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Abstract: Climate change is expected to increase fire events and activity with multiple impacts on human
lives. Large grids of forest and city monitoring devices can assist in incident detection, accelerating
human intervention in extinguishing fires before they get out of control. Artificial Intelligence promises
to automate the detection of fire-related incidents. This study enrols 53,585 fire/smoke and normal
images and benchmarks seventeen state-of-the-art Convolutional Neural Networks for distinguishing
between the two classes. The Xception network proves to be superior to the rest of the CNNs, obtaining
very high accuracy. Grad-CAM++ and LIME algorithms improve the post hoc explainability of Xception
and verify that it is learning features found in the critical locations of the image. Both methods agree on
the suggested locations, strengthening the abovementioned outcome.

Keywords: explainable artificial intelligence; deep learning; convolutional neural networks; fire
detection; smoke detection; interpretability

1. Introduction

Climate change is responsible for many consequences, such as intense droughts, water
scarcity, rising sea levels, flooding, polar ice melting and more. Severe and catastrophic
storms have been linked to the shift in the earth’s climate. Climate change is also expected
to increase fire events and activity with multiple impacts on human lives.

Long-term shifts in environmental temperatures and weather patterns are the cor-
nerstone of climate change [1]. Although such shifts may have natural causes, such as
variations in the solar cycle, the latest 200 years of human activity have accelerated the
change of the earth’s climate [2]. The primary reason lies in coal, oil, and gas burning,
which generates greenhouse gas emissions and is connected to the greenhouse effect [3].
Carbon Dioxide (CO2) and Methane (CH4), which are usually emitted from transportation
(gasoline) and heating (coal burning), are the leading contributing gases to the greenhouse
effect. CO2 is produced by land and forest clearance, whereas CH4 is prominently produced
in landfills. Such gases are emitted from various human activity sectors, such as energy
and agriculture.

Further, increased fire activity has the potential to affect the ecosystem, accelerating
climate-induced shifts in species composition and distribution in the boreal-temperate
ecotone [4].

In the study by Krikken et al. [5], the authors observe a small and non-significant
increased probability of large forest fires in Sweden due to global warming up to 2018.
However, their predicting models demonstrate a significant risk of future fire events due to
climate change factors.

In another study by Abram et al. [6], the research team, motivated by the unprece-
dented 2019/20 Black Summer bushfire disaster in southeast Australia, investigated the
connections of climate change and variability to large and extreme forest fires in southeast
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Australia. The authors argue that the likelihood of fire events may increase rapidly due to
the multiple climate change contributors in southeast Australia.

Michetti et al. [7] consulted climate change projections for 2016–2035 to obtain the
projected forest fire frequency and total burnt areas across the Italian peninsula. They argue
that climate change is expected to increase forest fires across the peninsula.

Dealing with large forest fires and severe fire incidents in buildings and road events
requires bold funding of government structures related to disaster response. In addition
to the necessary measures to deal with critical situations, such as fire trucks, aeroplanes,
drones, and the adequate number of firefighters, prevention and rapid detection become
particularly important. Modern technology can aid in this end. Large grids of forest and
city monitoring devices can assist in incident detection, accelerating human intervention
in extinguishing fires before they get out of control. Such devices include smoke sensors,
micro-cameras, and patrolling drones.

Monitoring devices, however, generate big data (images, video frames, sensor mea-
surements), which are impossible to process directly, at least by humans. The emergence of
modern Artificial Intelligence (AI) methods enables the real-time processing of big data. As
a result, AI models can discover fire-related patterns and operate as real-time alarms.

Automatic smoke and fire event identification from patrolling drones and operating
cameras is a non-trivial task and requires a suitable model at the right time.

The present study benchmarks and evaluates state-of-the-art Convolutional Neural
Networks (CNNs) for smoke and fire identification from various images. The study aims to
distinguish the best available CNN in terms of its performance metrics and its inner obtained
knowledge. The latter requires the utilisation of explainability algorithms that reveal what
CNN has learned through its training and where it locates a vital finding (e.g., smoke).

The contributions of the study can be summarised as follows:

• The study utilises one of the largest available datasets, which is generated by merging
image data from various repositories.

• The study highlights the Inception network, which demonstrated superior perfor-
mance in distinguishing smoke and fire events from the images.

• The utilisation of explainability tools reveals that Inception seeks in the right direction
and can be reliable.

The outline of this paper is as follows: After this introduction, in Section 2, related work
is briefly presented, while material and methods are covered in Section 3. In Section 4, the
results are given. Finally, Section 5 discusses the results, while future research opportunities
are given in Section 6.

2. Related Work

There has been a plethora of research aiming to detect fire-related incidents ranging
from smoke to large-scale forest fires from various image and video sources. In addition, the
scientific community is exploring a broad field of sensor-aided smoke and fire detection [8,9].

Conventional and pioneering AI solutions have been extensively applied, including
manual image feature extraction and Machine Learning (ML) classification methods, feature
selection methods, direct image and video classification and object detection pipelines.

Here, we describe a few critical studies employing Deep Learning approaches for
detecting fire-related incidents from images and videos. A very comprehensive review of
recent literature is presented in [10].

Kim and Lee [11] proposed a Faster Region-based Convolutional Neural Network
(R-CNN) to identify fire-related suspected image areas from video sources. Using the
suggested bounding box features, the authors employed a Long Short-Term Memory
(LSTM) to distinguish between fire-related and normal. The authors constructed a dataset
of 73,887 images containing 22,729 flame, 23,914 smoke, and 27,244 non-fire images. They
achieved an accuracy of 97.2% in detecting fire and smoke regions.

Another work by Jiao et al. [12] presented an Unmanned Aerial Vehicle (UAV) setup
for real-time fire detection. They tested the well-known YOLOv3 network, the baseline
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algorithm for detecting fire-related incidents in the produced videos. The proposed method
was evaluated using 60 images and demonstrated a success rate of 83% on a more than
3.2 fps frequency.

Seydi et al. [13] employed images from Australian and North American forest regions,
the Amazon rainforest, Central Africa and Chernobyl (Ukraine), where forest fires are
actively reported. The authors presented a DL-based pipeline (Fire-Net) to detect active
fires and burning biomass. Seven hundred twenty-two patches were generated with
256 × 256 pixels representing the training, validation, and testing datasets by 469, 109,
and 144 patches, respectively. This network achieved an accuracy of 97.35% and showed
robustness in detecting small active fires.

Xue et al. [14] proposed an innovative modification of the YOLOv5 network for
detecting small forest fires from aerial images. The network was trained, validated and
tested on large forest fires (2537 train, 282 validation, and 314 test images). Then, the
authors employed transfer learning to improve the network’s training and performance in
detecting smaller fires. For the latter, the network was trained on an additional 240-image
set and tested on 30 images. The model reached a mAP@0.5 of 82.1%.

The metric-based evaluation shows remarkable results, with the accuracy in distin-
guishing between images that contain smoke/fire and typical images reaching above 97%.
Studies that perform fire-detection incidents based on object-detection models generally de-
mand large-scale and well-annotated datasets. Detailed annotations require heavy human
intervention, and, as a result, high-quality object-detection datasets are hard to find.

Therefore, image classification methods have also been proposed [15–17]. However, most
image classification works do not employ explainable networks to evaluate the networks’
ability to detect significant image findings related to the presence of smoke or fire.

There is a need for an in-depth assessment of what the DL model has learned, where it
locates the fire-related incident, and what key image samples confuse the model resulting
in False Positive and False Negative yields.

3. Materials and Methods
3.1. Deep Learning in a Nutshell

DL alludes to various ML approaches utilising many nonlinear processing units
grouped by layers to process the input information by gradually applying specific transfor-
mations. Special Neural Networks (NN) are utilised in DL’s applications related to image
feature extraction. Those networks are known as Convolutional Neural Networks (CNN),
and their name comes from the convolution operation, which is the cornerstone of such
methods. Convolutional Neural Networks (CNNs) were introduced by LeCun [18]. CNN
is a deep neural network that mainly uses convolution layers to extract helpful information
from the input data, usually feeding a final Fully Connected (FC) layer [19]. A convolution
operation is performed as a filter, a table of weights, slides throughout the input image. An
output pixel produced at every position is a weighted sum of the input pixels (the pixels
that the filter has passed from). The weights of the filter, as well as the size of the table
(kernel), are constant for the duration of the scan. Therefore, convolutional layers can seize
the shift-invariance of visible patterns and depict robust features [19]. Usually, after a set of
convolutional layers, pooling layers follow.

After several convolutional and pooling layers, one or more FC layers may aim to
perform high-level reasoning. FC layers connect all previous layers’ neurons with every
neuron of the FC layer. FC layers are not always necessary, as they may be replaced by
convolution layers of kernel size 1 × 1 [20].

The last layer of CNN is the output layer. The softmax [21] operator is a standard classifier
for CNNs. Support Vector Machine (SVM) is usually combined with CNN features [22].
Overfitting is an undesired and unneglectable situation in ML and DL. Overfitting is caused
when the network has learned too specific information and tends to over-fit the input data.
Therefore, when tested on unseen data, it deviates from the desired outcome. Regularisation
refers to a unity of different techniques to reduce the complexity and prevent the overfitting
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issue. Optimisation has been a critical component of CNNs for a long time [23]. Optimising
a DL algorithm is more sophisticated than optimising other algorithms [24]. For example,
optimising a Random Forest would involve parameter tuning and extensive evaluation tests.
In NNs, optimisation refers to parameter-tuning and specific optimisers that help training
converge by reducing the loss. The Adam [25] optimiser, for example, is one of the most
successful algorithms for image classification tasks.

Hence, optimisation algorithms utilised for training deep models differ significantly
from traditional optimisation algorithms in many perspectives.

3.2. Dataset

A precise examination of repositories for relevant images was conducted online to
identify images containing fire and smoke. Qualified images consist of the following:

(a) Images from forest fires;
(b) Image from fires caused by vehicle accidents;
(c) Indoor incidents of smoke or small fire;
(d) Fire incidents on the outside of buildings, as viewed by the streets;
(e) Smoke incidents within large forests;
(f) Smoke incidents on the road.

A total of nine repositories were selected, and 53,585 images were processed. Sources
include research institutes, laboratories, companies, and individual users. A summary
of the image sources is presented in Table 1. Table 2 provides factual information on the
nature of the dataset.

Table 1. Image sources.

Dataset DOI or LINK

FOREST FIRE IMAGE DATASET https://www.kaggle.com/datasets/cristiancristancho/forest-fire-image-dataset, accessed
on 13 September 2022

Fire-Detection-Image-Dataset https://github.com/cair/Fire-Detection-Image-Dataset.git, accessed on 13 September 2022
YOLOv3-for-custum-objects https://github.com/amineHY/YOLOv3-for-custum-objects, accessed on 13 September 2022

Fire Images Database https://www.kaggle.com/datasets/gondimjoaom/fire-images-database, accessed on
13 September 2022

Forest Fire https://www.kaggle.com/datasets/kutaykutlu/forest-fire, accessed on 13 September 2022

Wildfire Detection Image Data https://www.kaggle.com/datasets/brsdincer/wildfire-detection-image-data, accessed on
13 September 2022

Fire Dataset https://www.kaggle.com/datasets/phylake1337/fire-dataset, accessed on 13 September 2022

fire smoke dataset https://www.kaggle.com/datasets/hhhhhhdoge/fire-smoke-dataset, accessed on
13 September 2022

Dataset for Forest Fire Detection [26]
Fire and Smoke [27]
Smoke [28]

Table 2. Information regarding the dataset of the study.

Dataset Feature Description

Incidents of smoke/fire forest, vehicle, building, indoor, road, industrial buildings
and machinery

Image acquisition devices UAV, smartphone cameras, satellite images, surveillance cameras
Image Formats jpg, png, tiff, gif

Image sizes Width: 600 to 1200 pixels
Height: 500 to 1080 pixels

To populate the non-fire class, a selection of everyday images of forests, streets, offices,
and houses has been incorporated into the dataset.

A balance between the two mutually exclusive classes is crucial for network learning.
Therefore, the distribution between the two classes, namely fire/smoke and normal, is

https://www.kaggle.com/datasets/cristiancristancho/forest-fire-image-dataset
https://github.com/cair/Fire-Detection-Image-Dataset.git
https://github.com/amineHY/YOLOv3-for-custum-objects
https://www.kaggle.com/datasets/gondimjoaom/fire-images-database
https://www.kaggle.com/datasets/kutaykutlu/forest-fire
https://www.kaggle.com/datasets/brsdincer/wildfire-detection-image-data
https://www.kaggle.com/datasets/phylake1337/fire-dataset
https://www.kaggle.com/datasets/hhhhhhdoge/fire-smoke-dataset


Mach. Learn. Knowl. Extr. 2022, 4 1128

carefully selected. Henceforth, the two classes shall be called PFoS (Presence of Fire or
Smoke) and N (Normal).

3.3. Data Processing

The dataset images are of varying sizes and pixel aspects. However, CNNs require
a uniform image input size. As a result, we selected a black-background template of
400 × 400 size. Each image is rescaled to fit into this template, retaining the original
height-to-width ratio. Figure 1 illustrates the data preprocessing steps.
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Figure 1. Dataset creation pipeline.

Data augmentation has been applied online (during training). It has been implemented
to increase the variety of the input images and provide the network with more data by
applying some geometric transformations. Data augmentation has to be realistic, though.
Strong data augmentations may produce unrealistic samples that are not met in real life,
and, as a result, the CNNs may be confused rather than benefit from such data. We
considered slight rotations, width and height shifts, and Gaussian noise additions.

3.4. Deep Learning Fire Detection Framework

We followed the general classification pipeline based on state-of-the-art CNNs. This
involves the necessary data preprocessing, training a well-established CNN that learns to
process the input data distribution and extract meaningful image features, and the classifi-
cation network responsible for distinguishing between the important and the irrelevant
features and is placed at the top of the CNN. Figure 2 illustrates the research methodology
of the study.
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As far as the involved CNNs are concerned, the study deploys recent successful ap-
proaches considered to be state-of-the-art due to their practical implementation in relevant
image and video classification tasks. Table 3 showcases the CNN implementation method.
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Table 3. Deep Learning networks of the study.

Network Trainable Layers Dense Layers at the Top

Xception None 1500-500-2
VGG16 None 1500-500-2
VGG19 None 1500-500-2
ResNet152 None 1500-500-2
ResNet152V2 None 1500-500-2
InceptionV3 None 1500-500-2
InceptionResNetV2 None 1500-500-2
MobileNet None 1500-500-2
MobileNetV2 None 1500-500-2
DenseNet169 None 1500-500-2
DenseNet201 None 1500-500-2
NASNetMobile None 1500-500-2
EfficientNetB6 None 1500-500-2
EfficientNetB7 None 1500-500-2
EfficientNetV2B3 None 1500-500-2
ConvNeXtLarge None 1500-500-2
ConvNeXtXLarge None 1500-500-2

The networks are employed using the standard transfer learning setup with “off-
the-shelf features”. Therefore, we loaded the weights obtained by their initial training
using ImageNet [21] database. The networks retain their extracted knowledge in feature
extraction by freezing all their learning layers and loading the learned weights. The
extracted features are processed by a densely connected network at the top of the CNN,
which follows a Global Average Pooling layer. In this implementation, the number of
trainable parameters is strongly reduced because the only trainable layer is the classification
network at the top of the CNN.

The densely connected layer is the same for each CNN and contains 1500 input units,
500 hidden units and 2 output units corresponding to the two classes. A Dropout layer that
randomly discards 50% of the learned connections is used after the 1500 node-layer and
after the 500-node layer. Lastly, the classifier at the top is SoftMax [29].

3.5. Explainability Methods

ML and DL have become established and dominant disciplines in many activity sectors
embracing new technologies. Feature development of human society lies in ML and DL to
solve intricate problems and offer reliable solutions. It is often discussed that the potential
of ML and DL may transform human-oriented processes into automatic everyday tasks
wherein human intervention is no longer required. In this context, the act of DL as a
black box makes the medical community reluctant to adopt DL in assisting with everyday
challenges. There is an increasing demand for transparency and interpretability of the new
methods. Since 2018, an increasing number of researchers have introduced a new discipline.
This discipline is called eXplainable Artificial Intelligence (XAI) [30]. XAI refers not only
to technical aspects of the DL models that ensure some level of interpretability, but it also
integrates the concepts of data privacy and accountability.

From a technical point of view, considering the interpretability of a newly developed
ML or DL model can improve its implementability. Firstly, designing an interpretable
model ensures impartiality in the decision-making process. Secondly, interpretability can
point out potential adversarial perturbations that affect the prediction. This enables specific
improvements to the core of the model itself. Thirdly, interpretability can ensure that only
the meaningful features infer the desired output, thereby highlighting that an underlying
causality exists in the given data and the model reasoning.
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3.5.1. Grad-CAM++ Method

The Grad-CAM++ algorithm [31] intends to identify the areas of the input image
having a critical effect on the classification decision of the classifier placed at the top of the
CNN. Its functionalities are fully exploited in object detection tasks, where a specific image
area contains the desired object.

3.5.2. LIME Method

LIME stands for Local Interpretable Model-Agnostic Explanations [32]. Its essence is
the perturbation of the original data points before feeding them into any black-box model.
The new data points are weighted as a function of their proximity to the initial data.

3.6. Experiment Setup

The experiments are implemented using the TensorFlow library under a Keras back-
end in a Python programming language environment. GPU is enabled under this setup
employing a GeForce RTX 3080 graphic card. The rest of the computational capacity specifi-
cations involve an Intel Core i9 CPU and 64 GB RAM. All time-related performance metrics
are recorded under this computational infrastructure.

All networks are trained and evaluated under a 10-fold cross-validation procedure.
The total allowed epochs of training are 500. An early stopping callback has been applied,
which immediately stops the training process of each fold when a 99% validation accuracy
is reached. The validation set contains 10% of the training set’s samples.

As far as the performance metrics are concerned, the overall accuracy, precision, recall,
F1 score, and AUC score are reported. In addition, the Positive Predicting Value (PPV) and
the Negative Predicting Value (NPV) are recorded.

4. Results
4.1. Image Classification

Xception is superior to the rest of the CNNs. It achieves an accuracy of 0.9881, a
precision of 0.9948, a recall of 0.9833, and an AUC score of 0.9886. Table 4 showcases the
average performance metrics of the CNNs for the ten folds. Besides Xception, VGG16
performs above 98% accuracy, whilst VGG19, InceptionResNetV2, MobileNetV2, and
EfficientNetV2B3 attain approximately 97%.

Table 4. Performance metrics.

Network ACC PRE REC TNR FPR FNR NPV F1 AUC

Xception 0.9881 0.9948 0.9833 0.9938 0.0062 0.0167 0.9803 0.9890 0.9886
VGG16 0.9822 0.9918 0.9755 0.9903 0.0097 0.0245 0.9711 0.9835 0.9829
VGG19 0.9745 0.9918 0.9613 0.9904 0.0096 0.0387 0.9551 0.9763 0.9759

ResNet152 0.9484 0.9819 0.9225 0.9796 0.0204 0.0775 0.9132 0.9513 0.9511
ResNet152V2 0.9516 0.9756 0.9346 0.9719 0.0281 0.0654 0.9252 0.9547 0.9533
InceptionV3 0.9534 0.9605 0.9538 0.9528 0.0472 0.0462 0.9449 0.9571 0.9533

InceptionResNetV2 0.9762 0.9736 0.9830 0.9680 0.0320 0.0170 0.9793 0.9783 0.9755
MobileNet 0.8923 0.9730 0.8256 0.9725 0.0275 0.1744 0.8227 0.8933 0.8990

MobileNetV2 0.9790 0.9924 0.9689 0.9911 0.0089 0.0311 0.9637 0.9805 0.9800
DenseNet169 0.9695 0.9865 0.9571 0.9843 0.0157 0.0429 0.9503 0.9716 0.9707
DenseNet201 0.9385 0.9494 0.9372 0.9400 0.0600 0.0628 0.9257 0.9433 0.9386

NASNetMobile 0.7904 0.8385 0.7628 0.8235 0.1765 0.2372 0.7428 0.7989 0.7931
EfficientNetB6 0.9288 0.8967 0.9828 0.8640 0.1360 0.0172 0.9766 0.9378 0.9234
EfficientNetB7 0.9561 0.9390 0.9833 0.9233 0.0767 0.0167 0.9788 0.9607 0.9533

EfficientNetV2B3 0.9720 0.9924 0.9561 0.9912 0.0088 0.0439 0.9494 0.9739 0.9737
ConvNeXtLarge 0.9543 0.9881 0.9274 0.9866 0.0134 0.0726 0.9187 0.9568 0.9570

ConvNeXtXLarge 0.9672 0.9826 0.9569 0.9796 0.0204 0.0431 0.9497 0.9695 0.9682
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As far as the training and testing times are concerned, there are variations among the
employed networks. The results are presented in Table 5. In general, all networks require
less than a second to predict the class of a new image.

Table 5. Training and test times in seconds. Training time refers to training using the complete dataset.
Test time refers to the time it took for the model to process one image after it was trained.

Network Training Time Test Time

Xception 1313 0.09
VGG16 1427 0.08
VGG19 1587 0.08

ResNet152 1457 0.08
ResNet152V2 1493 0.08
InceptionV3 1342 0.09

InceptionResNetV2 1477 0.1
MobileNet 1105 0.05

MobileNetV2 1126 0.06
DenseNet169 1274 0.05
DenseNet201 1355 0.05

NASNetMobile 1304 0.04
EfficientNetB6 1227 0.04
EfficientNetB7 1364 0.04

EfficientNetV2B3 1290 0.04
ConvNeXtLarge 1434 0.04

ConvNeXtXLarge 1651 0.04

The least time-consuming CNNs include NasNetMobile, EfficientNet, and ConvNeXt.
Xception requires 0.09 s to predict the class of a test image. It can process ten frame-per
second videos using the same computational infrastructure as the experiment.

4.2. Grad-CAM++ Outputs

We illustrate some examples of the Grad-CAM++ algorithm in Figure 3.
As observed, Grad-CAM++ identifies significant areas of interest in many cases.

However, its localisation capability is limited. There are examples where, besides the actual
fire-related areas of the image, the algorithm highlighted irrelevant locations, even in red. It
is highlighted that the visual inspection of the complete dataset is impossible due to its size.
However, we did inspect 500 images similar to the ones presented in Figure 3. Therefore,
we selected the most representative samples to highlight the effectiveness of Grad-CAM++
and its limitations, as observed from those samples.

4.3. LIME Outputs

LIME provides more straightforward explanations compared to Grad-CAM++ (Figure 4).
The suggested areas are well-defined and easy for a human reader to understand if the model
seeks the right direction. It is highlighted that the visual inspection of the complete dataset is
impossible due to its size. However, we did inspect 500 images similar to the ones presented
in Figure 4.

Though LIME is not expected to perform a complete and robust segmentation of fire-
related findings, it reveals if CNN has learned to identify fire and smoke-related incidents.
Therefore, we do not judge if the segmentation is correct and contains the complete findings
but if it corresponds to a fire/smoke-related area. There are cases, however, where LIME
identifies large areas on the image. Cases like these are inconclusive since they may or may
not contain actual findings.

A visual cross-inspection of LIME and Grad-CAM++ revealed that both methods
capture the same regions as the most significant ones. Hence, both methods can provide
a reliable verification that the model learns where the desired incidents are. In addition,
LIME can provide a more precise detection method.
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4.4. Alternative Learning Methods

Transfer learning has been the selected method for training the models so far. In
this experiment, we validate the performance of transfer learning against other training
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methods. Firstly, Xception is trained entirely from scratch. We only borrow its architecture,
and the network’s layers are trainable. Secondly, we experiment without feature extraction
from images. The image is first flattened and then classified from the Neural Network of
1500-500-2 nodes. Table 6 summarises the results.

Table 6. Classification metrics when applying alternative learning methods.

Method ACC PRE REC TNR FPR FNR NPV F1 AUC

CNN: Training from scratch 0.6530 0.6346 0.6750 0.3250 0.3654 0.7012 0.6059 0.6663 0.6548
Neural Network 0.7418 0.6853 0.8098 0.1902 0.3147 0.8123 0.6816 0.7434 0.7475

Transfer Learning 0.9881 0.9948 0.9833 0.9938 0.0062 0.0167 0.9803 0.9890 0.9886

Training from scratch caused model underfitting and severely increased the training
time. The underfitting issue may have happened due to the images’ significant variations
in fire and smoke events. In essence, despite the size of the dataset, Xception is still unable
to learn how to detect smoke or fire in various scenes. This result confirms the effectiveness
of transfer learning as far as the particular dataset is concerned.

Performing direct pixel-to-pixel classification using the NN did not produce optimal
results. The NN performed worse than any CNN, obtaining an accuracy of 0.7418. This is
due to the nature of NN, which cannot capture spatial information gathered in small image
neighborhoods, due to the absence of filters. As provided by Xception, Feature extraction
layers proved to be essential for this task.

5. Discussion

The study evaluated 17 state-of-the-art CNNs for detecting fire and smoke incidents
from various images. The dataset captured many sceneries, ranging from large forest
fires to small smoky buildings and vehicles. Joining several databases and trying to build
models that can recognise the presence of smoke or fire is a strong point of this work.

It is demonstrated that most of the deployed CNN models are capable of this task.
Xception stood out in this challenge, reaching 0.9881 accuracy in detecting such events. The
rest of the CNNs showed remarkable but inferior results. The study revealed that transfer
learning benefited Xception, despite the nature of the ImageNet [21] dataset, which did not
contain fire/smoke-related scenery. However, models trained in the ImageNet database
have proven to be excellent feature extractors for other image classification tasks [33,34].
Therefore, though the selection of transfer learning is still theoretically unjustified [35], the
performance of transferred models makes the authors’ selection fairly justified.

A key focus of the study was to evaluate post hoc explainability methods. Grad-
CAM++ and LIME were deployed to observe the suggested regions of interest and offer a
more in-depth evaluation of the model’s performance. Firstly, both methods demonstrated
Xception’s ability to identify fire and smoke-related incidents in the right locations of
the image. Secondly, both methods agree on the suggested locations, strengthening the
abovementioned outcome. Though the black-box nature of CNNs is not entirely tackled,
these post hoc algorithms provided the first evidence that Xception has learned how to
distinguish fire and smoke-related events from a set of other objects and scenery. Future
studies shall provide deeper insight into the algorithms and the feature extraction layers.

Timing and computational resources are fundamental to modern applications. Xcep-
tion processes a new image in 0.09 s, allowing for a maximum of 10 frame-per second video
classification. However, since LIME is a time-consuming method (approximately 5 s per
image), real-time application is prohibited. On the other side, Grad-CAM++ processes an
image in less than 0.04 s because it only needs a feedforward operation of the Xception
network to produce the result. Therefore, the combination of Grad-CAM++ and Xception
would provide a decision in 0.14 s, allowing for seven frame-per second videos if used on a
monitoring device.

The most significant limitation of the study is the preliminary inspection of the Grad-
CAM++ and LIME outputs. This was due to the large-scale datasets, which hindered
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the cross-examination of thousands of images. Hence, there may be cases where these
methods disagree, or the suggested areas are irrelevant. The human readers (i.e., the
authors) visually inspected 500 images (around 1% of the dataset). A second limitation is
the deployment of general pretrained CNNs, which, though undeniably successful, may be
inferior to specially designed handcrafted networks that exhibit even better performance.
Thirdly, only two post hoc explainability methods were employed.

The study aimed to perform object detection via object classification. That is the case
when the available data are not annotated, making the training of object-detection models
impossible. However, the models showed optimal performance in distinguishing between
PoFS and normal images and revealing where the fire/smoke was.

6. Conclusions and Future Research

With the effects of climate change impacting human lives more and more, society needs
modern solutions for limiting the destructive effects of a series of relevant phenomena. In
the case of fire prevention, pioneering IoT devices and UAVs can aid in timely fire and
smoke event detection. Such solutions require less human intervention in locating incidents
due to artificial intelligence. This study suggests the Xception network for swiftly detecting
such events from various images. In experiments on a dataset of thousands of related
images, Xception manages to locate suspicious incidents with an accuracy of 98.81%, whilst
the post hoc explainability methods of Grad-CAM++ and LIME confirm that Xception
locates the relevant events correctly in the images.

Future research directions are always needed to further the added value of any present
study. The underlined limitation, as discussed above, must be further investigated. More
methods than the two post hoc explainability ones must be considered. In addition,
methods of fuzzy logic and Fuzzy Cognitive Maps (FCM) need to be utilised to further
investigate the timely fire and smoke event detections. Previous studies in other scientific
fields, such as medicine [36], industry [37], energy [38], and agriculture [39], have provided
promising and encouraging results.
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