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Abstract: Selecting only the relevant subsets from all gathered data has never been as challenging as
it is in these times of big data and sensor fusion. Multiple complementary methods have emerged
for the observation of similar phenomena; oftentimes, many of these techniques are superimposed
in order to make the best possible decisions. A pathologist, for example, uses microscopic and
spectroscopic techniques to discriminate between healthy and cancerous tissue. Especially in the
field of spectroscopy in medicine, an immense number of frequencies are recorded and appropriately
sized datasets are rarely acquired due to the time-intensive measurements and the lack of patients.
In order to cope with the curse of dimensionality in machine learning, it is necessary to reduce the
overhead from irrelevant or redundant features. In this article, we propose a feature selection callback
algorithm (FeaSel-Net) that can be embedded in deep neural networks. It recursively prunes the
input nodes after the optimizer in the neural network achieves satisfying results. We demonstrate the
performance of the feature selection algorithm on different publicly available datasets and compare it
to existing feature selection methods. Our algorithm combines the advantages of neural networks’
nonlinear learning ability and the embedding of the feature selection algorithm into the actual
classifier optimization.

Keywords: classification algorithms; dimensionality reduction; feature selection; linear discriminant
analysis; machine learning; neural networks; principal component analysis

1. Introduction

Nowadays, the trend in many industries, such as the automotive industry and life
sciences, is toward real-time data acquisition and multi-modal sensing, which ultimately
produce a vast amount of data while always considering multiple features and many
physical dimensions. It lies in the nature of large vectors of measured data that some of
the observed features contribute less information than others for the understanding and
modeling of real-world phenomena. Using many sensors yields an increasing production
and service cost due to the demand for more components [1] and greater processing power,
as well as RAM and data storage. In addition to the economic downsides, there is also a
very significant statistical problem with unnecessarily many dimensions in most machine
learning (ML) algorithms, which affects their performance in processing the measured data.
With a poor sample-to-dimension ratio, outliers and noise in data get too much attention
and the algorithms tend to overfit, regardless of if they are used for regression, clustering,
or classification tasks [2]. In order to achieve reasonable generalizability in the training
process of most ML algorithms, the number of samples needed grows exponentially when
the number of dimensions—in the context of feature reduction, dimensions, attributes,
and features are inter-changeable definitions—grows linearly [3]. This behavior is often
referred to as the curse of dimensionality in the literature. To tackle this phenomenon, either
the number of samples must be drastically increased, which yields even more data and
longer acquisition times, or the dimensionality has to be reduced.
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A conservative and common approach to coping with the problem of overabundant
dimensions is the use of a feature extraction method, such as principal component analysis
(PCA) [4,5] or linear discriminant analysis (LDA), during the pre-processing stage. Both
techniques aim to describe the data in a much smaller subspace with only a few latent
features that are created through a linear transformation of the original features. Another
form of dimensionality reduction can be achieved by using graph-based algorithms, such as
t-SNE [6] or the more recently published Uniform Manifold Approximation and Projection
(UMAP) [7]. Variational autoencoders (VAEs) are generative models that can also be used
for feature extraction purposes [8,9]. Unlike PCA and LDA, both VAEs and graph-based
algorithms are nonlinear dimensionality reduction techniques. However, all previously
mentioned methods are mostly employed for the compression of the entire original dataset
to obtain less computationally intensive ML models without losing a significant amount of
information. A problem with the reduction is that the ensuing extracted features cannot be
easily interpreted and are certainly not measurable, since direct reference to the original
features is lost. Despite the fact that they do not necessarily need to be interpretable
for subsequent supervised or unsupervised learning algorithms, it is still important for
scientists to have physically meaningful features that are measurable.

Feature selection, contrary to keeping the information of the whole dataset, only
focuses on relevant subsets. Those subsets are chosen such that only the most informative
ones are preserved. Moreover, the original features remain unchanged before being fed
into the subsequent algorithm. The big advantage of feature selection methods is that after
the evaluation has been made, it is easy to deduce how many and which observations are
necessary for the desired estimation, i.e., they provide information about how sparse the
measurement can be while the algorithm still leads to acceptable results.

According to [10], the available methods can be organized into three different cate-
gories: filtering, wrapping, and embedded methods. Filter techniques calculate the relevance
score for each dimension and low-scoring features are removed. All filter methods work
independently from the following algorithm; they can be seen as a pre-processing opera-
tion and can be used for the dimensionality reduction of subsequent deep-learning-based
classifications [11]. On the other hand, wrappers communicate with the ML algorithm
and perform differently for each algorithm and depending on the hyper-parameters used.
Wrappers (oftentimes randomly) pre-select features that a subsequent classifier trains on
and evaluate the classifier’s performance with these specific features. The search for the
best-suited features can be executed either exhaustively (e.g., k-fold cross-validation [2]) or
heuristically (e.g., sequential feature selection). Unfortunately, the first two types of feature
selection (FS) are not integrable into the actual learning algorithm. This ability is provided
by embedded methods, such as decision-tree-based algorithms [12,13], or by applying `1 or
`2 regularizations on ML models that shrink uninformative parameters to almost, but not
exactly, zero [14–16]. In these types of selectors, the FS algorithm and the classifier converge
to the features of the highest importance. Other approaches focus solely on the feature
space represented by the input layer of a neural network [17–19], and a strict binarization
is provided. All methods use relaxed versions of the `0 regularization. However, these
regularizations highly depend on different hyper-parameters and the initialization of the
weights in neural networks, which have an impact not only on the selected features, but also
the size of the feature subset.

In this paper, we propose FeaSel-Net (FeaSel), a new recursive feature selection algo-
rithm, which can easily be embedded into any neural network. The algorithm itself is a
network pruning algorithm that—unlike dropout [20]—only prunes definite nodes at the
input layer and permanently excludes their contribution to the optimization. Similarly to
Guyon’s recursive feature extraction (RFE) [21], we rank the importance of each feature for
the decision making in classification tasks and recursively prune nodes in the input layer
of our neural network until a desired number of features is obtained. The bias from the
initialization of weights is bypassed when delaying the pruning process to a later epoch,
where the classifier already performs well.
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To prove and describe its functionality, FeaSel-Net was applied on the Wine Classi-
fication dataset [22]. The results are compared to those of existing FS methods based on
PCA and LDA, the tree-based eXtreme Gradient Boosting (XGBoost) algorithm [13], and an
approach using stochastic gates (STG) [17], which outperformed the other `0 regularizers.
The performance of another unbiased classifier fed with only the distilled features was
investigated. For deeper feature importance and dependency estimation, we define a new
weighted Jaccard matrix.

2. Comparison Methods—Linear Transformations Using PCA and LDA

This chapter provides an overview on the comparison methods used for the feature
selection derived from the PCA approaches described in [23,24]. They are additionally ex-
tended by LDA, since PCA itself is a purely unsupervised clustering method, and the class
information is not considered during the transformation process. Both analyses are filter
methods based on linear transformation and are commonly used in bioinformatics [25–27],
where the feature importance is often measured by the transformations’ loadings. Their FS
capabilities will be compared to the proposed algorithm in Section 4.4.

2.1. Principal Component Analysis

Originally introduced by Karl Pearson [4], the principal component analysis (PCA)
is a popular technique in multivariate statistics for processing complex datasets. The
analysis reduces high-dimensional data by linearly transforming the initial data into a
latent variable space, where the newly created variables are inherently uncorrelated and
orthogonal to each other. This space is defined by the q first-ordered principal compo-
nents (PCs), which are uncorrelated (i.e., orthogonal) axes that obtain the highest variance
when data are projected onto them. The original dataset X ∈ Rp×n consists of p features
and n samples or observations, whereas the reduced score matrix Y ∈ Rq×n is obtained
after the transformation. In order to find the weights for the linear transformation, the
eigenvalue problem

ΣV = λIV (1)

has to be solved for the covariance matrix Σ ∈ Rp×p of the dataset, where λ ∈ R1×p

represents the eigenvalues and V ∈ Rp×p is the corresponding eigenvector matrix. The
magnitude of the eigenvalues directly implies the explained variance by each PC. Since the
majority of the information is stored in the components that maintain the most variance,
the corresponding eigenvalues and vectors are sorted in decreasing order. For the purpose
of feature reduction, only the q first eigenvectors are chosen. The values of the eigenvectors
are scaled by the standard deviation based on each PC’s eigenvalue in order to relativize
the impact of each vector on the transformation. The resulting matrix is conventionally
called the loading matrix

Aij = Vj

√
λj where A ∈ Rp×q (2)

which contains a loading vector Aj for each considered component j and is tantamount
to the desired weights for the linear transformation. Multiplying the transposed loading
matrix with the original dataset yields the q× n-sized score matrix

Y = ATX (3)

which describes the linearly transformed dataset in the new q-dimensional latent variable
space. By mean-centering the data

cxij = xij − x̄i with x̄i =
1
n

n

∑
j=0

xij (4)
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along the sample axis beforehand, the covariance matrix is computed using a simple matrix
product scaled by the reciprocal of the degrees of freedom:

Σ = Cov(cX) =
1

n− 1 cXT
cX. (5)

In many cases in which the features inherently show different variances (e.g., metrical
data with various orders of magnitude or in the simultaneous processing of metrical and
categorical data), the data must also be standardized, which yields

sxij =
cxij

si
with si =

√√√√ 1
n− 1

n

∑
j=0

(
xij − x̄i

)2. (6)

The standardization occurs along the same axis as that specified in Equation (4) and is
done by dividing the mean-centered data by the empirical standard deviation si.

The magnitudes of the loadings inside A are correlations between original and latent
variables and are often considered as a suitable metric for the information content I within
a dataset [23]. Since the first few PCs are the most informative components, this is also
the subspace in which the biggest loadings occur. Thus, another evaluation is carried out
through the application of the `1 norm for each loading vector

Ii = ||ai||1 =
q

∑
j=0
|aij| (7)

where only the q most important components are considered [24].

2.2. Linear Discriminant Analysis

An linear discriminant analysis (LDA) is a linear transformation method that aims
to maximize the distance between the means while it minimizes the variances within one
class. Consequently, the class information for each sample has to be considered. This is
done by calculating the features’ means and variances for each individual class. Therefore,
the algorithm belongs to the group of supervised classification algorithms. Whilst PCA
solves the eigenvalue problem for the covariance matrix, LDA makes use of two different
scatter matrices: the scatter-within Sw and scatter-between Sb matrices, which are defined
as follows:

Sw =
nc

∑
i=1

cXT
i cXi (8)

Sb =
nc

∑
i=1

ni · (cx̄i − cx̄)(cx̄i − cx̄)T. (9)

In order to get the scatter-within matrix, the dataset is split into nc classes, and their
respective scatter-within matrices are calculated. Afterwards, these nc scatter-within matri-
ces are summed up. There are similarities between the covariance matrix from Equation (5)
and each commensurately sized scatter-within matrix, whereas the latter does not include
the scaling factor. The scatter-between matrix, on the other hand, is a metric for the distance
between the classes’ means x̄i and the overall mean x̄, which should be maximized after
the transformation. The number of samples ni in Equation (9) is used as a weighting factor.
A slightly different eigenvalue problem

S−1
w SbV = λIV (10)

from that with the PCA is then solved for the matrix product of the inverse scatter-within
and scatter-between matrices. This ensures a combination of both objectives: minimizing
the scattering within each class and maximizing the means’ difference.
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3. Methodology—Recursive Pruning of Inputs in Neural Networks

The backbone of the proposed FeaSel-Net algorithm is the pruning of irrelevant input
nodes to counteract the curse of dimensionality and simplify classification tasks. This is
done by extracting the main contributing features for certain decisions. Hereby, the focus
is on two major aspects in order to surpass the performance of the state-of-the-art feature
selection methods:

(a) using a nonlinear evaluation method and
(b) embedding the FS algorithm into the classifier.

The crucial issue in such embedded approaches lies in the communication of the FS
algorithm and the classifier. Inspired by the RFE from [21] and the recent approaches of [28],
we make use of recursive and sequential pruning of feature nodes in the input layer. This
recursivity is indicated by the loop structure in the process diagram of Figure 1.

Input data X

Binary mask w(in)

Training with DNN
(internal weight

optimization)

Desired no.
of features?

Evaluation of
feature importance

Alteration of
mask weights

Callback
triggered?

Selected features
from last mask

◦

yes

no

no

yes

Figure 1. Process diagram of the FS callback. The ◦-operator describes the Hadamard product.

At the start of the algorithm, the complete dataset X ∈ Rp×n with p features and n
samples is considered and transferred to the classifier input unmanipulated, i.e., the binary
mask win ∈ Rp×1 = 1. We use a deep neural network (DNN) as a classifier due to its
inherent nonlinear properties. Its training process is executed within the lower loop in the
process diagram. When the performance of the classifier is satisfyingly reliable and the
callback is triggered, the algorithm exits the lower loop and enters the upper evaluation
part. In this part, the importance of each feature is evaluated and a distinct proportion of
the most informative features is selected. All of the others are pruned and neglected in
ensuing optimization loops. This is done by altering the weights of the binary mask w(in).



Mach. Learn. Knowl. Extr. 2022, 4 973

Subsequently, the DNN has to adapt to the increased difficulty of using sparser information.
Everything is recursively repeated until either the desired number of features has been
obtained or the classification accuracy drops beneath a given threshold and is unable to
recover despite ongoing optimization.

The output of the algorithm is the last mask evaluated during the training, and a
classifier is already pre-trained for the masked input. The outline and implementation of
the proposed algorithm are split into the following two components: the classifier and the
feature selection algorithm.

3.1. Classification with Deep Neural Networks

To prove the functionality in a general sense, we implemented a standard DNN
consisting of one input lin, one output lout, and multiple hidden layers li. For the standalone
classifier, only fully connected (FC, i.e., dense) layers were applied. In the forward pass of
FC-type architectures, the output state vector

x(l) = φ
(

Wx(l−1) + b
)
= φ(u) (11)

is calculated by multiplying the previous layer’s state vector x(l−1) with a randomly initi-
ated weight matrix W and then adding a bias vector b. This bias vector is implemented
to enable even more flexibility by shifting the input data. The weights and biases are
trainable parameters. Afterwards, an activation function φ is applied on the resulting u
vector. As previously mentioned, this activation function is what makes the neural network
a nonlinear classifier and provides advantages compared with linear transformations. An
application of any arbitrary function is possible. The only restriction is the piece-wise
differentiability of the function such that the back-propagation [29] algorithm is exercisable.
We made use of the rectified linear unit (ReLU) function

φ(u) = max(0, u), (12)

which is a commonly used activation function that has been shown to deliver good results in
fully connected architectures. Other typically used functions are tanh or sigmoid functions.
The sigmoid function together with ReLU can be seen in Figure 2b,c. The linear function in
Figure 2a represents a pseudo-activation within PCAs or LDAs after the transformation
induced by the loadings in Equation (3) instead of the weight matrix W.

−5.0 −2.5 0.0 2.5 5.0
u

−5

0

5

φ
(u
)

−5.0 −2.5 0.0 2.5 5.0
u

−5.0 −2.5 0.0 2.5 5.0
u

−1

0

1

(a) linear (b) ReLU (c) sigmoid

Figure 2. Different activation functions with a linear function (a) for comparison with the LDA.
Nonlinearity is induced by ReLU (b) and sigmoid (c) functions as examples.

In our proposed models, we use a feed-forward structure in which the number of
nodes n(l) in each layer decreases as we go deeper into the neural network. Since FeaSel-Net
is embedded into classifiers, the number of output nodes n(out) has to correspond to the
number of classes nc. Unlike in the intermediate layers, the activation function used to
compute the class prediction in the output layer lout is the softmax function

y = φ(u) =
eu

∑nc
i=1 eu (13)
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which causes the output vector y ∈ Rnc to resemble probabilities. The output with the
highest probability represents the predicted class. To train the network, we create the
ground-truth target vector ŷ via one-hot encoding and use the sparse categorical cross-
entropy (CE) loss function

H(X, y) = − ∑
x∈X

ŷ(x) · log y(x). (14)

This loss is minimized by using the Adam optimizer [30].
Achieving an embedded feature selection algorithm is a rather challenging task, since

it is not possible to alter the network architecture during the training process. Once the
network is instantiated, its numbers of inputs, parameters, and layers are fixed; however, it
is necessary to manipulate these to prune the input layer. To do so, we implemented a new
embedded feature selection algorithm in the existing Keras and TensorFlow framework.

3.2. Feature Selection Callback

The communication behavior of the FS algorithm and the neural network is induced
by implementing an appropriate and specifically constructed callback within the model.
Usually, callbacks are used to log evaluation metrics, such as loss and accuracy values, or to
preclude early stopping. In general, they provide the possibility to interact with the deep
learning algorithm and adjust several parameters during the training at different entry
points, such as at the end of an epoch or batch. The callback developed in this paper has
the ability to assess the importance of input nodes and to prune nodes that are irrelevant by
manipulating the weights of an upstream mask layer. The individual steps of the callback
are explained in more detail below.

3.2.1. Implementation of the Callback Using Binarized Masking Layers

Section 3.1 described a standard fully connected multi-layer architecture for classi-
fication tasks, which we slightly adapted to attain the ability to mask the original signal
according to Figure 1. This adapted architecture is shown in Figure 3.

lin l1

l2

l3

lout

x(in) y

si
g
n

a
l

01

kept signal weight (w
(in)
i = 1)

pruned signal weight (w
(in)
i = 0)

hidden weights (trainable)

masked signal x(1)

original signal x(in)

Figure 3. The LinearPass layer (lin) precedes a conventional FC architecture with several hidden layers
(l1−3) and induces masking ability. Straight connections between the first two layers indicate the
weight vector w of this layer. The sinusoidal signal in this example is incomplete, since some of the
features have already been pruned.
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We introduce a new and simplistic but effective layer that is able to constrain the input
signal with a binarized weight vector w(in) ∈ [0, 1]p× 1. In our implementation, the layer
type is called the LinearPass layer. Its output

x(1) = w(in) ◦ x(in) (15)

is the masked input for the actual neural network.
We deliberately do not want any parameters to be trained and initially set all weights

w(in) = 1 to obtain an unmasked and unmanipulated signal. The connections in Figure 3
will be set to zero if the corresponding feature is not found to be important. This happens
whenever the callback is triggered. Manipulations of the bias vectors are not provided.

3.2.2. Callback Triggers

Standard callbacks are triggered every training epoch, and they log the loss and
accuracy values for the training dataset trX and validation dataset vX. We utilize these
recurring logged values to assess the performance of our model at each epoch e and query
two trigger conditions:

(a) Threshold criterion:
The loss gradient or accuracy values surpass a pre-defined threshold τ.

(b) Consistency criterion:
The threshold is surpassed for a minimal number of consecutive epochs ∆emin.

When the logged values reach the threshold τ, an internal counter starts. Only when the
threshold criterion is continuously satisfied for ∆emin are the features pruned according to
their importance. The evaluation itself is described in Sections 3.2.3 and 3.2.4.

The trigger process for the accuracy-based feature selection is shown in Figure 4a. At
epoch e = 40, when the accuracy threshold value of τa = 90 % is surpassed for the first
time, the pruning process starts with a delay of 20 epochs at e = 60. Assuming that the
accuracy value decreases and falls below the threshold again, the count for the consistency
criterion is reset. Figure 4b analogously illustrates the loss-based trigger behavior.

0 20 40 60 80

epoch

50

60

70

80
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cu
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cy

[%
]

∆emin

etrigger

eprune

accuracy val_accuracy threshold

(a) accuracy-based

0 20 40 60 80

epoch

0.0

0.3

0.6

0.9

1.2

1.5

lo
ss

-0.25

-0.19

-0.13

-0.07

-0.01
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loss val_loss grad val_grad

(b) loss-based

Figure 4. Implemented triggers for the feature selection callback applied in a fictional optimization
process. The dashed lines indicate the hypothetical trend of each accuracy value after the pruning;
(a) visualization of the accuracy-based case and (b) the loss-based case.

Since different datasets and metrics rarely provide similar quantitative results, the al-
gorithm utilizes the gradient of the current loss values. Here, the pruning process is
triggered when the decline of the loss becomes stagnant. The low loss gradient threshold
of τg = 0.005 yields a pruning precisely at the moment of training stagnation. Thereby, we
suspect that pruning at the moment of optimization stagnation will prevent over-fitting of
the data. Hence, a potential increase in the validation loss, as indicated by the dashed line,
is avoided.
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3.2.3. Creating an Evaluation Subset

At first, an evaluation dataset eX has to be generated, and it is appropriated for an
isolated view of each feature node. To do so, we make use of the leave-one-out cross-
validation (LOOCV) [2], an extreme variation of the k-fold cross-validation where k = 1.
The typical usage of the cross-validation is the k-time alternation of training and validation
samples and the choice of the best-performing composition. Figure 5a shows this type
of validation exemplarily for a small fictional dataset. Since we are interested in the
importance of features rather than samples, we implement the LOOCV in combination
with the disposal of one feature alternating at each iteration step; see Figure 5b.

1.

2.

3.

1.

2.

3.

sample n feature p

training validation kept disposed(a) (b)

Figure 5. The first three iterations in different cross-validation types applied on a 15× 30 dataset:
(a) k-fold cross-validation with k = 3 and (b) LOOCV with k = 1.

Mathematically, this mask-like behavior can be expressed using a bit-wise inverted
identity matrix:

M = J− I (16)

where I is an identity matrix and J is a matrix of ones with the size p× p. We can now
apply a mapping function g : Rp×n 7→ Rp×n·p to generate a p-time replication of the same
training data trX, where exactly one feature is masked in each replication. The resulting
evaluation data,

eX =



trx00m00 trx01m01 . . . trx0pm0p

trx10m00 trx11m01 . . . trx1pm0p
...

...
. . .

...

trxn0m00 trxn1m01 . . . trxnpm0p
...

...
...

trx00mp0 trx01mp1 . . . trx0pmpp

trx10mp0 trx11mp1 . . . trx1pmpp
...

...
. . .

...

trxn0mp0 trxn1mp1 . . . trxnpmpp



, (17)

are then tested, and the impact of the masked features is evaluated with respect to the
test loss. In case a vast number of samples and features leads to an enormous amount of
data, we provide a possibility to use only a subset of the training data as evaluation data,
which would have an equal size for all classes. To further accelerate the evaluation process,
already masked features are not regarded in the mapping of Equation (16), and each of its
new rows

mi := mi · w
(in)
i (18)

is deleted if w(in)
i has already been set to zero. To prevent buffer overflows in huge datasets,

especially at the beginning of the algorithm when M is still complete, the mapped data are
split into batches eX f , where each batch represents one feature f .

3.2.4. Evaluation of Feature Importance

Within the callback, the training process is paused and the significance of the masked
features is evaluated. Therefore, the same loss function as during the training process
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(Equation (14)) is also used for the evaluation, but in contrast to the training, the losses are
not averaged over the complete epoch or its batches, but rather over each feature masking
the dataset. This is done because the interest lies in the deterioration of discriminability
due to these missing features. Alternatively, one can look at this behavior as dividing
the set into one batch per feature, where the losses of each batch are averaged. These
considerations yield another new metric based on Equation (14), which we call feature
omission impact (FOI):

I f

(
eX f , y

)
= H f

(
eX f , y

)
. (19)

At this point, it has to be clarified that previously pruned features are not evaluated by
not mapping them in Equation (17), because they inherently cannot provide any information
to the classifier.

3.2.5. Feature Pruning

Since the negative influence of masked input nodes on the classification performance
is evaluated, the view for interpreting the resulting entropy values has to be changed.
While the entropy should normally be minimized to achieve unambiguous predictions, we
now keep the features f that resulted in the highest FOI and the biggest differences in the
results of unmasked prediction. The weights

w(in)
i [argsort(I)] = 0 ∀ 0 < i ≤ np ∈ R (20)

of the masking LinearPass layer are manipulated by sorting the features according to
their information richness from the lowest to the highest and setting the least informative
features’ weights to zero. The pruning number np defines how many entries are pruned.
Some datasets have many features, and pruning one feature after another is tremendously
time-consuming. Thus, the algorithm offers two possibilities for setting the pruning number.
It is either set once for the linear pruning method or it is constantly re-calculated for the
exponential decrease in information depending on the pruning rate π. After the pruning,
the optimization process is resumed with the masked input eX(w(in)). As soon as the
consistency and threshold criteria are met again, the recursive binary mask is obtained using
the adapted evaluation set eX(w(in)) as the input for the next pruning step in Equation (19).

The sorting algorithm for the the indices i in w(in) is defined by

argsort(x)i := |{j ∈ {1, . . . , n}|
(
xj < xi

)
}|, (21)

and it sorts the features from the lowest to the highest I f .
Eventually, the feature selection process is finished when one of the following criteria

is met:

(a) Success criterion:
The number of leftover features ne reaches the desired number of features q.

(b) Non-convergence criterion:
The threshold is not reached within a given number of epochs ∆emax.

4. Results

We apply the proposed method on the Wine Classification dataset provided by [22]
to demonstrate the performance of the FeaSel algorithm and compare it with the linear
methods described in Section 2, as well as the XGBoost algorithm and the nonlinear
stochastic gates (STG) method. This multivariate dataset is broadly used in ML research
and covers LDA and PCA investigations [31,32], as well as fully connected neural network
approaches [33]. Despite being multivariate, it is still small enough to gain an overview on
what happens during the algorithm’s execution. The dataset consists of ns = 178 samples
divided into nc = 3 classes of almost equal set size. The original number of features
is p = 13. Since the feature values are partially of greatly different magnitudes (e.g.,
alcohol compared to proline), a standardization of the values for each feature according to
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Equation (6) is necessary. Additionally, we assure the correct dimensionality for a fully
connected neural network and use a training–testing split of 80%, with which we obtain
the dimensionalities given in Table 1. These subsets are used for either of our FS methods.
The evaluation dataset dimensionality is a multiplication of the training dataset with the
trace of the mask matrix tr(M). A consistent dataset for all methods is obtained by using
the same random seed for all training–testing splits.

Table 1. Dataset size, dimensionality, and number of samples per class.

Dataset (i) Data iX Targets iy Samples per Class

Training (tr) [142, 13] [142, 3] [45–57–40]
Validation (v) [36, 13] [36, 3] [14–14–8]
Evaluation (e) tr(M) · trX tr(M) · try
Test (te) [178, 13] [178, 3] [59–71–48]

4.1. Feature Selection with PCA

The PCA loadings for the training subset are calculated according to the steps de-
scribed in Section 2.1. Figure 6 shows the scree plot for the first eight components of PCA
for the Wine Classification dataset. Since a distinct elbow—an elbow is a subjective criterion
for the decision on whether to include components in the transformation and is charac-
terized by a strong kink in the scree plot [34]—was not observed in the plot, the average
explained variance with 7.7% was chosen as the threshold. Components with a variance
lower than this threshold were not regarded. Thus, we narrowed down the transformation
to the first three components, which made up 66.0% of our data’s information.
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Figure 6. Scree plot from the PCA of the Wine Classification dataset. The average explained variance
is surpassed after considering the first three components.

The resulting score in Figure 7a looks promising in terms of separating the classes
when considering the latent space defined by the first two components only. Although
there are a few intersections and overlaps, we can clearly observe a class separation. This
capability breaks down when considering the third component in combination with one of
those mentioned before. Hence, we confine ourselves to the interpretation of the loadings
in the first two components. Figure 8a shows the contribution of each feature to the specific
PC. The evaluation and, thus, the sorting of the feature importance is done according
to [24], where the feature contribution is calculated by applying Equation (7) on the q most
important eigenvectors V along the feature axis. Since we want to include the components’
explained variance in our consideration, we use the scaled loadings A instead. For the
examined dataset, we set q = 2 due to the previous considerations. The features are distilled
by choosing the first three features in Figure 8a (proline, hue, and color intensity) as the most
prominent, but there is only a modest difference from their successors.
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Figure 7. PCA (a) and LDA (b) score plots for the first two components of the Wine Classification
dataset. The dashed ellipses are 3σ confidence intervals around the classes’ scattering centers and are
projected onto each axis at the right and top side of the plot. The colored background in (b) represents
the probabilities of a sample belonging to a specific class.
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Figure 8. Contribution plots for the first two components of the Wine Classification dataset. The bar
heights for the PCs (a) and linear discriminants (LDs) (b) do not represent the contribution in percent,
but the proportion of the sum. In a descending manner, the most important features are displayed on
the left side of the plots.

4.2. Feature Selection with LDA

The same research group from [24] also showed the applicability of this feature evalu-
ation method with LDA [35]. We have already discussed the additional class information
that this transformation type offers and can clearly see an improvement in the separation
in Figure 7b. It is even possible to completely separate the clusters for the training set.
When looking at the decision boundaries in this score plot, there is no training sample
point that has been misclassified. Furthermore, the projected normal distribution of the
orange class 2 cluster clearly shows the influence of the LDA objective—the transformation
wants to minimize the variances within the classes. Although the distribution in the score
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plot of Figure 7a and, especially, the projection of PC1 is flat and wide, it is almost circular
and narrower in the LDA score plot; see Figure 7b. Because of this distinctiveness and
the fact that PC1 and PC2 together explain 100% of the data, we are allowed to investigate
only these components again. Just like before, the most important features are extracted
from the contribution plot in Figure 8b, where a concise difference in the results can be
seen. With the help of LDA, it is found that flavanoids seem to be much more relevant than
hue, which had the third lowest contribution, unlike in the PCA, where it achieved the
second highest. Nevertheless, there is a consensus on the importance of proline and color
intensity. Another conspicuity is the noticeably increased variance in σLDA = 5.18% in the
contribution compared to that for PCA (σPCA = 1.54%). Altogether, these findings lead to
an unambiguous tendency in which LDA will perform better in terms of feature selection.

4.3. Feature Selection Using Feasel-Net

When using the same data with the newly proposed FS algorithm, we can clearly
observe the recursiveness throughout the model’s optimization process, as shown in
Figure 9a,c. After 21 epochs, the accuracy value surpasses the threshold for the first time,
and ∆e = 20 epochs later, we can observe the first pruning, where magnesium, phenols,
and nonflavanoids have been deleted. A drop in the classification accuracy cannot be
perceived at either e = 41 or 20 epochs later, which is when the second pruning happens,
with malic acid and proantholcyanins being deleted. The FOIs at these first two pruning steps
are shown in Figure 10a,b. Since the training is continued with quasi pre-trained weights
after each pruning, the model recovers quickly. The most prominent drop is observed
at the last pruning epoch at e = 147, which is self-evident due to the further decreasing
amount of information. When reaching q = 3 parameters, the algorithm stops the training
process after ∆emax = 100 more epochs to optimize the discrimination one last time with
the selected features. Outstandingly high values of 99.1% were achieved for the training
accuracy and 97.6% for the validation accuracy, even though the input nodes were reduced
to these three aforementioned features and the information was compressed to κ = 23.1%.
The exact number of features at each pruning epoch can be retrieved from Figure 9b. By
the end of the FeaSel-Net application, the three selected features were flavanoids, proline,
and alcohol. Figure 9d shows the pruning history in terms of how often a feature was
masked throughout the FS process. Features such as magnesium were considered to be the
least important and were masked since the very first pruning step, whereas hue showed
the darkest color and was, hence, the most important apart from the chosen features.
This coincides with the findings from the PCA and LDA methods. The confusion matrix
in Figure 11a shows perfect sensitivity for class 1 and class 3 and is satisfactory for the
other class. Altogether, an average sensitivity of SEN = 98.6% was achieved. In terms
of classification accuracy and specificity, the results were of an even higher magnitude,
with ACC = 98.8% and SPE = 99.2%.
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Figure 9. Feature selection callback histories of a single FeaSel-Net run on the Wine Classification
dataset. The monitored accuracy (a) and the corresponding loss (c) are shown on the left. A character-
istic sawtooth pattern can be observed. The threshold for the pruning is set to τacc = 0.98 and the
desired number of features is q = 3. An exponential pruning with a rate of π = 0.2 for the decrease in
the number of features is chosen. An overview on the decreasing input information (i.e., pruning of
features); (b) and the development of the masking layer (d) is given on the right. Chosen features can
be retrieved from the dark blue bars in the masking history. Darker bars represent features that are
pruned late in the recursive process and, thus, tend to hold more information.
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Figure 10. An exemplary feature evaluation based on the min–max scaled-average cross-entropy at
different stages in the callback. The bars in (a) show the feature omission impact (FOI) in the first
pruning stage, whereas the second prune is depicted in (b). Orange bars represent features that are or
have already been pruned at each specific step.
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Since the weights of fully connected layers in neural networks are randomly initial-
ized, volatility in the extracted features has to be expected, e.g., by using the uniformly
distributed values according to Glorot [36]. Therefore, 100 executions or runs nr of FeaSel
applications are statistically evaluated to prove the consistency and the extent of this fluc-
tuation. In order to assess the probability of finding the most relevant features and to
analyze the inter-dependencies among them, a weighted Jaccard matrix Jw is introduced in
Appendix A.1. The diagonal in Figure 11b can be interpreted as a normalized histogram for
the selected features. Furthermore, the matrix directly implies that the features retrieved
from the elaborated execution discussed before (proline, flavanoids, and alcohol) were also
chosen the most often, with percentages of 87.7–60.8% of all runs. It additionally shows
that these three features were commonly picked together, and in the case that some other
feature was picked, it was most likely selected together with the prolines, which emphasized
the importance of this attribute. Alkalinity was the last feature to be displayed, since every
other feature was not chosen at all. Hence, these can be neglected in good conscience.
The other features that were determined by linear transformations (color intensity and hue)
occurred in the fourth and fifth positions, respectively.
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Figure 11. Different evaluations of the effectiveness of FeaSel-Net. A confusion matrix (a) for a
test set teX consisting of training and validation samples with only three features shows how good
the classification result of a single selection is, whereas the weighted Jaccard matrix (b) shows the
inter-dependencies of the features in 100 FS runs.

4.4. Comparison of Different Feature Selection Methods

All three previously analyzed methods yielded slightly different sets of features that
were distilled after the selection. To validate the performance of each selection method,
a classification using only the masked dataset was executed. We also compared it to the
features chosen with the tree-based XGBoost algorithm [13] and a recent approach with
the so-called stochastic gates (STG), where the FS was already embedded as a regularizer
into a deep-learning-based classifier. The regularizing hyperparameter λ had an immense
effect on the number of leftover features. It was set to 0.3 such that an average number of
2.9 selected features was achieved. Further information on this method can be found in [17].
Since the STGs was embedded into neural networks, there was much randomness. Similarly
to the FeaSel-Net approach, we applied it several times and calculated its weighted Jaccard
matrix. The certainty of selections using STGs was found to be lower than FeaSel-Net’s,
which is shown in Appendix A.3. Additionally, a random FS with alcohol, alkalinity, and color
intensity is included in Table 2 to demonstrate the importance of choosing features accurately.
Even though only one (alkalinity) out of these three randomly selected features was not
found to be important by the investigated FS methods, it still performed clearly worse.
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Table 2. Selected features from all analyzed FS methods.

Method Feature 1 Feature 2 Feature 3

PCA proline hue color intensity
LDA flavanoids proline color intensity
XGBoost flavanoids proline color intensity
STG od280/od315 proline flavanoids
random alcohol alkalinity color intensity
FeaSel-Net proline flavanoids alcohol

In order to compare the effectiveness of the feature selection methods, another fully
connected neural network was implemented that accepted only three input values (i.e.,
the masked signal). We purposefully chose only three features to ensure variations among
each selected feature set on the one hand, as well as, on the other, to use as little information
as possible in order to clearly show differences between each FS method. It output a proba-
bility vector corresponding to the three classes; see Table A3. A fair comparison of the dis-
criminability was ensured by using the exact same model with the same hyper-parameters
for all methods. The only variation was given by the input signal, which was chosen
according to Table 2. The model was, parameter-wise, distinctly smaller than the classifier
network used in Section 4.3. It was trained 25 times, and the average and standard deviation
for accuracy (ACC), sensitivity (SEN), and specificity (SPE) were calculated. Outliers from
PCA, LDA, and XGBoost optimizations were removed in the evaluation. Figure 12 shows
the performance parameters for each retrieved feature mask. The overall accuracy of the
classification using the features from FeaSel-Net amounted to ACC = 98.50± 0.43%, which
was an increase of 0.6 % compared to the second-best result (LDA and XGBoost) and even
1.8% higher than the PCA benchmark, whereas SPE = 98.91± 0.44% also improved at the
same level. When looking at SEN = 98.0± 1.04%, an increase of 1.1% compared to the LDA
and 3.2% compared to PCA method was achieved. Using the features that were retrieved
by using the STG, the results were only slightly better than the PCA-derived selection.
On average, the superior FeaSel-Net approach had a 6.8% higher accuracy, a distinctly
improved sensitivity with 11.5%, and a 5.0% better specificity than that obtained when
using randomly chosen features.
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Figure 12. Discriminability in classifications with a subset of the original features according to the
findings in Table 2. Each subset has the size p = 3. The classifier and parameters are identical for
all methods.

4.5. Generalizability of Masked Data

FeaSel-Net was specifically developed to use less input information and still provide
reasonable classification results without dramatic drops in the performance. To investigate
the improvements due to the preceding feature selection, we compared the results of
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training histories from 25 unmasked and masked optimizations of the Wine Classification
dataset over 250 epochs, as shown in Figure 13. The network used for the masked data was
the same reduced classifier as in Section 4.4, and for the unmasked set, an architecture with
a similar number of trainable parameters and network depth was used to provide the same
optimization potential; see Table A3. Two outlier runs were removed from the unmasked
and one from the masked dataset. FeaSel-Net’s average accuracy after 250 epochs of
training with only three input features accounted for ACCWine = 98.1% compared to 99.4%
with the unmasked set. On the other hand, its validation accuracy’s variance averaged
over all epochs e > 50 amounted to ±1.12% and was more than eight times smaller than
the unmasked averaged variance of ±8.91%. An average validation accuracy of more
than 95.0% was achieved in epoch e = 24 already, and the maximum value accounted for
97.8 %. The unmasked dataset unsurprisingly achieved better overall classification results
with 99.2% instead, but it had to be trained 40 epochs longer until 95.0% was reached. We
could not identify an over-fitting during training in either dataset, since a small number
of parameters and, thus, a modest complexity were used for the model. When comparing
these results, it can be seen that a significantly faster convergence was obtained, and the
variance was significantly smaller when masking the data according to the FeaSel-Net
findings beforehand. Both observations are indicators for a better generalizability. The
smaller variance in the masked optimizations proves a steady and reliable finding of the
global minimum.
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Figure 13. Comparison between the unmasked and masked Wine Classification dataset. The mask
consists of the three most important features according to FeaSel-Net (proline, flavanoids, and alcohol).
Darker lines indicate averages and colored, transparent areas represent the standard deviation of
25 optimization processes.

4.6. Investigation of Different Datasets

In this section, an analysis of other datasets from [22] that confirm the potential of
FeaSel-Net as an alternative for the feature selection of 1D data is undertaken . With
the (feature-wise) very small Iris [37], medium-sized Mice Protein Expression (MPE) [38],
and extremely large Arcene datasets [39], we want to tackle data attributed with different
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levels of complexity. The parameters specified for each FeaSel-Net run in the following
are based on the settings for the Wine Classification set; see Table A2. Changes in the
parameters will be mentioned explicitly.

4.6.1. Iris

The Iris dataset consists of samples with only four attributes and is separated into
three classes. According to Fisher’s findings in [37], the attributes of petal length and petal
width contribute the most information to a discrimination between the three classes. In
his work, he originally introduced an earlier version of the LDA and found that the petal
attributes’ coefficients for the transformation were roughly 1.5–4.5 times higher and, thus,
more important than the sepal attributes. With the FeaSel-Net method, we found the exact
same attributes to be more relevant. The petal length was chosen in 79.4% and petal width in
72.5% of all runs; see Figure A1a. Because of the minute number of attributes, a desired
number of features of q = 2 was specified, with which a compression ratio of κ = 50% was
achieved.

4.6.2. Mouse Protein Expression

The authors of [38] originally investigated protein levels in mice exposed to contextual
fear conditioning. They used self organizing maps (SOM), an unsupervised clustering
technique, to identify biologically important differences in medication-induced protein
levels of healthy mice and mice with trisomy 21. Feature selection with FeaSel-Net achieved
even better results on this medium-sized dataset with p = 77 features. In 92% of all cases,
the protein APP was chosen to be the most important feature followed by pCAMKII with
86%. A distinct cluster of the first six proteins can be noticed in Figure A1b. All proteins
found in this Jaccard matrix were also found to be important discriminants for generating
the SOMs. Since the number of samples was 5–10× larger compared to the numbers in
the other datasets, a batch size of 64 instead of 16 was specified. With q = 3 set for the
algorithm, a compression ratio of κ = 3.9 % was obtained, and it resulted in a classification
accuracy of approximately ACCMPE = 85.4%.

4.6.3. Arcene

This particularly large dataset with p = 10 k features was part of the NIPS 2003 feature
selection challenge. With the application of FeaSel-Net on this dataset, we wanted to focus
on the computability of such large datasets. When looking at the results, less distinctive fea-
ture importance distributions were obtained in the Jaccard matrix of Figure A1c. While the
matrices of the Iris and MPE sets looked structured and some attributes were considerably
more important than others, selection in the Arcene dataset yielded sparser and more chaotic
results. However, the feature at position 9274 still seemed to be very important, since it was
chosen more than every fourth time in a highly compressing setting with q = 10 features
left and a compression rate of κ = 0.1%. In 35 executions, this was more than 250 times
as often as that when choosing the features completely randomly. It was also seemingly
dominant because it was the only attribute that was chosen in combination with every
other attribute depicted in the Jaccard matrix at least once. On average, the classification
with the reduced input yielded a ACCArcene = 94.3% classification accuracy. An overview
of all datasets is given in Table 3.
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Table 3. Overview of the compression of the input using FeaSel-Net and the resulting classification
performance after 250 epochs of training with only three input features.

Dataset teX Features p Features q Compress. κ ACC [%] FS ACC [%]

Iris 4 2 50.0 98.6± 0.1 92.7± 9.0
Wine Classification 13 3 23.1 99.5± 1.7 98.1± 0.5
MPE 77 3 3.9 96.4± 9.6 87.1± 3.8
Arcene 10,000 10 0.1 96.8± 0.5 94.3± 0.2

4.7. Computation Time

Finally, the computation time of the proposed FeaSel-Net was examined for all of
the previously introduced datasets. For this benchmark test, we used cuDNN, a GPU-
accelerated library that is usable within the TensorFlow environment, and Accelerated
Linear Algebra (XLA) compilation was enabled. The hardware consisted of an RTX 2070
SUPER GPU and an AMD Ryzen 5 2600X CPU. As described in Section 3.2.3, nodes
that were pruned prior to the current pruning epoch were not evaluated. This linearly
accelerated the evaluation process, as can be seen in Figure 14. In the logarithmically scaled
plot, a linear increase in the time with the number of evaluated nodes can be perceived
until ne reached 1000. The kink at this position was due to an acceleration of the evaluation,
where the evaluation set was divided into a maximum number of nb = 1000 batches.
For the Arcene dataset, the batch size became nb = 10, i.e., ten adjacent features were
evaluated at the same time. This yielded an almost constant duration of approximately
40 s for the evaluation of datasets with ne > 1000. The zig-zag behavior was induced by
ensuring natural numbers as batch sizes and, consequently, varying numbers of batches.
When reaching, e.g., ne = 6400, seven adjacent features were considered simultaneously;
therefore, nb = 915 batches were generated. Looking at smaller numbers of evaluated
features (detailed view; ne < 50), there was a noticeable jump of nearly half a second
between the Arcene dataset and the MPE dataset, which occurred because of the larger
neural network architectures during the FS process.

Iris Wine Classification MPE Arcene

101 102 103 104

evaluated nodes ne

0

10

20

30

40

ti
m

e
[s

]

accelerated
evaluation101

0.0

0.5

1.0

1.5

2.0

Figure 14. Computation time t for the feature omission impact at different stages in the FeaSel-Net
algorithm. The x-axis shows the number of evaluated nodes ne.

The overall computation time of FeaSel-Net amounted to 16.85 ± 2.04 s when av-
eraged over 25 executions. Compared to the 22.42± 0.17 s of the STG method, a slight
improvement of the computation time was obtained. This was mainly due to the early
stopping criteria implemented in FeaSel-Net. All linear methods need less than a second
for their computation. Compared to linear methods, feature selection with neural network
approaches generally takes a lot of time. In particular, when the amount of data increases,
the difference will be very noticeable. Thus, there is a trade-off between computation time
and finding the best features.
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5. Conclusions

In this work, we introduced FeaSel-Net, a feature selection algorithm that can easily
be embedded in any fully connected neural network classifier. With its novel concept of
recursively pruning the information in the input layer of the network, it forces the classifier
to constantly adapt to the repeated omission of information such that the discrimination
ability of the classifier remains at a supreme level. The evaluation of the feature omission
impact is done by applying the leave-one-out cross-validation along the feature axis and
assessing the impact of the missing feature on the classification result.

By comparing the outcome of FeaSel-Net when applied on the popular Wine Classifica-
tion dataset with those of traditionally used linear approaches (PCA, LDA, and XGBoost), it
was proven that the inherent nonlinear transformations in FeaSel-Net were beneficial. An-
other comparison with the current stochastic gates method showed that regularizer-based
feature selection strongly depends on initialization and that recursive pruning methods
such as FeaSel-Net select with a higher certainty. A classification executed in connection
with each analyzed feature selection method with a dataset reduced to the specific features
led to the best results when using FeaSel-Net’s findings. In a different experiment in which
the training process of unmasked data was juxtaposed with one with pre-selected features,
it was confirmed that the algorithm could be a remedy against the curse of dimensionality.
The application of FeaSel-Net to three more datasets of extremely contrasting sizes—from
only four and up to 10k features—underlined that it covered several different use cases.

Applications of FeaSel-Net in other domains, such as physics, automotive develop-
ment, or even the financial sector, are possible. However, the motivation for developing
this algorithm originated from the field of spectroscopy and the urge to find new potential
biomarkers that recent statistical approaches cannot reveal. With a sparser input and
selective regions of interest in the spectral domain, spectrometer scans can be executed
faster and measurement systems can be specifically engineered for the specific tasks. In
fact, an article in which FeaSel-Net was applied on the Raman spectra of tumorous bladder
tissue has already been published [40].

Even though the application of the algorithm is restricted to 1D datasets so far, it
also has the potential to be used to prune uninformative filters—for example, in image
processing. In order to analyze this potential, FeaSel-Net needs to be implemented in
convolutional neural networks in future works.
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Appendix A. Statistical Analysis

Appendix A.1. Weighted Jaccard Matrices

This section provides an overview of the derivation of the weighted Jaccard matrices
used to show inter-dependencies between the features. Corresponding to the Jaccard matrix
of the Wine classification dataset, further matrices are shown in Figure A1.

The entries of these matrices are normalized Jaccard coefficients [41],

J(i, j) =
|Ri ∩ Rj|
|Ri ∪ Rj|

(A1)

where each set
R = {r | f ∈ mr and 0 < r ≤ nr} (A2)

is a set of runs r in which a specific feature f has been found to be among the most important
features in the output mask mr. Its cardinality describes how often each feature is chosen,
and it also stores the index r, the run in which it is chosen. This is done for all nr runs.
Subsequently, the weighting is done by summarizing all binary masks w(in) in a sorted
weight vector

s = argsort

(
1

nr · q

nr

∑
i=0

w(in)

)
(A3)

for the matrix, which is sorted by applying the argsort function defined in Equation (21).
A weighted identity permutation matrix P is calculated by simply multiplying the sorting
vector with an identity matrix I ∈ Rp×p. A symmetrical 2D sorting and scaling operation
yields the following weighted Jaccard matrix:

Jw =
√

PJPT. (A4)
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Figure A1. Weighted Jaccard matrices for all analyzed datasets. FeaSel-Net is applied 100 times on
the Iris (a) and MPE (b) datasets and 35 times on the Arcene (c) dataset. Both MPE and Iris show
features that are chosen very consistently (i.e., more than 80% of the FS runs). In the case of the MPE
dataset, this means an increase of almost 1, 500% compared to random guessing. For the Arcene set, it
is even an increase of approximately 28, 500%.

Appendix A.2. Statistical Tests

To prove that the FS algorithm has a statistical significance when selecting the subsets,
a χ2-test is applied on the data subsets coming from multiple runs. The H0 hypothesis is a
uniform selection of the features. Higher values of χ2 imply a more significant result. All
p-values are exactly or roughly zero and underline the deterministic output of FeaSel-Net.
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Table A1. Statistical χ2 test applied on the feature sets selected by FeaSel-Net.

Dataset χ2-Value p-Value

Wine Classification 497.01 0
Iris 56.75 2.9× 10−12

MPE 4281.7 0
Arcene 23,307.14 0

Appendix A.3. Comparison of Certainty with Stochastic Gates

With the stochastic gates method, another neural network approach to feature selection
is used. To assess the certainty of this FS method, we generated another Jaccard plot (as
shown in Figure A2) by analyzing 50 applications of the STG method with λ = 0.3.
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Figure A2. Comparison of Jaccard matrices from the Wine Classification dataset using FeaSel-Net (a)
and stochastic gates (b).

At first glance, the STG matrix seems to be more deterministic, since od280/od315 and
flavanoids are often chosen together (more than 80%), but the third feature is evidently
less strictly chosen. The features proline, color intensity, and hue can all be chosen with the
same certainty. FeaSel-Net, on the other hand, provides the highest certainty with its most
important feature (proline). It also shows a distinct cluster of exactly three features that are
chosen together, which is also the desired number of features. When applying the χ2 test
for the features retrieved by using the STG method, a statistical value of χ2 = 259.79 is
obtained, which is only half the value from the application of FeaSel-Net.

Appendix B. Information on the Neural Networks

Appendix B.1. Available Parameters for the Callback Instantiation

After outlining the FS algorithm in Section 3, we would like to provide an overview on
all of the available parameters for building, triggering, and evaluating within the callback
in Table A2.
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Table A2. Specified values for the FeaSel-Net building parameters.

Parameter Symbol Value

Build
compression rate κ None
leave-one-out cross-validation − True
number of features q 3
number of features to prune per step np None
number of samples ns None
pruning rate π 0.2
pruning type − exponential

Trigger
decay δ 0.0
maximal number of epochs ∆emax 100
minimal number of epochs ∆emin 20
threshold (accuracy-based) τa 0.98
threshold (loss-based) τg None
type − accuracy

Evaluation
accelerate − False
decision metric − average
metric − cross-entropy
normalization − min-max
rationalize − False
remove outliers − True
scale − False

Some of these parameters only work in combination with certain types, e.g., the
desired number of features q and the compression ratio in which the number of features
is the dominant parameter. However, we do not explain each parameter in depth here,
since several parameters have already been explained in Section 3 and others are described
in Section 4. Further information can be retrieved from the documentation in the FeaSel-
Net code.

Appendix B.2. Model Architectures Used as Classifiers

Detailed information about the model architecture used for the Wine Classification
dataset is given in Table A3. The table shows the architecture for the FeaSel-Net, unmasked,
and reduced classifiers. The ReLU activation according to Equation (12) was selected for all
layers with numerical indices. In the output layer, the softmax function from Equation (13)
was applied, whereas the LinearPass (LP) layer was linearly activated. The optimization of
the neural networks in all displayed architectures was done by using the Adam optimizer
with a learning rate of η = 0.005.
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Table A3. Different model architectures used for the Wine Classification dataset. The table shows the
number of nodes in each layer and the number of parameters.

Model Type lin lLP l1 l2 l3 lout Params

FeaSel-Net 13 13 13 8 5 3 370
Reduced 3 - 6 12 6 3 207
Unmasked 13 - 9 4 3 3 193

Appendix B.3. Comparison of the Classification Performance

The classification performances were further split up into the three classes shown in
Table A4. Comparing the results of each method, it can be seen that for all performance
parameters, FeaSel-Net outperformed the others in two out of the three classes.

Table A4. Discriminability with masks retrieved from the different FS methods in percentages. Bold
values indicate the best performance.

Method Class 1 Class 2 Class 3 Overall

ACC (accuracy):
FeaSel-Net 99.19± 0.36 97.75± 0.56 98.56± 0.37 98.50± 0.43
PCA 97.02± 0.85 95.97± 0.84 97.17± 0.67 96.72± 0.79
LDA 97.80± 0.54 96.86± 0.86 99.02± 0.38 97.89± 0.59
XGBoost 97.80± 0.54 96.86± 0.86 99.02± 0.38 97.89± 0.59
STG 97.93± 0.97 95.24± 1.06 97.30± 0.63 96.82± 0.89
random 91.27± 0.64 93.42± 0.80 91.9± 0.81 92.20± 0.75

SEN (sensitivity):
FeaSel-Net 99.32± 1.09 95.44± 0.84 99.25± 1.18 98.00± 1.04
PCA 93.93± 0.99 96.53± 1.44 94.53± 1.35 94.96± 1.26
LDA 96.54± 1.77 96.24± 0.90 98.10± 0.85 96.96± 1.17
XGBoost 96.54± 1.77 96.24± 0.90 98.10± 0.85 96.96± 1.17
STG 97.29± 1.55 92.17± 1.68 97.25± 1.16 95.57± 1.46
random 85.73± 1.99 91.73± 1.04 86.37± 2.94 87.94± 2.00

SPE (specificity):
FeaSel-Net 99.13± 0.17 99.29± 0.77 98.31± 0.38 98.91± 0.44
PCA 98.56± 0.87 95.68± 0.60 98.14± 0.64 97.46± 0.71
LDA 98.42± 0.51 97.27± 1.20 99.36± 0.29 98.35± 0.67
XGBoost 98.42± 0.51 97.27± 1.20 99.36± 0.29 98.35± 0.67
STG 98.25± 0.94 97.27± 1.04 97.32± 0.59 97.61± 0.86
random 94.01± 0.94 94.55± 1.4 93.94± 1.34 94.17± 1.24

Interestingly, the performances in class 2 were worse than those in the other classes,
which was an indicator for an imbalance between the sample numbers. With 71 samples,
class 2 was overrepresented in the dataset; contrary to the belief that over-representation
yields better results in specific classes [42,43], it actually generalized worse in all studied
methods. Since the imbalance equally existed in the biased training set and the unbiased
test set, it can only be explained by the inherent properties of class 2, which were more
demanding for a correct classification, or that the selected features exhibited less potential
for an unambiguous prediction. Nonetheless, on average, throughout all classes, we
obtained solid improvements in all evaluated parameters with the proposed method.
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8. Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. (Eds.) Stacked convolutional auto-encoders for hierarchical feature extraction. In

International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
9. Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective

dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [CrossRef]
10. Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517.

[CrossRef]
11. Majid Mehmood, R.; Du, R.; Lee, H.J. Optimal Feature Selection and Deep Learning Ensembles Method for Emotion Recognition

From Human Brain EEG Sensors. IEEE Access 2017, 5, 14797–14806. [CrossRef]
12. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
13. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

14. Zhang, D.; Zou, L.; Zhou, X.; He, F. Integrating Feature Selection and Feature Extraction Methods With Deep Learning to Predict
Clinical Outcome of Breast Cancer. IEEE Access 2018, 6, 28936–28944. [CrossRef]

15. Figueroa Barraza, J.; López Droguett, E.; Martins, M.R. Towards Interpretable Deep Learning: A Feature Selection Framework for
Prognostics and Health Management Using Deep Neural Networks. Sensors 2021, 21, 5888. [CrossRef] [PubMed]

16. Liu, Z.; Yu, Y.; Sun, Z. A hidden feature selection method based on l2,0-norm regularization for training single-hidden-layer
Neural Networks. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9
December 2019; pp. 1810-1817. [CrossRef]

17. Yamada, Y.; Lindenbaum, O.; Negahban, S.; Kluger, Y. Feature Selection using Stochastic Gates. In Proceedings of the 37th
International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 10648–10659.

18. Chang, C.H.; Rampasek, L.; Goldenberg, A. Dropout feature ranking for deep learning models. arXiv 2017, arXiv.1712.08645.
19. Louizos, C.; Welling, M.; Kingma, D.P. Learning sparse neural networks through l0 regularization. arXiv 2017, arXiv.1712.01312.
20. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
21. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.

2002, 46, 389–422. [CrossRef]
22. Dua, D.; Graff, C. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer

Sciences 2019. Available online: http://archive.ics.uci.edu/ml (accessed on 11 October 2022).
23. Malhi, A.; Gao, R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 2004,

53, 1517–1525. [CrossRef]
24. Song, F.; Guo, Z.; Mei, D. (Eds.) Feature selection using principal component analysis. In Proceedings of the 2010 International

Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, 12–14 November 2010;
Volume 1. [CrossRef]

25. Hopes, K.; Cauchi, M.; Walton, C.; MacQueen, H.; Wassif, W.; Turner, C. A novel method for the analysis of clinical biomarkers to
investigate the effect of diet on health in a rat model. Analyst 2015, 140, 3028–3038. [CrossRef]

26. Han, H. Nonnegative principal component analysis for mass spectral serum profiles and biomarker discovery. BMC Bioinform.
2010, 11, S1. [CrossRef]

27. Tarpley, L.; Duran, A.L.; Kebrom, T.H.; Sumner, L.W. Biomarker metabolites capturing the metabolite variance present in a rice
plant developmental period. BMC Plant Biol. 2005, 5, 8. [CrossRef]

28. Champion, K.; Lusch, B.; Kutz, J.N.; Brunton, S.L. Data-driven discovery of coordinates and governing equations. Proc. Natl.
Acad. Sci. USA 2019, 116, 22445–22451. [CrossRef] [PubMed]

29. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

30. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2017, arXiv.1412.6980.

http://doi.org/10.1155/2016/6931789
http://dx.doi.org/10.1038/nmeth.3968
http://dx.doi.org/10.1007/11494669_93
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1037/h0070888
http://dx.doi.org/10.1007/978-3-642-21735-7_7
http://dx.doi.org/10.1016/j.neucom.2015.11.044
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1109/ACCESS.2017.2724555
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1109/ACCESS.2018.2837654
http://dx.doi.org/10.3390/s21175888
http://www.ncbi.nlm.nih.gov/pubmed/34502778
http://dx.doi.org/10.1109/SSCI44817.2019.9002808
http://dx.doi.org/10.1023/A:1012487302797
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/TIM.2004.834070
http://dx.doi.org/10.1109/ICSEM.2010.14
http://dx.doi.org/10.1039/C5AN00182J
http://dx.doi.org/10.1186/1471-2105-11-S1-S1
http://dx.doi.org/10.1186/1471-2229-5-8
http://dx.doi.org/10.1073/pnas.1906995116
http://www.ncbi.nlm.nih.gov/pubmed/31636218
http://dx.doi.org/10.1038/323533a0


Mach. Learn. Knowl. Extr. 2022, 4 993

31. Barth, J.; Katumullage, D.; Yang, C.; Cao, J. Classification of wines using principal component analysis. J. Wine Econ. 2021,
16, 56–67. [CrossRef]

32. Fu, J.; Huang, C.; Xing, J.; Zheng, J. Pattern classification using an olfactory model with PCA feature selection in electronic noses:
Study and application. Sensors 2012, 12, 2818–2830. [CrossRef]

33. Kumar, S.; Kraeva, Y.; Kraleva, R.; Zymbler, M. A deep neural network approach to predict the wine taste preferences. In
Intelligent Computing in Engineering. Advances in Intelligent Systems and Computing; Solanki, V., Hoang, M., Lu, Z., Pattnaik, P., Eds.;
Springer: Singapore, 2020; Volume 1125, pp. 1165–1173. [CrossRef]

34. Saâdaoui, F.; Bertrand, P.R.; Boudet, G.; Rouffiac, K.; Dutheil, F.; Chamoux, A. A dimensionally reduced clustering methodology
for heterogeneous occupational medicine data mining. IEEE Trans. Nanobiosci. 2015, 14, 707–715. [CrossRef]

35. Song, F.; Mei, D.; Li, H. (Eds.) Feature selection based on linear discriminant analysis. In Proceedings of the 2010 International
Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010; Volume 1.
[CrossRef]

36. Glorot, X.; Bengio, Y. (Eds.) Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Volume 9.

37. Fisher, R.A. The use of multiple measurements in taxonomix problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
38. Higuera, C.; Gardiner, K.J.; Cios, K.J. Self-organizing feature maps identify proteins critical to learning in a mouse model of down

syndrome. PLoS ONE 2015, 10, e0129126. [CrossRef]
39. Guyon, I.; Gunn, S.; Ben-Hur, A.; Dror, G. (Eds.) Result analysis of the NIPS 2003 feature selection challenge. In Advances in

Neural Information Processing Systems 17 (NIPS 2004); MIT Press: Cambridge, MA, USA, 2004; Volume 17.
40. Becker, L.; Fischer, F.; Fleck, J.L.; Harland, N.; Herkommer, A.; Stenzl, A.; Aicher, W.K.; Schenke-Layland, K.; Marzi, J. Data-Driven

Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids. Int. J. Mol. Sci. 2022, 23.
[CrossRef]

41. Levandowsky, M.; Winter, D. Distance between sets. Nature 1971, 234, 34–35. [CrossRef]
42. Thai-Nghe, Nguyen, Gantner, Zeno.; Schmidt-Thieme, L. (Eds.) Cost-sensitive learning methods for imbalanced data. In

Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 18–23 July 2010. [CrossRef]
43. Yan, Y.; Chen, M.; Shyu, M.L.; Chen, S.C. (Eds.) Deep learning for imbalanced multimedia data classification. In Proceedings of

the 2015 IEEE International Symposium on Multimedia (ISM), Miami, FL, USA, 14–16 December 2015. [CrossRef]

http://dx.doi.org/10.1017/jwe.2020.35
http://dx.doi.org/10.3390/s120302818
http://dx.doi.org/10.1007/978-981-15-2780-7_120
http://dx.doi.org/10.1109/TNB.2015.2477407
http://dx.doi.org/10.1109/ISDEA.2010.311
http://dx.doi.org/10.1111/ j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1371/journal.pone.0129126
http://dx.doi.org/10.3390/ijms23136956
http://dx.doi.org/10.1038/234034a0
http://dx.doi.org/10.1109/IJCNN.2010.5596486.
http://dx.doi.org/10.1109/ ISM.2015.126

	Introduction
	Comparison Methods—Linear Transformations Using PCA and LDA
	Principal Component Analysis
	Linear Discriminant Analysis

	Methodology—Recursive Pruning of Inputs in Neural Networks
	Classification with Deep Neural Networks
	Feature Selection Callback
	Implementation of the Callback Using Binarized Masking Layers
	Callback Triggers
	Creating an Evaluation Subset
	Evaluation of Feature Importance
	Feature Pruning


	Results
	Feature Selection with PCA
	Feature Selection with LDA
	Feature Selection Using Feasel-Net
	Comparison of Different Feature Selection Methods
	Generalizability of Masked Data
	Investigation of Different Datasets
	Iris
	Mouse Protein Expression
	Arcene

	Computation Time

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	Appendix B
	Available Parameters for the Callback Instantiation
	Model Architectures Used as Classifiers
	Appendix B.3

	References

