to be the same object and
their Betti numbers are equal, but the torus is different since it has a different topological
structure. This is illustrated in Figure 4.

Figure 4. Different objects and their first Betti numbers (the cube, sphere, and torus are empty).
Figures from [12].
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When it comes to analysing data, since the latter is usually discrete and represented as
points in a space, we need to take into account the different possible topologies of a dataset
across different scales. This leads us to the concept of filtration in persistent homology.
We illustrate this notion in Figure 5 through a simple example where the data are a set
of 8 points sampled from a circle in a 2-dimensional space. This is a simple example of a
“(Vietoris–Rips) filtration” where we can see that the values of the Betti numbers β0 and β1
change depending on the scale from which we consider the data. We can wonder which
scale, and, thus, which values of the Betti numbers, is appropriate to describe the topology
of this dataset. Persistent homology aims to answer to this question through this notion
of filtration.

Figure 5. (Vietoris–Rips) filtration of points sampled from a circle. Images from [12].

As illustrated in the above Figure 5, for the simplices of dimension 1 (the edges) and
simplices of dimension 2 (the triangles), the process of the “(Vietoris–Rips) filtration” is
as follows: around each point we draw disks of a growing diameter ε (from left to right
in Figure 5 the diameter ε is increasing), as soon as two disks have a common non-empty
intersection we draw an edge between their centre, and as soon as three centres form a
triangle with the drawn edges then we draw the triangle. Finally, we look at the Betti
numbers at each step of the filtration depending on the scale ε. In this example of Figure 5,
we can see that β0, which counts the number of connected components, is decreasing from
8 to 1 when ε increases. For β1, which counts the number of 1-dimensional holes, it is
different: it goes from 0 to 1 and to 0 again while ε is increasing. The values of β1 in function
of ε are represented in the barcode given in Figure 6. When ε is equal to 1, the drawn edges
form a fully connected graph and β0 and β1 will not vary anymore. Then we can look at
this barcode for ε between 0 and 1, and see the values of β1 which persist the most. In
this case the “persistent β1” is β1 = 1 since it persists between ε = 0.2 and ε = 1. Indeed,
for this interval of ε ∈ [0.2; 0.5], we can recognize the circle from which the points were
sampled: the drawn edges or triangles all together form an object with one 1-dimensional
hole, which is topologically equivalent to a circle since we can deform continuously this
object to obtain a circle.

Figure 6. β1 barcode of the circle dataset of Figure 5. Figure from [12].

All the information present in a barcode can be equivalently represented in a persis-
tence diagram where the birth and death of different classes can also be visualised. Finally,
the witness complex filtration is a similar concept than Vietoris–Rips filtration presented
above, except that we consider a witness complex. What that means is that during the
filtration, we increase the radius of the balls centred at the witnesses and we connect only
the landmarks “seen” by a witness to form the simplices of the witness complex.

To conclude, the Betti numbers allow one to analyse and describe the topology of
an object, and persistent homology leads to the notions of filtration and persistent Betti
numbers to better analyse a dataset. Indeed, the filtration process provides a way to recover
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its underlying topological structure that can be approximated by a witness complex built
with a radius corresponding to a persistent Betti number.

3. Related Work
3.1. Non-Linear Dimensionality Reduction

In order to analyse high dimensional data, it might be convenient to reduce its di-
mensionality, in particular for visualization. The traditional methods were based on linear
models, the well-known archetype being the principal component analysis [13,14]. How-
ever, by construction these methods are not efficient to reduce highly non-linear data
without losing too much important information. That is why, to deal with complex datasets,
non-linear dimensionality reduction methods were developed, this field is known as “mani-
fold learning”. An overview of such methods with their advantages and drawbacks is given
in [15]. We introduce in this section some famous non-linear dimensionality reduction
methods, among them the ones that inspired us for our work.

A classical non-linear dimensionality reduction method is Isomap (from isometric
mapping) which was introduced in 2000 by Tenenbaum et al. [16]. It maps points of a
high-dimensional non-linear manifold to a lower dimensional space by preserving graph
distances. In particular, it consists first of constructing a graph on the manifold of the
data considering points which are neighbours regarding some euclidean distance (i.e., the
euclidean distance between two neighbouring points should be smaller than a threshold,
or an alternative is to apply a k-nearest neighbours algorithm). Then, the shortest path on
the graph between any pair of points is computed using for example Dijkstra’s algorithm.
This gives an approximation of the geodesic distance between any pair of points. Finally,
the classical multidimensional scaling (MDS) method (see [17–19] for references) is applied
to the matrix of graph distances in order to embed the data in a smaller dimensional space
while preserving these approximated geodesic distances. The advantage of this method
is that the geometry of the manifold is generally well preserved under some hypothesis
(for some class of manifolds, namely the “developable manifolds” [15]). However, the
drawbacks is the costly computation of the (approximated) geodesic distances.

Another famous method used in data visualization is t-SNE [20] which allows one to
perform non-linear dimensionality reduction. It was developed in 2008 by van der Maaten
and Hinton as a variation of Stochastic Neighbour Embedding [21]. t-SNE aims to better
capture global structure, in addition to the local geometry, than previous non-linear dimen-
sionality reduction techniques for high dimensional real world datasets. It is also based
on pairwise similarities preservation between the input data space and the embedding.
The particularity of this method is that it starts by converting Euclidean pairwise distances
into conditional probabilities using Gaussian distributions, that is the similarity of a point
to a given point is the conditional probability of being its neighbour under a Gaussian
distribution centred at the given point. For the embedding lower dimensional space, the
pairwise similarity is constructed in an analogue way except that the authors of [20] use
a Student t-distribution instead of a Gaussian. They actually consider the joint probabili-
ties defined as being the symmetrized conditional probabilities. Then, they minimize the
Kullback–Leiber divergence between the joint probability distribution of the input data
space and the one of the embedding.

UMAP (Uniform Manifold Approximation and Projection) is a more recent non-linear
dimensionality reduction method developed in 2018 by McInnes, Healy, and Melville [22].
It is based on three assumptions about the data: it should be uniformly distributed on a
Riemannian manifold, the Riemannian metric should be approximated as locally constant,
and the manifold should be locally connected. The first step of the method is to construct
a fuzzy simplicial complex of the data, which is a simplicial complex with probabilities
assigned to each simplex. Then, the data are embedded in a lower dimensional space by
minimizing an error function (namely the fuzzy set cross entropy [22]) between the fuzzy
topological structures of the original data and the embedded data, through a stochastic
gradient descent algorithm. Like with Isomap, varying the parameters of the method
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allows us to choose if we want to preserve more global versus local structure of the data.
The advantages of UMAP are that it is scalable to high dimensional datasets and it is fast.
Drawbacks might be that there are two parameters to tune, and that the relative distances
between different clusters of a UMAP embedding are meaningless.

3.2. Variational Auto-Encoder

The variational auto-encoder (VAE) not only allows us to do non-linear dimensionality
reduction, but it has also the particularity to be a generative model. It was simultaneously
discovered in 2014 by Kingma and Welling in [2] and Rezende, Mohamed, and Wierstra
in [3]. Although it could be seen as a stochastic version of the well known auto-encoder, the
motivation behind the VAE is completely different since it comes from Bayesian inference.
Indeed, the VAE has a generative model and a recognition model or inference model, and
both are Bayesian networks. The original papers cited above provide a method using
stochastic gradient descent to learn jointly latent variable models whose distributions are
parameterized by neural networks and corresponding inference models. The VAE can
be used for many different applications such as generative modelling, semi-supervised
learning, representation learning, etc. We refer the reader to the recent introduction to VAEs
made by Kingma and Welling in [23] for more complete details.

Following the notations of [2], let X =
{

x(i)
}N

i=1
be the dataset consisting of N

i.i.d. observed samples of some variable x, generated by a random process involving
unobserved random variables z called the latent variables. This process consists of two steps:
generation of latent variables from a prior distribution pθ∗(z) (the prior), and generation of
the observed variables from a conditional distribution pθ∗(x|z) (the likelihood); the true
parameters θ∗ and the latent variables are unknown. We assume that the prior and the
likelihood are parameterized by θ and their probability distribution functions are almost
everywhere differentiable. θ∗ is the optimal set of parameters θ maximizing the probability
of generating real data samples x(i). Additionally, the true posterior density pθ(z|x) is
assumed to be intractable. That is why Kingma and Welling [2] introduced a recognition
model qφ(z|x) parameterized by φ to approximate the true posterior pθ(z|x). The latent
variables z, also called “code”, are latent representations of the data. qφ(z|x) is then called
the probabilistic “encoder” because it gives a probability distribution of the latent variables
from which the data X could have been generated. This leads us to pθ(x|z) which is
called the probabilistic “decoder” because it gives a probability distribution of the data x
conditioned on a latent representation z. In our case, θ and φ are parameters of artificial
neural networks, and the method presented in [2] allows the model to jointly learn θ and φ.
On one side, the encoder learns to perform non-linear dimensionality reduction if we take,
for the latent representations z, a lower dimension than the original data. On the other side,
the decoder allows us to do generative modelling in order to create new realistic data from
latent representations.

As it is typically done in variational Bayesian methods, a good generative model
should maximize the “log-evidence” which is here the marginal log-likelihood log pθ(x).
The latter is intractable and we have log pθ(x) = Lθ,φ(x) + DKL(qφ(z|x)||pθ(z|x)) with

Lθ,φ(x) = Eqφ(z|x) log pθ(x,z)
qφ(z|x) the ELBO (evidence lower bound or variational lower bound)

and DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x) log qφ(z|x)
pθ(z|x)

the Kullback–Leibler (KL) divergence be-
tween qφ(z|x) and pθ(z|x) (see Appendix A.1 for the derivation). The ELBO is indeed a
lower bound of the marginal log-likelihood (Lθ,φ(x) ≤ pθ(x)), and maximizing it allows us
to (1) approximately maximize pθ(x) to obtain a better generative model, and (2) minimize
the KL divergence to obtain a better approximation qφ(z|x) of the intractable true posterior
pθ(z|x). Hopefully, the ELBO can be explicited (see Appendix A.2 for the derivation) and
is actually the objective function of the VAE:

LVAE = Lθ,φ(x) = Eqφ(z|x) log pθ(x|z)− DKL(qφ(z|x)||pθ(z)) (1)
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Equation (1) shows that the loss of the VAE can be computed through the expected recon-
struction error Eqφ(z|x) log pθ(x|z), and the KL divergence between the encoder qφ(z|x) and
the prior pθ(z). Typically, the terms in the KL divergence are chosen as Gaussians so that
it can be integrated analytically. Otherwise, if the integration is not possible we can do a
Monte Carlo estimation. Finally, it was introduced the “reparameterization trick” (Kingma
and Welling [2], and Rezende et al. [3]) to efficiently optimize the objective function Lθ,φ(x)
with respect to the parameters θ and φ using stochastic gradient descent.

3.3. Topology and Auto-Encoders

The use of topology in machine learning is quite new with the development of
topological data analysis. Some recent work, such as the “topology layer” proposed
by Gabrielsson et al. [24], focus on preserving the topology of single inputs which can be
cloud points or images. However, we want to preserve the topology of the whole dataset
between the input and the latent space, and particularly in a variational auto-encoder
framework. The ability of a standard auto-encoder to preserve the topology for datasets
composed by rotations of images was investigated by Polianskii [25]. We are now interested
in an active control of the topology instead of a passive analysis. The main difficulty is that
algebraic topological invariants, such as the Betti numbers, are discrete whereas we need
some differentiable function with respect to the neural network parameters in order to be
able to perform backpropagation of the gradient. At the time we were working on this prob-
lem, to the best of our knowledge, no previous work was made in the direction of adding to
the loss of a VAE a term to preserve the topology except in the appendix of [26], where the
authors Moor et al. sketched an extension of their topological auto-encoder to a variational
setup. Their topological auto-encoder presents in the loss a differentiable topological con-
straint term added to the reconstruction error of an auto-encoder. Although this method is
generalizable to higher order topological features, they focused on preserving 0-homology.
Through persistent homology calculation using the Vietoris–Rips complex, their topological
constraint aims to align and preserve topologically relevant distances between the input
and the latent space. The authors present this “topological loss” as a more generic version
than the “connectivity loss” proposed by Hofer et al. [27]. Although the connectivity loss
is also obtained by computing persistent 0-homology of mini-batches, on the contrary to
the topological loss it operates directly on the latent space of an auto-encoder to enforce a
single scale connectivity through a parameter denoted η [27].

Another interesting approach combining topology and Auto-Encoders is the “sim-
plicial regularization” introduced recently by Gallego-Posada [28,29] as a generalization
of the “mixup” regularization ([30,31]). Gallego-Posada in his master thesis [28] applies
UMAP to the data and computes the Fuzzy simplicial complexes of both the input data and
the embedding, and uses these simplicial complexes to compute simplicial regularizations
of both the encoder and the decoder, that he adds to the auto-encoder loss. The simplicial
regularizations aim to “force” the encoder and the decoder to be simplical maps, that is
to be linear over the simplices. We wanted to explore this idea in a variational setup with
our Witness Simplical VAE (see Section 7 for the proposed method) which uses similar
simplicial regularizations but computed using a witness complex. The latter simplicial
complex was introduced by De Silva and Carlsson [11] and allows one to obtain a topologi-
cal approximation of the data with a small number of simplices. Lastly, we can mention
that the idea of using such witness complex came from the “geometry score” developed
by Khrulkov and Oseledets [32], which is a method for evaluating a generative model by
comparing the topology of the underlying manifold of generated samples with the original
data manifold through the computation of witness complexes.
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Finally, we can mention a completely different approach aiming to capture geometric
and topological structure with a VAE that is by having a latent space which is a specific
Riemannian manifold instead of an Euclidean space. In this direction Pérez Rey et al.
proposed the Diffusion VAE [33] which allows one to choose an arbitrary Riemannian
manifold as a latent space, such as a sphere or a torus, for example. However, this approach
implies a strong inductive bias on the geometric and topological structure of the data.

4. Implementation Details

Regarding the implementation we used PyTorch for fast tensor computing via graphics
processing units (GPU) and for automatic differentiation of the objective function of the
neural networks [34]. In particular, we used the Adam algorithm [35] (with, by default, a
learning rate parameter equal to 10−3) provided with PyTorch for the stochastic optimiza-
tion of the objective function. The implementation for the witness complex construction
uses the code from [36] built on top of the GUDHI library [37] for the provided simplex
tree data structure [38].

All the code is publicly available at (accessed on 29 December 2022): https://github.com/
anissmedbouhi/master-thesis.

5. Problem Formulation

Our research question can be summarized as follows: how to preserve the topology of
data between the input and the latent spaces of a variational auto-encoder?

We particularly focus on preserving the persistent Betti numbers which are topolog-
ical invariants. Indeed, although all the topological information is not contained in the
persistent Betti numbers, they do provide relevant information regarding the topological
structure of the data. Our goal is thus to have a VAE, such that the persistent Betti numbers
are equal, between the input data, its latent representation given by the encoder, and ideally
also its reconstruction given by the decoder.

After showing that this is not the case for a vanilla VAE, we modify the loss of the
VAE in order to encourage such preservation. Since we focus on a 2-dimensional latent
space, we can directly evaluate visually if this goal is achieved for the two first persistent
Betti numbers, namely β0 and β1, without needing to compute the persistent diagrams.
In summary, for the two datasets we consider, our goal is to preserve both 0-homology
and 1-homology.

5.1. Datasets

For the purpose of our problem, we focus on two synthetic datasets with interesting
geometry and topology, embedded in three dimensions. We reduce their dimension to a
2-dimensional latent space to visualize directly the impact of our methods. We call the two
datasets we used the open cylinder and the swissroll as illustrated in Figure 7. For both, we
sampled 5000 points: 60% for training, 20% for validation, and 20% for testing.

To generate the points (x, y, z) ∈ R3 of the open cylinder, we sampled from uniform
distributions: z ∼ U[−h/2,h/2]; r ∼ U[r−w/2,r+w/2]; θ ∼ U[0,2π]; with h for “height”, r for
“radius”, and w for “width”; and then we define x = r sin θ, y = r cos θ and z = z. For this
open cylinder we used the following parameters: 20 for the height, 1 for the width, and
7 for the radius.

For the swissroll, its points (x, y, z) ∈ R3 were generated with scikit-learn [39] using an
algorithm from [40]. It also works with sampling from uniform distributions: t ∼ 1.5U[π,3π];
y ∼ 21U[0,1]; and then are defined x = t cos t, y = y and z = t sin t.

https://github.com/anissmedbouhi/master-thesis
https://github.com/anissmedbouhi/master-thesis
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As we can visualize in Figure 7, since β0 counts the number of connected components
and β1 the number of 1-dimensional holes, we can say that β

OpenCylinder
0 = βSwissroll

0 =

β
OpenCylinder
1 = 1 and βSwissroll

1 = 0. The goal is to preserve these persistent Betti numbers
in the latent space of a VAE.

(a) (b)

Figure 7. Open cylinder (left) and swissroll (right) training datasets. (a) Dataset 1: Open cylinder
β0 = 1, β1 = 1. (b) Dataset 2: Swissroll β0 = 1, β1 = 0.

5.2. Illustration of the Problem

In this section, we present some results obtained with a standard VAE to illustrate the
problem and to have a baseline with which we can compare the methods. By “standard
VAE” we mean a VAE with a Gaussian prior which has a standard loss that consists of the
reconstruction and the KL-divergence terms.

Figures 8–11 provide representative results of the standard VAE applied to the open
cylinder dataset, for different random initializations (“pytorchseed”) of the neural network
weights and a batch size equal to 128. We do not always show the losses since they look
similar for different initializations, but it should be noted that after 500 epochs the learning
process is always converging, like in Figure 8f. The trained VAEs perform similarly on
both train and test data leading to the same conclusions. In the figures below, we show the
results for the training sets for a better visualization due to larger point set size. We can
see that for the standard VAE, there is not much consistency of the representation learning
when the random initialization of the neural network weights is changed since the latent
representations can appear in very different ways. Most of the time, we observe the first
persistent Betti number as β1 = 0, like in Figure 9, or β1 = 2, like in Figure 8, instead of
β1 = 1 as it should be for the open cylinder. Sometimes, we can obtain β1 = 1 but it is
not satisfactory from the point of view of latent space interpolation: either because some
regions may be separated (see Figure 10), or because the 1-dimensional hole in the latent
representation does not really make sense and is not useful for interpolating in the latent
space since the “color order” is not preserved (see Figure 11).

https://pytorch.org/docs/stable/generated/torch.manual_seed.html#torch.manual_seed
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(a) Latent space (b) Reconstruction

(c) Reconstruction (view from a side) (d) Reconstruction (view from another side)

(e) Reconstruction (view from above) (f) Loss (500 epochs)

Figure 8. Standard VAE applied to the open cylinder dataset - pytorchseed = 1, trained for 500 epochs.
(a) is the latent representation of the open cylinder in a 2-dimensional space of a standard VAE. We
can see two 1-dimensional holes so β1 = 2 (Betti number 1 is equal to 2) instead of 1. (b–e) are
different views of the reconstruction in the original 3-dimensional space.
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(a) Latent space (b) Reconstruction (view from above)

Figure 9. Latent representation (left) and reconstruction (right) of the Standard VAE applied to
the open cylinder-pytorchseed = 6, trained for 500 epochs. In this case, we can see that for the
latent representation (a) we have β1 = 0 instead of 1. This means for example that from the latent
representation we would not know that it is actually possible to go from the yellow part to the
blue part without passing through the red part, because in this bad latent representation there is a
discontinuity in the green region. In addition to that, the discontinuity in the green region of the
latent space (a) implies a discontinuity in the green region of the reconstructed cylinder (b) so the
reconstruction is also bad.

(a) Latent space (b) Reconstruction (view from a side)

Figure 10. Latent representation (left) and reconstruction (right) of the Standard VAE applied to the
open cylinder-pytorchseed = 2, trained for 500 epochs. We can see that for the latent representation
(a) we have β1 = 1 like to the original open cylinder dataset. However we can see three distinct
parts for the blue region which is problematic if we want to interpolate in this region in the latent
space, and as we can see in the reconstruction (b) it implies discontinuities in the blue region of the
reconstructed cylinder.
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(a) Latent space (b) Loss after 500 epochs

(c) Reconstruction (view from a side) (d) Reconstruction (view from above)

Figure 11. Latent representation (top left) and reconstruction (down) of the Standard VAE applied
to the open cylinder, trained for 500 epochs. We can see again that for the latent representation
(a) we have β1 = 1 like to the original open cylinder dataset. However, the latent representation is
bad because the “color order” is not preserved so this latent representation would not be useful for
interpolations, it is like dividing the cylinder in top and down regions. Indeed, we can see in (c) that
this implies a discontinuity between top part and down part for example with the orange region. In
addition to that, we have also a longitudinal discontinuity in the green region as shown in (d).

For the swissroll dataset, we also obtain completely different latent representations
when the random initialization of the neural network weights is changed, as we can see
in Figures 12–14. Indeed, when different network initializations are used, we can have
different persistent Betti numbers which are not the same as the original dataset, and we
obtain similar discontinuity problems as for the examples of the open cylinder dataset.
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(a) Latent space (b) Loss (after 500 epochs)

(c) Reconstruction (view from a side) (d) Reconstruction (view from the other side)

Figure 12. Latent representation (top left) and reconstruction (down) of the Standard VAE applied to
the swissroll - pytorchseed = 1, trained for 500 epochs. We can see that after 500 epochs, for the latent
representation (a) we have β1 = 2 whereas it is equal to 0 for the original swissroll dataset. Moreover,
we can visualize a discontinuity in the latent representation (a) for all the colors except for the yellow
region. This discontinuity is retrieved again for the reconstruction as seen in (c,d).

(a) Latent space after 100 epochs (b) Reconstruction after 100 epochs

Figure 13. Cont.
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(c) Latent space after 500 epochs (d) Reconstruction after 500 epochs

(e) Latent space after 10,000 epochs (f) Reconstruction after 10,000 epochs

Figure 13. Latent representation (left column) and corresponding reconstruction (right column) of
the Standard VAE applied to the swissroll - pytorchseed = 2, trained for 100; 500; and 10,000 epochs.
After 100 epochs we can see an overlapping between the beginning and the end of the swissroll in
the latent representation (a) which has β1 = 1 instead of 0, and the reconstruction is bad (b). Then,
the more the model is trained, the better is the reconstruction as we can see after 10,000 epochs for
example (f), but the latent representation (e) is separated in many connected components whereas
the original swissroll has β0 = 1.

Our testing concludes that in practice the standard VAE does not take the topology of
data into account when it learns the latent representation of input data. Moreover, learnt
embeddings are not consistent with respect to different weight initialization.
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(a) (b)

(c) (d)

Figure 14. Latent representation (left) and corresponding reconstruction (right) of the Standard
VAE applied to the swissroll for different initializations - pytorchseed = 3 (top) and pytorchseed = 4
(down), trained for 500 epochs. Again, discontinuities in the latent representation are transferred to
the reconstructed swissroll. These representations are not useful for interpolating in the latent space.
(a) Latent space (after 500 epochs) for a random initialization with pytorchseed = 3. (b) Reconstruction
(after 500 epochs) for a random initialization with pytorchseed = 3. (c) Latent space (after 500 epochs)
for another random initialization with pytorchseed = 4. (d) Reconstruction (after 500 epochs) for the
other random initialization with pytorchseed = 4.

6. InvMap VAE
6.1. Method

Here, we propose our first method called InvMap-VAE. Given an embedding of the
data, this method allows us to obtain a VAE with a latent representation that is geomet-
rically and topologically similar to the given embedding. So this method depends on an
embedding which can be given arbitrarily or by any dimensionality reduction technique.
The main advantages of InvMap-VAE are that the learned encoder provides a continuous
(probabilistic) mapping from the high dimensional data to a latent representation with
a structure closed to the embedding, and the decoder provides the continuous inverse
mapping, which are both lacking in manifold learning methods, such as Isomap, t-SNE,
and UMAP. Below, we present the results of an Isomap-based InvMap-VAE, where we use
an embedding provided by Isomap, although any other fitting dimensionality reduction
technique could be used.
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Let X be the original data, and Zemb the given embedding, for example obtained when
applying a dimensionality reduction technique to X. Let us call Z the latent representation
of a VAE applied to X. Then, to obtain the loss of the InvMap-VAE, we simply add to the
VAE loss (see Equation (1) page 207), the Mean Square Error (MSE) between Z and Zemb
multiplied by a weight denoted wIM:

LInvMapVAE = LVAE + wIM ×MSE (Z, Zemb) (2)

In practice, we compute this loss on a batch level as it is performed with the Standard
VAE to perform “batch gradient descent” [23].

6.2. Results

The results of an Isomap-based InvMap-VAE are given in Figure 15 for the open
cylinder and Figures 16 and 17 for the swissroll. The neural network weights initializations
does not affect these results, meaning that this method is consistent. As we can see, both
for the open cylinder and for the swissroll dataset, the topology is preserved. This is
because Isomap preserved the topology as we can visualize it with the Isomap embeddings.
Furthermore, depending on the parameters chosen for Isomap, Isomap and thus the
corresponding InvMap-VAE can either flatten the swissroll, like in Figure 16, or preserve
the global spiral structure, like in Figure 17. See Appendix B for extended results with a
UMAP-based InvMap-VAE where same conclusions can be drawn.

We can conclude that InvMap-VAE is consistent, and more importantly, if the given
embedding preserves the topology, then the corresponding InvMap-VAE is also topology-
aware. This method is a simple way to turn a dimensionality reduction technique into a
generative model since the VAE framework allows one to sample from the latent space and
generate new data. In the next section, we wanted to develop a topology-aware VAE that
does not need any embedding as input.

(a) Original open cylinder dataset (b) Isomap embedding (nearest neighbours
parameter set to 10)

Figure 15. Cont.
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(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure 15. Isomap-based InvMap-VAE applied to the open cylinder dataset, weightIM = 1 and
trained for 500 epochs. Betti numbers β0 = 1 and β1 = 1 are preserved between the original dataset
(a), the latent representation ((c) for training and (e) for test), and the reconstruction ((d) for training
and (f) for test). Moreover, on the contrary to the Isomap embedding (b), the latent representations
are not too thin or “compressed”, which is better for interpolations.

(a) Original swissroll dataset (b) Isomap embedding (nearest
neighbours parameter set to 10)

Figure 16. Cont.
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(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure 16. Isomap-based InvMap-VAE applied to the swissroll dataset, weightIM = 1 and trained
for 500 epochs. Betti numbers β0 = 1 and β1 = 0 are preserved between the original dataset (a), the
latent representation ((c) for training and (e) for test), and the reconstruction ((d) for training and
(f) for test). Moreover, on the contrary to the Isomap embedding (b), the latent representations do
not have empty regions, which is better for interpolations, although lines appear and are retrieved
in the reconstructions. We can notice that the spacing between these lines is actually related to the
curvature of the manifold.
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(a) Original swissroll dataset (b) Isomap embedding (nearest neighbours
parameter set to 100)

(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure 17. Isomap-based InvMap-VAE applied to the swissroll dataset, weightIM = 10 and trained
for 1000 epochs. Betti numbers β0 = 1 and β1 = 0 are preserved between the original dataset (a), the
latent representation ((c) for training and (e) for test), and the reconstruction ((d) for training and
(f) for test). Moreover, on the contrary to the Isomap embedding (b), the latent representations are
not too thin or “compressed”, which is better for interpolations.
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7. Witness Simplicial VAE

We present in this section our second method called “Witness Simplicial VAE”. On the
contrary to our previous method, this one does not depend on any other dimensionality
reduction technique or embedding. It has a pre-processing step where a witness complex is
built considering the topological information that should be kept. Then, comes the learning
process with a VAE regularized using the constructed witness complex.

7.1. Method
7.1.1. Witness Complex Construction

We propose here to build a witness complex in the original data space, and then try to
preserve this simplicial complex structure of the data when going to the latent space of a
VAE. Thus, the topology of the witness complex would be preserved. Since the witness
complex allows us to do topological approximation, we should build a witness complex
relevant to the topological information we want to keep. Additionally, to construct the
witness complex, one should consider only the simplices of dimension lower or equal
to the dimension of the latent space, which is good since computations of higher order
dimensional simplices are thus avoided.

At first, we choose randomly a number of landmarks points and we define all the
points of the data as witnesses. The choice of the landmarks is made randomly, as suggested
in [11], also, a subset of the data could be used for the witnesses for less computations.
Then, a witness complex can be built given a radius. To choose a relevant radius, we first
perform a witness complex filtration to obtain a persistence diagram. After that, we choose
a radius such that the Betti numbers of the witness complex constructed with this radius,
are the persistent Betti numbers given by this persistence diagram. Indeed, we know from
topological data analysis that the relevant topological information is given by the persistent
Betti numbers.

Illustrations of this process are given in Figure 18. At first in (a), we perform a witness
complex filtration choosing randomly 10 landmarks points (in practice we stopped the
filtration after a high enough radius filtration). Then, we look at the persistence diagram
(a) and we choose a radius relevant to the problem, that is a filtration radius such that the
topological information we want to preserve is present in the witness complex. In this case,
we see in (a) at x ∼ 5.9 a blue point corresponding to Betti 1 which persists (because far
from the diagonal y = x). This point represents the topology we want to preserve: the
“cycle” structure of the open cylinder (the 1-dimensional hole). That is why in (b) we choose
a witness complex built from this filtration stopping at r f iltration = 6 and for which we
have β1 = 1. (c) and (d) are different views of the 1-simplices (grey edges) of this witness
complex. (e) and (f) show the impact of increasing the number of landmarks: we obtain
more simplices which implies more computations and possibly not relevant 1-dimensional
holes. However, increasing the number of landmarks should help to obtain a topological
structure more robust to noise and outliers.

See Appendix C for examples of bad witness complex constructions that should
be avoided by being careful to the parameters chosen (landmarks and radius) and by
visualizing it if possible.
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(a) Open cylinder persistence diagram of a
WC filtration with r f iltration = 10 and 10

landmarks

(b) Open cylinder persistence diagram of a
WC filtration with r f iltration = 6 and 10

landmarks

(c) Open cylinder, 1-simplices of a WC
filtration with r f iltration = 6 and 10

landmarks, view from above

(d) Open cylinder, 1-simplices
of a WC filtration with

r f iltration = 6 and 10
landmarks, another view

(e) Open cylinder persistence diagram of a
WC filtration with r f iltration = 4 and 32

landmarks

(f) Open cylinder, 1-simplices
of a WC filtration with

r f iltration = 4 and 32
landmarks

Figure 18. Open cylinder witness complex (WC) construction for different filtration parameters. For
the persistence diagrams (a,b,d), on the x and y axis are the radius filtration, red points represent
Betti 0 (connected components) and blue points represent Betti 1 (1-dimensional holes). In images
(c,d,f) are shown only the 1-dimensional simplices (grey edges) of the witness complexes.
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7.1.2. Witness Complex Simplicial Regularization

Once we have a witness complex built from the original input data, we can define a sim-
plicial regularization by adding a term to the VAE loss. The idea of a simplicial regulariza-
tion combined to an auto-encoder framework was recently introduced first by Jose Gallego-
Posada in his master thesis [28] as a generalization of the “mixup” regularization ([30,31]).
We incorporate the simplicial regularization in a variational auto-encoder framework,
however, here we use it in a different way than [28] for at least two aspects:

1. It does not depend on any embedding whereas in [28] the author was relying on a
UMAP embedding for his simplicial regularization of the decoder.

2. We use only one witness simplical complex built from the input data whereas the
author of [28] was using one fuzzy simplicial complex built from the input data
and a second one built from the UMAP embedding and both were built via the
fuzzy simplicial set function provided with UMAP (keeping only simplices with
highest probabilities).

Below is how we define the simplicial regularizations (largely) inspired by [28],
for the encoder and the decoder, using a unique simplicial complex which is here a
witness complex:

LSE(e, K, α) = ∑
σ∈K

Eλj∼Dir(dim(σ)+1,α)MSE

(
e

(
dim(σ)

∑
j=0

λjσj

)
,

dim(σ)

∑
j=0

λje
(
σj
))

(3)

LSD(d, K, α) = ∑
σ∈K

Eλj∼Dir(dim(σ)+1,α)MSE

(
d

(
dim(σ)

∑
j=0

λje(σj)

)
,

dim(σ)

∑
j=0

λjd
(
e(σj)

))
(4)

With:

• LSE the simplicial regularization term for the encoder.
• LSD the simplicial regularization term for the decoder.
• e and d, respectively, the (probabilistic) encoder and decoder.
• K a (witness) simplicial complex built from the input space.
• σ a simplex belonging to the simplicial complex K.
• σj the vertex number j of the dim(σ)-simplex σ which has exactly dim(σ) + 1 vertices.

σj is, thus, a data point in the input space X.
• MSE (a, b) the Mean Square Error between a and b.
• Eλj∼Dir(dim(σ)+1,α) the expectation for the (λj)j=0,...,dim(σ) following a symmetric Dirich-

let distribution with parameters dim(σ) + 1 and α. When α = 1, which is what we
used in practice, the symmetric Dirichlet distribution is equivalent to a uniform distri-
bution over the dim(σ)-simplex σ, and as α tends towards 0, the distribution becomes
more concentrated on the vertices.

Finally, if we note wSE and wSD the weights of the additional terms, the loss of the
Witness Simplicial VAE is:

LWSVAE = LVAE + wSE ×LSE + wSD ×LSD (5)

The motivation is actually, by minimizing LSE and LSD in Equation (5), to “force” both
the encoder and the decoder to become (continuous) simplicial maps. Indeed, minimizing
LSE forces the encoder to be a simplicial map between the witness complex of the input
data space and its image by the encoder, and minimizing LSD forces the decoder to be
a simplicial map between the latent space and the output reconstruction space. We can
actually see that the MSE term both in (3) and (4) measures, respectively, “how far the
encoder and the decoder are from being simplicial maps” [28]. Indeed, if they were
simplicial maps then the MSE would be equal to zero by definition of a simplicial map.
This should be true for any (λ0, ..., λdim(σ)) ∈ R

dim(σ)+1
+ , such that ∑

dim(σ)
i=0 λi = 1 with σ
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being any simplex of K. In practice, we do a Monte Carlo estimation, that is we sample a
certain number of times (denoted NLambdasSamples) the lambdas from a uniform distribution
(i.e., a Dirichlet distribution with parameter α = 1) over the simplex σ and we take the
expectation. Given a simplex σ ∈ K, sampling the lambdas coefficients (λ0, ..., λdim(σ))
is equivalent to sample a point in the convex hull spanned by the vertices of σ. Thus,
minimizing LSE is equivalent to do data augmentation and “forcing” the image of this
point by the encoder to be in the convex hull spanned by the images of the vertices of σ by
the encoder and with the same lambdas coefficients. So this “forces” the encoder to be a
linear map on the simplices of K, exactly like a simplicial map. The same reasoning can be
applied to the decoder when minimizing LSD.

In addition to that, we know from algebraic topology that a simplicial map induces
well-defined homomorphisms between the homology groups (for details see lemma 6.2
page 65 of the Section 6 on “Simplicial Homology Groups” of the course [10]). Furthermore,
minimizing LVAE in Equation (5) implies to minimize the reconstruction error which allows
one to obtain injective encoder and decoder, if we neglect their probabilistic aspect (for
example by considering the means instead of the probability distributions). Thus, this
should give a bijective simplicial map. So, finally, the encoder (and decoder) would induce
isomorphisms between the homology groups given the simplicial complex, implying that
the Betti numbers, and, thus, the persistent Betti numbers, between the latent representation
and the witness complex built from the input data would be the same when the loss LWSVAE
is converging.

To conclude, this should make the Witness Simplicial VAE topology-aware by preserv-
ing relevant topological information (i.e., the persistent Betti numbers) between the input
data and its latent representation.

7.1.3. Witness Simplicial VAE

We can summarize the method of the Witness Simplicial VAE as follows:

1. Perform a witness complex filtration of the input data to obtain a persistence diagram
(or a barcode).

2. Build a witness complex given the persistence diagram (or the barcode) of this filtra-
tion, and potentially any additional information on the Betti numbers which should be
preserved according to the problem (number of connected components, 1-dimensional
holes...).

3. Train the model using this witness complex to compute the loss LWSVAE of Equation (5).

Steps one and two are pre-processing steps to compute the witness complex, then
this same witness complex is used during the whole training process for the learning part
which is step three.

For the step one we need to choose the landmarks points. The more landmarks we
have the more the witness complex will capture the topology of data, but the more the
model will be computationally expensive because of a high number of simplices to consider
in the summations over simplices when computing the simplicial regularizations. So this
choice is a trade-off between “topological precision” and computational complexity.

Then, for the step two comes the choice of the filtration radius r f iltration, this depends on
the problem and which Betti numbers are important to preserve. We assume that the latter
are actually the persistent Betti numbers. In our experiments we focused on preserving
0-homology and 1-homology since our latent space is 2-dimensional, but the method is not
limited to that: any dimensional topological features could in theory be preserved.



Mach. Learn. Knowl. Extr. 2023, 5 224

Lastly, the step three is performed through stochastic gradient descent as for the
standard VAE. The correct weights wSE and wSD should be found by grid search, in
our experiments we kept wSE = wSD for less possible combinations. The number of
samples NLambdasSamples for the estimation of the expectation with the Dirichlet distribution
needs also to be chosen, we assumed that NLambdasSamples = 10 should be enough. The
choice of NLambdasSamples is also a trade-off between the performance and the computational
complexity. Additionally, if the number of simplices in the witness complex is too high
and cannot be reduced, then for less computations one can consider only a subset of the
simplices at each batch instead of considering them all, but making sure that (almost) all
the subsets are considered within one epoch.

Finally, we can highlight that we chose to use a Witness complex for its computational
efficiency, compared to other usual simplicial complexes, such as the Čech or Vietoris–Rips
complexes. These ones could also be used in theory but would have too many simplices
to process in practice for computing the simplicial regularizations whereas the witness
complex has less simplices as it provides a topological approximation.

7.1.4. Isolandmarks Witness Simplicial VAE

Given the results presented in the next section, we developed an extension of the
Witness Simplicial VAE to obtain better latent representations. It consists of adding another
term to the loss in order to preserve some distances. Since the witness complex is con-
structed such that the landmarks points and their edges incorporate the relevant topology, it
makes sense to add a term in order to preserve the pairwise approximate geodesic distances
between the landmarks points only, instead of considering all the points of the dataset to
avoid too many computations. We were inspired by the Isomap algorithm [16] and called
this new approach “Isolandmarks Witness Simplicial VAE”. It can be seen as a Witness
Simplicial VAE, combined with Isomap applied to the landmarks points considered in the
1-skeleton of the witness complex. More precisely, it consists of the following additional
pre-processing step after having constructed the witness complex: compute the approxi-
mate geodesic distances between any two landmarks points using the graph of the witness
complex (the 1-skeleton) by summing the edges euclidean distances of the shortest path
between these two points. Then, we add to the loss of the Witness Simplicial VAE a term to
minimize the distance between this approximate geodesic distance matrix of the landmarks
points (i.e., in the input space), and the Euclidean distance matrix of the encodings of the
landmarks points (i.e., in the latent space).

Finally, if we note wiso the weight of the additional term, the loss of Isolandmarks
Witness Simplicial VAE can be written as:

LIWSVAE = LWSVAE + wiso ×
‖K(D∗)− K(D)‖F

l
(6)

With:

• LWSVAE the loss of the Witness Simplicial VAE.
• l the number of landmarks.
• ‖.‖F the Frobenius norm.
• D∗ the approximate geodesic distance matrix of the landmarks points in the input

space computed once before learning.
• D the Euclidean distance matrix of the encodings of the landmarks points computed

at each batch.
• K the Isomap kernel defined as K(D) = −0.5(I − 1

l A)D2(I − 1
l A) with I the identity

matrix and A the matrix composed only by ones.
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7.2. Results

This method is quite consistent when changing the neural network weights initializa-
tion as we can see in Figure 19, which shows the results for a model applied to the open
cylinder dataset trained for only 100 epochs. We can see that the Betti numbers are pre-
served (one connected component and one 1-dimensional hole). However there are some
discontinuities in the latent representation so the whole topology is not preserved. The
impact of this discontinuity on the reconstruction is much less important when the model is
trained more like in the Figure 20 (see the blue region). This figure is a representative result
given by a Witness Simplicial VAE trained on 1000 epochs. We can see that the results are
similar between the training set and the unseen test set.

However, in rare cases with the same hyperparameters than Figures 19 and 20, we can
obtain much less satisfactory results for some other neural network weights initialization
as exposed in Appendix D. Although the latent representation and the reconstruction can
have discontinuities, the persistent Betti numbers are still preserved (β0 = 1 and β1 = 1).

For the swissroll dataset, the Witness Simplicial VAE with the hyperparameters we
have tried fails to preserve the persistent Betti numbers. The best results are similar and
look like the ones in Figure 21 which are not satisfactory: the latent representation has
β0 = 1 as expected but β1 = 1 instead of 0. Indeed, because of an overlapping between the
beginning and the end of the swissroll, we can see that a 1-dimensional hole appeared in the
latent representation although the input data does not have that. The reconstruction is bad
but this can be explained by the small number of epochs used here. However, we can say
again that the method is also consistent with the swissroll dataset since the results are not
really affected when changing only the neural network weights initialization. Furthermore,
the results are very similar to the best we can obtain with a standard VAE (like in Figure 13).

Regarding the overlapping problem encountered with the swissroll dataset, we can
see in Figure 22 that Isolandmarks Witness Simplicial VAE manages to solve it. Indeed,
geometric information can help for retrieving the correct topology and with this approach
the previously encountered overlapping in the latent representation of the swissroll is better
avoided although the reconstruction is not perfect.

Finally, the main conclusion from these results is that with the Witness Simplicial
VAE, the persistent Betti numbers, between the input and the latent space, do not decrease
although they can increase. In other words, the holes in the input space are recovered in the
latent space, but new holes can appear in the latent space although they were not existing
in the input space. However, the extended version, that is Isolandmarks Witness Simplicial
VAE, manages to preserve the persistent Betti numbers for the dataset considered.

(a) (b)

Figure 19. Cont.
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(c) (d)

(e) (f)

Figure 19. Witness Simplicial VAE applied to the open cylinder after 100 epochs, each row is a
different neural network initialization: latent representations of the training set on the left and
corresponding reconstruction on the right. Hyper parameters: batch size = 128, 10 landmarks,
r f iltration = 6, weights wSE = wSD = 10. (a) Latent representation. (b) Reconstruction. (c) Latent
representation. (d) Reconstruction. (e) Latent representation. (f) Reconstruction.

(a) (b)

Figure 20. Cont.
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(c) (d)

(e) (f)

Figure 20. Witness Simplicial VAE applied to the open cylinder after 1000 epochs: training set (left)
and test set (right), latent representation (1st row) and reconstruction (2nd and 3rd rows). Hyper
parameters: batch size = 128, pytorchseed = 6, 10 landmarks, r f iltration = 6, weights wSE = wSD =

10. (a) Latent representation (training set). (b) Latent representation (test set). (c) Reconstruction
view 1 (training set). (d) Reconstruction view 1 (test set). (e) Reconstruction view 2 (training set).
(f) Reconstruction view 2 (test set).
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(a) Loss after 100 epochs (b) Latent representation

(c) Reconstruction (view 1) (d) Reconstruction (view 2)

Figure 21. Witness Simplicial VAE applied to the swissroll after 100 epoch: loss (a), latent representa-
tion of the training set (b), and reconstruction of the training set (c,d) from different views. Hyper
parameters: batch size = 128, pytorchseed = 1, 32 landmarks, r f iltration = 6, weights wSE = wSD = 10.
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(a) Loss (b) Latent representation

(c) Reconstruction (view 1) (d) Reconstruction (view 2)

Figure 22. Isolandmarks Witness Simplicial VAE applied to the swissroll after 500 epoch: loss (a),
latent representation of the training set (b), and reconstruction of the training set (c,d) from different
views. Hyper parameters: batch size = 128, pytorchseed = 1, 32 landmarks, r f iltration = 6.12, weights
wSE = wSD = 10 and wiso = 0.001.

8. Discussion

As we have seen, our first method “InvMap-VAE” is quite simple and works very
well, but relies on a given embedding. This dependence might be problematic for example
if this embedding comes from a dimensionality reduction technique that is not scalable
or not topology-aware with more complex datasets. Additionally, it is data-dependent,
that is InvMap-VAE trained with the embedding of a particular dataset might not give a
meaningful latent representation when applied to another dataset, although it worked well
on unseen test data points sampled from the same distribution than the training set. Thus,
for a new dataset coming from a different manifold, the embedding of the new dataset
might need to be given in order to learn the corresponding InvMap-VAE.

On the other side, our second method “Witness Simplicial VAE” is designed to be a
topology-aware VAE independent of any other dimensionality reduction method or any
embedding. On the contrary to the Topological AE [26], a limitation of our method is that
it does not necessarily allow us to preserve multi-scale topological features, but it aims
to preserve the topological features across multiple homology dimensions of a chosen
scale corresponding to the choice of the filtration radius. It is interesting in a theoretical
point of view since our method is justified with tools from computational topology that
are not commonly used in the machine learning community. However, the work is still
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in progress since the experimental results are not completely satisfying, in particular for
the swissroll dataset that is not well unrolled in the latent representation. A difficulty
with this method is to find the right hyper parameters: the number of landmarks and how
to choose them, the filtration radius to build a relevant witness complex, the number of
samples NLambdasSamples for the Monte Carlo estimation of the expectation with the Dirichlet
distribution to compute the simplicial regularizations, and the weights wSE and wSD of the
latter in the loss. The model can be quite sensitive to these hyper parameters and lead to
different latent representations. However, once these hyper parameters are fixed, the model
is quite stable to the initialization of the neural network weights on the contrary to the
standard VAE. Regarding the choice of the landmarks points, we made it uniformly random
among the data points, but if the data density is highly heterogeneous then this could
be problematic. In such case we might end up with no landmarks points in low-density
regions and the topology would not be well captured by the witness complex. That is why
a better way of choosing the landmarks points could be investigated. The more landmarks
points are used, the more the topology can be captured and preserved, but the more it is
computationally expensive.

9. Conclusions

This paper has presented two different approaches to make variational auto-encoders
topology-aware: InvMap-VAE and Witness Simplicial VAE.

InvMap-VAE is a VAE with a similar latent representation to a given embedding,
the latter can come from any dimensionality reduction technique. This means that if the
topology is preserved in the given embedding, then InvMap-VAE is also topology-aware.
Indeed, we successfully managed to preserve the topology with a Isomap-based InvMap-
VAE for two different manifolds which were the open cylinder and the swissroll datasets.
Moreover, the learned encoder of InvMap-VAE allows one to map a new data point to the
embedding, and the learned decoder provides an inverse mapping. Thus, it allows one
to turn the dimensionality reduction technique into a generative model from which new
data can be sampled. An interesting future work direction would be to apply this method
to real world datasets and incorporate the «parametric» Riemannian metric developed by
Arvanitidis in [41] into InvMap-VAE in order to perform interpolations in the latent space.
This would be a way to learn a Riemannian metric, using the «pull-back metric» of the
decoder, and compute the geodesics in a latent space that is similar to the embedding given
by any dimensionality reduction technique.

Witness Simplicial VAE is a VAE with a simplicial regularization computed using a
witness complex built from the input data space. This second method does not depend on
any embedding, and is designed such that relevant topological features called persistent
Betti numbers should be preserved between the input and the latent spaces. We justified
the theoretical foundations of this method using tools from algebraic topology, and noticed
that it preserved the persistent Betti numbers for one manifold but not for the other one.
For the open cylinder dataset, the persistent Betti numbers were indeed preserved, but we
could notice that this was not enough to preserve the continuity. However, even in the
failure case with the swissroll dataset, the results were consistent and not as dependent
as the standard VAE on the initialization of the neural network weights, providing some
stability. Finally, with Isolandmarks Witness Simplicial VAE we proposed an extension of
this method that allows to better preserve the persistent Betti numbers with the swissroll
dataset. We leveraged the topological approximation given by the witness complex to
preserve some relevant distances, that is the pairwise approximate geodesic distances of
the landmarks points between the input and the latent spaces. Future work could be to
try a simplicial regularization computed through other kind of simplicial complexes, for
example with a k-nearest-neighbours witness complex as used in [42].

Finally, other future work directions could be to investigate if such topology-aware
VAEs are more robust against adversarial attacks as suggested in [43].
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AE Auto-Encoder
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ELBO Evidence lower bound
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s.t. such that
TDA Topological Data Analysis
UMAP Uniform Manifold Approximation and Projection
VAE Variational Auto-Encoder
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Appendix A. Variational Auto-Encoder Derivations

Appendix A.1. Derivation of the Marginal Log-Likelihood

Here is the derivation of the formula of the marginal log-likelihood log pθ(x) to make
the ELBO (evidence lower bound) expression appear like in [23]:

log pθ(x) =
∫

Ωz
qφ(z|x) log pθ(x)dz

= Eqφ(z|x) log pθ(x)

= Eqφ(z|x) log
pθ(x, z)
pθ(z|x)

= Eqφ(z|x) log
pθ(x, z)qφ(z|x)
qφ(z|x)pθ(z|x)

= Eqφ(z|x) log
pθ(x, z)
qφ(z|x)

+Eqφ(z|x) log
qφ(z|x)
pθ(z|x)

= Lθ,φ(x) + DKL(qφ(z|x)||pθ(z|x))

https://github.com/anissmedbouhi/master-thesis
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Appendix A.2. Derivation of the ELBO

Below is the derivation of the ELBO expression that explicits the objective function to
optimize in a VAE:

Lθ,φ(x) = Eqφ(z|x) log
pθ(x, z)
qφ(z|x)

= Eqφ(z|x) log
pθ(x|z)pθ(z)

qφ(z|x)

= Eqφ(z|x) log pθ(x|z) +Eqφ(z|x) log
pθ(z)

qφ(z|x)

= Eqφ(z|x) log pθ(x|z) +
∫

Ωz
qφ(z|x) log

pθ(z)
qφ(z|x)

dz

= Eqφ(z|x) log pθ(x|z)− DKL(qφ(z|x)||pθ(z))

Appendix B. UMAP-Based InvMap-VAE Results

(a) Original swissroll data set (b) UMAP embedding (nearest
neighbours parameter set to 100)

(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

Figure A1. Cont.
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(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure A1. UMAP-based InvMap-VAE applied to the swissroll data set, weightIM = 10 and trained
for 1000 epochs. Betti numbers β0 = 1 and β1 = 0 are preserved between the original dataset (a), the
latent representation ((c) for training and (e) for test), and the reconstruction ((d) for training and
(f) for test). Latent representations are similar to the UMAP embedding.

Appendix C. Illustration of the Importance of the Choice of the Filtration Radius
Hyperparameter for the Witness Complex Construction

(a) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6 and 32 landmarks (view 1)

(b) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6 and 32 landmarks (view 2)

Figure A2. Cont.



Mach. Learn. Knowl. Extr. 2023, 5 234

(c) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6.5 and 32 landmarks

(view 1)

(d) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6.5 and 32 landmarks

(view 2)

Figure A2. Examples of bad witness complexes (WC) constructions for the Swissroll. On the top (a,b),
the built witness complex is bad because it has two connected components instead of one. On the
bottom (c,d), the witness complex is bad again, but because the radius filtration chosen is too high.

Appendix D. Bad Neural Network Weights Initialization with Witness Simplicial VAE

(a) (b)

Figure A3. Cont.
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(c) (d)

Figure A3. Worse results of the Witness Simplicial VAE applied to the open cylinder after 200 epochs,
each row is a different neural network initialization: latent representations of the training set on the
left and corresponding reconstruction on the right. Hyper parameters: batch size = 128, 10 landmarks,
r f iltration = 6, weights wSE = wSD = 10. (a) Latent representation. (b) Reconstruction. (c) Latent
representation. (d) Reconstruction.
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