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N. Multimodal AutoML via

Representation Evolution. Mach.

Learn. Knowl. Extr. 2023, 5, 1–13.

https://doi.org/10.3390/

make5010001

Academic Editor: Andreas

Holzinger

Received: 2 November 2022

Revised: 1 December 2022

Accepted: 15 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Multimodal AutoML via Representation Evolution
Blaž Škrlj 1,*,† , Matej Bevec 1,† and Nada Lavrač 1,2,*
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Abstract: With the increasing amounts of available data, learning simultaneously from different
types of inputs is becoming necessary to obtain robust and well-performing models. With the advent
of representation learning in recent years, lower-dimensional vector-based representations have
become available for both images and texts, while automating simultaneous learning from multiple
modalities remains a challenging problem. This paper presents an AutoML (automated machine
learning) approach to automated machine learning model configuration identification for data
composed of two modalities: texts and images. The approach is based on the idea of representation
evolution, the process of automatically amplifying heterogeneous representations across several
modalities, optimized jointly with a collection of fast, well-regularized linear models. The proposed
approach is benchmarked against 11 unimodal and multimodal (texts and images) approaches on
four real-life benchmark datasets from different domains. It achieves competitive performance with
minimal human effort and low computing requirements, enabling learning from multiple modalities
in automated manner for a wider community of researchers.
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1. Introduction

With the increasing amounts of available computing power, the design, development,
and deployment of systems capable of automatic machine learning model configuration
identification are becoming a widespread practice. The currently prevailing paradigm
studying the design of such systems is that of automated machine learning—the field
of AutoML. In recent years, this relatively new field has seen substantial progress; since
some of the first AutoML systems, such as auto-scikit and similar, extensive efforts have
been devoted to better understanding the behaviour of such systems when exposed to
real-life scenarios, where different types of data can be simultaneously present alongside
background (prior) knowledge, capable of speeding up the subsequent optimization.

Even though many existing approaches already solve the problem of identifying
the approximately optimal configuration of a given learning algorithm for tabular data,
the development of AutoML systems suitable for operation on heterogeneous data is still
a challenge, where the representation of the data most suitable for learning is not necessarily
given up-front. The solution proposed in this paper is a scalable multimodal AutoML sys-
tem, specifically adapted to operate in low-resource settings, with no specialized hardware
required. The main contributions are summarized as follows.

1. We propose MuRE (Multimodal Representation Evolution), an AutoML system for
low-resource multimodal classification based on the idea of representation evolution.

2. The proposed system is evaluated on a collection of four real-life multimodal datasets,
which include both text and image-based data.

3. The performance is compared against strong baselines, such as MobileNets and BERT,
including fused inputs of the spaces obtained by such models. Qualitative aspects of
the final (evolved) representations are also considered.
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4. Theoretical properties of MuRE are discussed alongside the current limitations of
the approach.

The paper is structured as follows. The related work is presented in Section 2.
The proposed MuRE algorithm for multimodal representation evolution is presented in
Section 3, followed by its experimental evaluation in Sections 4 and 5. The conclusions and
a discussion of the impacts of this work are presented in Section 6.

2. Related Work

In this section, we discuss the notion of automated learning—the study of creating
systems capable of solving a given task with minimal human intervention. The process of
machine learning and representation learning, regardless of it being of symbolic or neural
nature, is in most cases governed by hyperparameters, i.e., tunable variables that impact the
learning progress/properties [1]. With the increasing availability of computing power,
manual tuning of hyperparameters is gradually being overtaken by automatic procedures,
i.e., meta-learning algorithms. The purpose of this second layer of learning is to automate
the redundant and time-consuming manual optimization of a learning algorithm and
rely more on the available computing resources—currently, the amount of computing
power available to a common user is increasing, even though this might not remain the
case [2]. The notion of meta-learning can be understood as learning from prior experience
in a systematic manner [3,4]. Even though general (naïve) solutions for meta-learning tasks
are—due to the no free lunch theorem—practically impossible [5], optimization within
subspaces of the relevant solution space can lead to efficient and scalable solutions. For
example, when designing a routing search engine, by incorporating the historical data on
city-to-city traversals, the algorithm designers do not need to treat all candidate paths as
equiprobable and can jump-start the search from the existing solution(s). Furthermore,
greedy search is also commonly used to drastically reduce the space size, even if it neglects
parts containing reasonable solutions. The development of systems capable of automatic
model configuration and data preprocessing has been an active research area in the last
few years. We refer to a system capable of automatic model tuning/data configuration as
an AutoML system [6]. Examples of existing AutoML systems which have already shown
promising performances include autoWEKA [6], auto-sklearn [7], and TPOT [8]. Many
AutoML systems can be understood as search across a non-convex configuration space
comprised of configurations/representations.

In recent years, substantial research effort has been focused on designing and opti-
mizing AutoML systems for different domains. Widely used AutoML libraries include for
example TPOT [8], OBOE [9], H2O AutoML (https://github.com/h2oai/h2o-3, accessed
25 September 2022), FLAML [10], ML-Plan [11], auto-XGBoost [12], GAMA [13], and others.
Even though the early systems focused primarily on tabular data due to the previously
available algorithm libraries for this domain, other less structured data sources are being
actively explored. Examples include, e.g., automatic exploration of neural network topolo-
gies for the task of computer vision [14], graph neural network topologies for relational
regression/classification [15]. Furthermore, meta-learning packages built around widely
used deep learning libraries, such as Keras, have also gained popularity in recent years
(Auto-Keras) [16]. Recently, many novel AutoML methods have been introduced and of-
fered in a form usable to machine learning practitioners. For example, auto-sklearn [7] and
autoWEKA [17] (WEKA—Waikato Environment for Knowledge Analysis) are approaches
for automatic learning from tabular data. Their goal is to minimize the user’s input during
hyperparameter tuning and model selection, which they achieve via Bayesian optimization.
Further, the process of identifying a suitable deep learning architecture was shown to
be suitable for optimization; an example is the NASnet project [18], where large-scale
exploration of neural network architectures is conducted automatically.

The field of neural architecture search has grown significantly in recent years [19].
Finally, recent trends indicate that understanding the transferrability in the latent space
might offer novel and faster ways for neural network model training. An example of

https://github.com/h2oai/h2o-3
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this new paradigm is dataset2vec [20]. Leveraging semantic annotations of systems for
better problem-specific learning has also been explored recently. OMA-ML [21] is a recent
method that leverages a dedicated ML ontology for guiding the AutoML process itself. It
enables exploitation of useful prior knowledge and with it enables faster search, followed
by automated generation of reports.

One of the algorithm groups which have stood the test of time is genetic algorithms,
which are part of a broader spectrum of methods termed evolutionary computation. These
algorithms mimic the behaviour of, e.g., cell division/DNA replication and offer a highly
parallelizable metaheuristic optimization procedure suitable for most optimization prob-
lems. Even though there are no real guarantees regarding their general performance (the no
free lunch theorem [5]), they consistently offer a simple-to-implement and efficient automa-
tion of many real-life optimization endeavours. Moreover, with the increasing amounts of
available computing resources, the relevance of this and similar types of algorithms are
gaining traction in the broader machine learning community. This branch of algorithms
has been considered since the 1980s [22].

Later developments in this field focus more on multi-objective optimization of the
exploration of Pareto fronts, efficient implementations and scalability [23,24]. Their appli-
cations are becoming increasingly more relevant due to the larger amounts of available
computing resources available. Practical applications include energy management [25], and
recent autonomous driving research [26]. Genetic algorithms are the main optimization
paradigm considered in this paper.

We finally discuss some of the recent advances in multimodal machine learning that
impacted this contribution. A recent AutoML approach considered tabular data with
intermediary text fields [27]—they applied transformer-based neural networks for feature
construction, jointly optimized to achieve human-level competition performance. Further,
a recent benchmark that focuses on tabular data, which includes text-based information,
was proposed [28] to further the understanding of how AutoML systems perform in
such settings. Currently, most solutions considering multimodal data are based on deep
learning [29], due to its capacity for representation learning of texts and images. The recent
advancements in the field of multimodal AutoML indicate that jointly considering different
representation types is a promising research endeavour. This paper builds on these ideas,
extending the search to the space of images and texts.

3. MuRE: Multimodal Representation Evolution

We next discuss the proposed MuRE approach. We begin by discussing the idea of
representation evolution (summarized in Figure 1), followed by the formal overview and the
description of the final version of the proposed system.

Conceptually, the AutoML we henceforth refer to as MuRE consists of two main
conceptual steps: representation learning and configuration search. Both steps are simulta-
neously considered as part of evolution—we adopt the approach commonly referred to as
evolution strategies [30] due to its compatibility with real-valued inputs (weights of feature
spaces). This work builds on the recent implementation of this idea focused exclusively
on text-based datasets [31]. The main reason the implementation was considered as the
main building block is due to its capability for handling sparse and dense matrices simul-
taneously, and, further, considering learning algorithms that do not induce substantial
memory overheads (which is a common caveat). For example, sparse matrices are common
when dealing with symbolic representations (e.g., bags of tokens), however, dense ones are
commonplace for document/image embeddings. The minimization problem addressed by
the evolution can be in its general form stated as follows:

Solution ≈ arg min
Θ∈algorithmSpace
×hyperParamSpace
×transformationSpace

E
[

LOSS(learnerClass, Θ, data)
]
.
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my stapler is about to cry he 
just gets his head punched all day

Final classifier
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evolution

Text representations

Image representation

Figure 1. An overview of the proposed MuRE architecture. Different types of inputs (images, texts)
are transformed into suitable representations (either embeddings or sparse matrices corresponding
to, e.g., n-gram-based features). The representations are used to construct joint representation space
that is iteratively re-weighted by evolution strategies. The final result is a re-weighted feature space
alongside fine-tuned classifiers (hyperparameters are tuned for each obtained join representation).

The stated problem is a generalization of the one discussed in [6], which considers
the space of possible transformations; this space includes, e.g., dimensionality reduction
and embedding construction. The proposed representation evolution process denotes
the process of iterative re-weighting of different data representations and simultaneous
evaluation for a given task (e.g., classification). The evolution here is the optimization
procedure that enables exploration of differently-amplified representations and the effect
of this amplification on the learning performance (fitness function outputs a score based on,
e.g., cross validation). Intuitively, MuRE attempts to find the right balance between different
representations considered, enabling automated prioritization of feature spaces of different
types (sparse and dense). Note that the expected value of the loss function for a given
configuration Θ is commonly estimated via cross-validation. Even if the stated criterion
addresses the construction of the final learner, note that if the LOSS is not representative, the
solution obtained as the result of the minimization will not necessarily generalize/perform
well on unseen data. Note that the LOSS function is task-independent. We next discuss the
core components in more detail.

3.1. Representation Learning Phase

The notion of representation learning is becoming of central relevance in many do-
mains of machine learning (and beyond). By deriving machine-readable representations
of raw input types (such as texts), subsequent learning can be substantially faster, and the
representations can be more easily transferred. The MuRE’s initial phase corresponds to the
construction of a multitude of different document and image representations, summarized
in Table 1. Note that all representation types are automatically considered; however, if
a given representation appears as irrelevant, it will be discarded by the method.
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Table 1. Representations of documents and images considered by MuRE.

Feature Type Description Representation Type

Concept-based features Features based on triplet groundings symbolic
Relational tokens Tokens at a given distance symbolic
Relational characters Characters at a given distance symbolic
Relational bi-grams Character pairs at a given distance symbolic
Topics TF-IDF matrix, transposed and clustered (topics) symbolic
Keywords Keyword-based features symbolic
Words Word n-grams symbolic
Characters Character n-grams symbolic
Contextual MPNet-based document embeddings sub-symbolic
Image embeddings Obtained with CLIP [32] sub-symbolic
Document graph Jaccard-based document graph’s node embeddings sub-symbolic

The reader can observe that both symbolic and sub-symbolic feature types are con-
sidered. Consideration of such hybrid spaces results in high-dimensional, mostly sparse
feature spaces. All evolution and subsequent learning steps operate with sparse matrices
to ensure a low memory footprint.

3.2. Representation Evolution

Once the initial representations are constructed, the performance of a series of linear
classifiers is first used to establish the initial real-valued weights of individual spaces—for
each of the spaces, a score based on cross-validation is obtained and used as the initial
weight. Once all weights are obtained, the evolution proceeds by iteratively perturbing
the weights and, for each such perturbation, evaluating a collection of linear classifiers
characterized by different loss functions, regularization, and other hyperparameters. The
hyperparameters depend on the learning algorithm selected; for linear learners, these
hyperparameters include different types of regularizations (L1, L2) and penalty terms
(known as alpha parameter). This step is computationally efficient, hence a larger space
of classifiers can be explored jointly with each feature weight perturbation. The evolution
stores intermediary checkpoints that are useful for either transferring the current set of
weights to a new learning scenario or continuing with an existing optimization. The error
term considered by stochastic gradient descent is:

ERR(w, b) =
1
|D|

|D|

∑
i=1
L(yi, wTxi + b)︸ ︷︷ ︸
Loss term

+α

[
1− β

2

|D|

∑
i=1

w2
i︸ ︷︷ ︸

L2

+ β
|D|

∑
i=1
|wi|︸ ︷︷ ︸

L1

]
,

where y is the target vector, xi the i-th instance, w is a weight vector, L is the considered loss
function, and α and β are two numeric hyperparameters: α represents the overall weight of
the regularization term, and β the ratio between L1 and L2. The loss functions considered
are the hinge and the log loss. In the final stage of optimization, an extended space of
classifiers is explored (in parallel), to obtain the final representation-learner configuration.
Each such configuration can be stored as a compressed object, making the outputs of
MuRE runs easily transferable. Current implementation of MuRE supports different
evaluation regimes; the default one is stratified cross validation (fivefold). Furthermore,
the weights corresponding to individual feature spaces are real valued vectors that are
transferable between different learning tasks. This way, a single, longer AutoML run can
provide valuable initial conditions for subsequent runs, and, as such, reduce the number of
generations required to obtain feasible solutions.

4. Experiments

This section discusses the experimental setting used to evaluate MuRE’s performance
on real-life multimodal datasets against strong (and weak) baselines.
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4.1. Datasets

We evaluate the performance of our approach on the task of multimodal classifica-
tion from images and associated texts on five different datasets. A short overview of
the considered datasets is provided in Table 2. Tasty Recipes [33] is a small collection of
recipes, represented by a textual document, including the ingredient list and preparation
instructions, and an image of the described dish. Each recipe is classified as one of 25 food
categories, such as “tacos”. Caltech Birds [34] is a multimodal extension of Caltech-UCSD
Birds (CUB-200) [35] a popular fine-grained image classification dataset with images of
birds belonging to one of 200 often visually similar species. Each image is augmented with
textual descriptions of the given bird’s physical features provided by human annotators in
this dataset.

In the above cases, data from different modalities can be seen as additional information
about instances that can help improve prediction. Fauxtography [36] and Fakeddit [37]
datasets, however, entail the task of fact-checking, which is inherently multimodal. Here,
an image–text pair can be valid, meaning the image and text convey real and matching
information. Conversely, a pair can be invalid, meaning either the image or the text are
false, misleading or manipulated, or both the image and the text are real but mismatched,
usually when a description makes a false claim about a real image. Borrowing its name
from the practice of manipulating photographs in order to deceive, Fauxtography depicts
scenes from world news gathered from Snopes, a fact-checking website with a collection of
both true and deliberately false news articles. The dataset is balanced with additional true
image-text pairs coming from the Reuters’ Pictures of the year segment. Fakeddit is collected
from specific Reddit communities (called subreddits), where, for a given instance, its source
subreddit determines its class. It offers binary, 3-way, and 6-way target variables, of which
we only consider the first—predicting whether an image–text pair is true (real) or false
(fake). Fakeddit is originally a very large dataset (1M examples). However, we take a 5 k
sub-sample to approximately match the scale of Fauxtography since we focus primarily on
small datasets. We call this dataset Fakeddit 5k.

All considered datasets are organized as follows. Each training example is represented
by one image, one textual document, and the associated target variable. We make these
datasets available in the described consistent format along with the provided code.

Table 2. Overview of the used multimodal datasets, including their size, task, and a description of
the data.

Dataset #Instances Task Data Target

Tasty Recipes [33] 271 multiclass
classification

Textual recipes and images
of the described dishes

25 food categories

Fauxtography [36] 1354 binary
classification

Images and descriptions of
world news

True if image-text
pair is factual and
matching, False
otherwise.

Fakeddit 5 k [37] 4880 binary
classification

Titles and images
associated with Reddit
posts from various
communities ("subreddits")

True if image-text
pair is factual and
matching, False
otherwise.

Caltech Birds [34] 11788 multiclass
classification

Images of various bird
species and descriptions of
their physical features

192 bird species

4.2. Baselines and Evaluation

Our work encompasses machine learning with images and text, multimodal learn-
ing, as well as AutoML. As such, we conduct experiments to compare our method to
image-only baselines, text-only baselines, including an AutoML approach and multimodal
baselines. Since the focus of our approach is quick deployment (prototyping) on a new
prediction problem with consumer-grade hardware and by users who may or may not be
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domain experts, most baselines rely heavily on transfer learning with pre-trained models.
Hyperparameters used are described below. No automated hyperparameter optimization
(e.g., grid search) was performed. The described baseline methods are implemented using
scikit-learn [38], and pytorch [39].

4.2.1. Image-Only Baselines

The following classification approaches that only consider the input image are tested:

• MobileNet + SVM
Outputs from the second-to-last layer of a pre-trained MobileNetV3 [40] model are
taken as image features and fed into a linear SVM for classification. Specifically, we
use the MobileNet V3 Large architecture, pretrained on ImageNet. We choose the
same configuration whenever MobileNet is utilized. The SVM classifier is trained
using hingle loss for a maximum of 10,000 iterations with regularization constant C = 2
and other parameters equal to scikit-learn defaults. (https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.html, accessed on 10 November 2022).

• MobileNet + NN
Outputs of the second-to-last layer of a pre-trained MobileNetV3 model are fed into
a two-layer fully-connected network for classification. The neural classifier uses
a 100-dimensional hidden layer and ReLU activation. It is trained for 30 epochs at
a base learning rate of 10−3 using the Adam optimizer [41] with an L2 penalty of 10−4.

• Fine-tuned MobileNet
The final classification layer of a pre-trained MobileNetV3 is replaced to conform to
the desired output (i.e., a single fully-connected layer). The whole network is then
fine-tuned for 20 epochs, at a base learning rate of 5× 10−4 using the Adam optimizer
with an L2 penalty of 10−4.

We chose to base our experiments on the MobileNet architecture [40] since it achieves
comparable performance to other larger state-of-the-art models, but it is significantly
smaller and faster. This falls in line with the setting of our system, which should be quickly
deployable on a consumer-grade machine. However, MobileNet could be substituted
with other architectures, such as ResNet [42] or EfficientNet [14], for marginal increases in
performance at a significant cost of computational load (The provided experimental code
includes experiments to demonstrate this).

4.2.2. Text-Only Baselines

The following classification approaches that only consider the input text are tested:

• N-grams + SVM
Word and character n-grams are TF-IDF-vectorized and fed into a linear SVM for
classification. Nine different regularization values of C (from 0.1 to 500) are tested
when training, with the best performing model being chosen for the final prediction.
Maximum iterations are set to 100,000 and other parameters equal to scikit-learn de-
faults. (https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.
html, accessed on 10 November 2022) This baseline represents a “traditional” text
classification approach.

• Fine-tuned BERT
A pre-trained BERT language model, configured as a classifier, is fine-tuned on our
data. We use the base uncased pretrained model, trained on an English language
corpus using an MLM objective [43]. The fine-tuning is performed for 20 epochs using
the AdamW optimizer [44] at a base learning rate of 4× 10−5.

• TPOT
TPOT [8,45] is an easy-to-use AutoML tool that automatically evolves scikit-learn
pipelines based on tree ensemble learners to optimize performance on a classification
task. We deploy TPOT on a vectorized word n-gram space with default settings
(http://epistasislab.github.io/tpot/api/, accessed on 1 November 2022).

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://epistasislab.github.io/tpot/api/
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4.2.3. Multimodal Baselines

We also consider several common multimodal approaches that combine information
from images and texts using both early fusion and late fusion.

• Late fusion (sum)
An image-only classifier (MobileNet + SVM) and a text-only classifier (N-grams +
SVM), both as described above, are trained independently. Class probability distribu-
tions are extracted from both models and combined by a sum. Combined probability
for class i is defined as:

P(i) = so f tmax(Pimg(i) + Ptxt(i))

• Late fusion (max)
Class probabilities are obtained from both models and combined by a maximum.
Combined probability for class i is defined as:

P(i) = so f tmax(max(Pimg(i), Ptxt(i)))

• Early fusion + SVM
Image features are extracted with a MobileNetV3 model, much like in Section 4.2.1.
Text features are extracted using a pre-trained Sentence-BERT sentence embedding
model [46], trained using a multilingual MPNet objective [47]. Features from both
modalities are then concatenated and fed into a linear SVM for prediction. The SVM
classifier is trained for a maximum of 1000 iterations with C = 2.

• Early fusion + NN
Again, image features are extracted with a MobileNetV3 model and text features
are extracted using a Sentence-BERT model. Features from both modalities are then
concatenated and fed into a two-layer fully-connected network. The neural classifier
uses a 100-dimensional hidden layer and ReLU activation and is trained for 30 epochs,
at a base learning rate of 10−3 using the Adam optimizer with an L2 penalty of 10−4.

We consider a MuRE baseline, given at most one hour for training. The variant adopts
minority class upsampling (addition of artificial instances up to the point of uniform
distribution of labels). We hypothesized that by considering upsampling, the MuRE’s
classifier layer (linear) could perform better.

5. Results

This section presents the classification performance results across different
considered datasets.

5.1. Quantitative Results

The overview of the results is shown in Table 3.
Overall, the results can be summarized as follows. The proposed MuRE performs on

average the best (3.25 average rank), followed by BERT (4.5) and late fusion via summation
(4.5). The early fusion did not perform as well (ranked 5th on average). The results indicate
that multimodal approaches dominate, which indicates that the considered problems are
indeed best solvable by considering both modalities. The proposed MuRE performs subpar
on fakeddit dataset, however, is very competitive on other datasets. It outperforms all
other approaches on caltech-birds dataset; this dataset requires that approaches learn
from very few instances per label, indicating MuRE’s data efficiency. Another observation
is that multimodal models always outperform image-only models. There is no clear
winner in terms of considering early or late fusion. Overall, AutoML approaches are
on average ranked high. Detailed benchmark is specified as part of the Supplementary
Material. Furthermore, results also indicate sub-optimal performance on the Fakeddit
(I+T) dataset. The best-performing method for this dataset was a text-only BERT-based
model. For this task, the follow-up results were obtained by considering early fusion
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(combining embeddings). This result indicates that a focused combination of sub-symbolic-
only representations can offer competitive results. The worse performance of MuRE on this
task can be attributed to potential noise introduced by considering high-dimensional sparse
spaces alongside sub-symbolic ones; it is possible that the symbolic part of the space did not
encode the relevant information present in embeddings, and, thus, impacted the learning
in a negative manner. The task itself is defined as binary classification of whether a given
text+image combination is factual. Given that MuRE considers also knowledge-graph-based
representations, it is possible this part of information, due to imperfect mapping, offers
incomplete information (note that only text titles are given, which might not have been
enough in this case). Should the best-performing (for this task) BERT model capture these
relations better, this is a possible explanation for better performance.

Table 3. Classification results—10 fold cross validation, same seed for all methods (420). Green cells
denote either first or second rank for a given dataset (I = images, T = texts).

Metric Macro F1 Accuracy Precision Recall
Approach/Data Set Recipes Faux Fake Birds Recipes Faux Fake Birds Recipes Faux Fake Birds Recipes Faux Fake Birds

Majority classifier 0.002 0.354 0.378 0.0 0.03 0.547 0.608 0.002 0.001 0.274 0.304 0.0 0.042 0.5 0.5 0.005
(I) MobileNet + SVM 0.623 0.683 0.712 0.699 0.671 0.685 0.726 0.702 0.667 0.684 0.713 0.708 0.646 0.684 0.713 0.707
(I) MobileNet + NN 0.423 0.745 0.742 0.692 0.476 0.748 0.754 0.694 0.471 0.747 0.742 0.707 0.473 0.745 0.742 0.7
(I) Fine-tuned MobileNet 0.512 0.354 0.378 0.192 0.568 0.547 0.608 0.199 0.567 0.274 0.304 0.23 0.554 0.5 0.5 0.202
(T) N-grams + SVM 0.852 0.801 0.753 0.602 0.875 0.805 0.768 0.618 0.872 0.807 0.758 0.611 0.889 0.799 0.75 0.624
(T) Fine-tuned BERT 0.777 0.813 0.829 0.593 0.804 0.818 0.836 0.595 0.814 0.825 0.828 0.613 0.819 0.811 0.83 0.597
(T) TPOT 0.861 0.791 0.732 0.612 0.889 0.803 0.75 0.617 0.877 0.832 0.739 0.632 0.889 0.788 0.729 0.622
(I+T) Late fusion (sum) 0.79 0.76 0.773 0.781 0.822 0.764 0.786 0.782 0.813 0.765 0.777 0.789 0.818 0.758 0.771 0.787
(I+T) Late fusion (max) 0.73 0.76 0.773 0.762 0.771 0.764 0.786 0.764 0.761 0.765 0.777 0.771 0.763 0.758 0.771 0.769
(I+T) Late fusion (stacking) 0.711 0.72 0.781 0.768 0.756 0.722 0.792 0.768 0.751 0.72 0.783 0.779 0.739 0.72 0.78 0.773
(I+T) Early fusion + NN 0.5 0.796 0.82 0.694 0.568 0.801 0.828 0.697 0.534 0.806 0.82 0.704 0.568 0.794 0.821 0.701
(I+T) Early fusion + SVM 0.746 0.784 0.816 0.721 0.808 0.788 0.824 0.726 0.782 0.789 0.816 0.728 0.773 0.783 0.817 0.732
(I+T) MuRE-1h 0.913 0.812 0.766 0.911 0.952 0.817 0.776 0.948 0.911 0.824 0.773 0.911 0.923 0.813 0.773 0.919

The overall results indicate that automated representation learning serves as a strong
baseline against strong competitors based on single modalities. Furthermore, it outperforms
other commonly adopted fusion approaches, making it a strong baseline for multimodal
tasks considered. To better understand whether the multimodal representation space
already reflects the class structure, we further visualized the 2D projection [48] of the
high-dimensional space, colored by the class assignments. The result is shown in Figure 2.

Figure 2. Visualization of the projection of multimodal latent space (I+T) for the tasty dataset.

The visualization demonstrates that the joint representation space already segments
the space of instances according to class assignments. Even though some of the classes are
less well separated, relatively many denser clusters emerge.
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5.2. Ablation Study—Subspace Importances

The proposed MuRE approach builds on the idea of representation evolution, the pro-
cess of iteratively re-weighting differently-typed feature subspaces. The results can be
interpreted—the larger the subspace weight, the more apparent its impact on the linear
learning layer considered for final classification. Visualized importances for tasty dataset
are shown in Figure 3.
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Figure 3. Weights of different feature subspaces—tasty. For this dataset, image-only classifiers
perform poorly—this is also apparent in the joint space considered by MuRE; here, image embeddings
have low final weights relative to text-based ones. Character and token features are the most relevant
for this problem (text-only learning is a strong baseline).

Figure demonstrates MuRE’s capability to offer not only automated learning from
multi-modal inputs, but also some degree of explainability. This type of ablation is part of
the automatically generated report, and, as such, enables the machine learning practitioner
to directly inspect the impact of different data types, but also detect potential issues with
them early on (before spending more time on modeling). The visualizations are generated
automatically with regards to feature subspaces considered for learning.

The weights can be transferred between the experiments—this way, task transfer is
possible. Apart from being able to transfer weights and use them as priors for subsequent
runs, this space can also be used to understand why different tasks group together/are
similarly hard to solve.

6. Conclusions

In this paper, we proposed an AutoML system for multimodal classification; the
considered modalities were texts and images. We first demonstrated that both types of
inputs, when considered from a representation learning perspective, function as a part of
representation evolution, the idea of iterative representation refinement at a task level. We
demonstrated that representation evolution performs on-par with strong baselines that
consider a single modality but also multimodal baselines. As such, MuRE offers an easy-to-
implement baseline that is nontrivial to beat, expanding the realm of multimodal learning
to practitioners not well versed in this field. Furthermore, the proposed method does not
require any specialized hardware, and is, as such, suitable for performing experiments
on personal machines. This paper also offers an extensive comparison of the behaviour
of multimodal vs unimodal methods. The results indicate that multimodal methods on
average perform better. Further, the dependency of a method’s success on either of the
modalities considered is dataset dependent, even though unimodal solutions perform, on
average, worse. Identifying the correct ratio between the extents to which either of the
modalities is considered is a challenging problem; however, based on the current results,
solvable via representation evolution.
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As part of further work, we will extend the MuRE to operate with other modalities,
including sound, knowledge graphs (subject–predicate–object triplets) and similar rela-
tional data. Furthermore, a sensible research direction includes the study of meta transfer
across different modalities—does the relevance of images translate across tasks? Can such
information be used as prior knowledge to initialize subsequent optimizations? Finally,
we plan to test the approach on the newly introduced shared tasks to evaluate whether it
performs on the human levels of task solving. Finally, comparing MuRE’s performance
against computationally more intense baselines, such as end-to-end CLIP [32], is a sensible
research direction.

The proposed MuRE substantially lowers the knowledge required by a machine
learning practitioner/data scientist to inspect multimodal learning scenarios. It was built
to serve as a strong baseline that can be considered with a few lines of code, albeit offering
hard-to-beat performance. By demonstrating that multimodal inputs are suitable also for
AutoML-based learning, we believe multiple interesting applications of the tool to novel
datasets are possible.

Supplementary Materials: The following are available online at https://github.com/MatejBevec/
mmlearn.
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