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Abstract: This paper experiments with well known pruning approaches, iterative and one-shot,
and presents a new approach to lottery ticket pruning applied to tabular neural networks based
on iterative pruning. Our contribution is a standard model for comparison in terms of speed and
performance for tabular datasets that often do not get optimized through research. We show leading
results in several tabular datasets that can compete with ensemble approaches. We tested on a
wide range of datasets with a general improvement over the original (already leading) model in
6 of 8 datasets tested in terms of F1/RMSE. This includes a total reduction of over 85% of nodes
with the additional ability to prune over 98% of nodes with minimal affect to accuracy. The new
iterative approach we present will first optimize for lottery ticket quality by selecting an optimal
architecture size and weights, then apply the iterative pruning strategy. The new iterative approach
shows minimal degradation in accuracy compared to the original iterative approach, but it is capable
of pruning models much smaller due to optimal weight pre-selection. Training and inference time
improved over 50% and 10%, respectively, and up to 90% and 35%, respectively, for large datasets.

Keywords: lottery ticket hypothesis; pruning; tabular

1. Introduction

It has been understood for a while that pruning a network after training can lead
to much smaller networks that still maintains similar accuracy to the original network.
However, the question arises, if these smaller networks perform just as well as the larger
ones, could one not train the smaller network architecture to begin with?

The lottery ticket hypothesis states, “a randomly-initialized, dense neural network
contains a subnetwork that is initialized such that—when trained in isolation—it can match
the test accuracy of the original network after training for at most the same number of
iterations” [1]. These smaller networks are referred to as “winning tickets”. The pro-
cess of finding winning tickets was proposed to start with an initial set of weights, train
the network, prune the network, and finally reset the remaining weights back to their
initial state.

It has been shown that these winning tickets perform as well, or sometimes better and
require less time to train when compared to the original network. In this paper, we focus on
applying this hypothesis to tabular neural networks (TNN) for several datasets to generate
smaller networks with similar performance. This is not well tested among other research
and most smaller datasets do not get optimized in research. This work not only tries
to improve leading tabular model performance, but sets some clear leading benchmarks
for several tabular datasets while making the model available for any tabular dataset for
comparison that other researchers wish to test and compare [link to code omitted during
review stage]. The code just requires the dataset loaded with categorical and continuous
features labelled and usual parameter tuning such as learning rate.

We use tabular neural networks from FastAl [2] which work on the principle of
converting categorical features into embeddings. The models come with strong features
such as normalization of continuous features, filling in missing data, and converting dates
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into categorical features. The models can be trained with their cycle training approach
which raises and lowers the learning rate to find the best local minimum while training.
We chose the model for its ability to process categorical features as embeddings while
being a lightweight neural network to obtain remarkably small models during pruning
while outperforming standard/go-to models for tabular data such as random forest and
gradient boosting.

There are many small tabular datasets which often do not get optimized in research.
These datasets are filled with categorical features and missing entries while often having
few samples to test. In this paper, we use the lottery ticket hypothesis to improve FastAl's
tabular neural network to easily prune models for any tabular dataset. We test a wide range
of datasets from large to small including different ranges of categorical and continuous
features. In addition, we compare and evaluate several tabular models to the tabular
neural network.

The lottery ticket hypothesis was first tested on dense neural networks and convo-
lutional neural networks for MNIST and CIFAR10 [1]. The authors achieved networks
80-90% smaller while both creating faster networks and increasing the accuracy of the
models in comparison to the original sized models. The authors show that while pruning
has been around for a long time, pruning networks often lead to more difficult training with
less accuracy. By finding the lottery tickets of a network, difficulty in training of smaller
networks is reduced while accuracy can be maintained and even exceed the original model.

Since its introduction, there have been many papers testing the lottery ticket hypothesis
on different architectures. In this case authors look to find winning tickets in networks by
searching for common winning tickets across many datasets [3]. They test on a range of
image datasets such as Fashion MNIST, SVHN, CIFAR-10/100, ImageNet, and Places365.
Their findings were that winning tickets generalized over many datasets, but interestingly
the larger datasets produced better winning tickets that were more generalizable than those
from smaller datasets. When testing the lottery ticket hypotheses for object detection [4]
authors achieving a sparsity of up to 80%.

There have been tests on the lottery ticket hypothesis on increasingly larger graph
neural networks (GNN) [5]. For node classification tasks, they show a decrease in multiply-
accumulate operations (MACs) of up to 98% while having a sparsity of nearly 98% with
minimal affect to performance. For linking predictions, they show similar sparsity with a
large reduction in MACs.

The tield of natural language processing (NLP) has recently exploded with new models
since the introduction of the transformer architecture [6]. The models grow increasingly
large, from sizes like the popular BERT [7] architecture of up to 350 million parameters
to sizes like GPT-3 [8] reaching up to 175 billion parameters. Ref. [9] prune the BERT
architecture, but they begin from the pretrained state and test the lottery ticket hypothesis
using downstream tasks. The paper only applies unstructured pruning stating “since we
perform a scientific study of the lottery ticket hypothesis rather than an applied effort to
gain speedups on a specific platform, we use general-purpose unstructured pruning” [9].
With unstructured pruning, they are able to find networks with sparsity of 40-90% while
testing a range of downstream tasks.

Tabular models are heading towards larger networks as well with the recent trans-
former architecture making its way to tabular data. Authors proposed a time series BERT
architecture for tabular data called TabBERT [10] and a tabular data generator TabGPT based
on the GPT architecture. In one case [11] authors use transformers to convert text in tabular
data into features and released a package to process the data. TabTransformer [12] uses the
transformer architecture to achieve new SOTAs and tested on 15 datasets, competing well
with ensemble approaches.

In this paper, we focus on tabular dense neural networks with the goal to prune them
as much as possible while maintaining accuracy utilizing the lottery ticket hypothesis. We
test our models on 8 datasets of different varieties and show competing results for datasets
with available comparisons.



Mach. Learn. Knowl. Extr. 2022, 4

956

2. Materials and Methods

In this section, we first describe the datasets evaluated and their various features.
Then we describe the pruning methods evaluated including our new pruning approach
on iterative.

2.1. Datasets

In this section, we describe the tabular datasets used in our experiments. The goal in
dataset selection is to test many varieties of tabular data. Some datasets are of poor quality
using poor features and duplicate/missing data, or small in size with a few hundred
samples. Other datasets are large with good quality data, while some use simulated
data augmentation to generate millions of samples. Some datasets have a predefined test
set, others do not have a defined prediction goal. Each dataset has a variety of tabular
features, some containing just continuous features, others containing only categorical
features, and many mixed with both. The datasets are described in more detail in this
section, and we present the number of samples, number of features, evaluation metrics,
and train-validation-test splits used in our experiments in Table 1.

Table 1. Details of each dataset including evaluation metric, number and type of features, and train-
validation-test split. Cat refers to Categorical, Cont refers to Continuous in regards to the feature type
present in the datasets.

Dataset # Samples % Split

Name Metric  Cat:Cont Train Valid Test Train Valid  Test
Alcohol RMSE 17:10 253 63 79 0.64 0.16 0.20
Games RMSE 4:4 10,623 2655 3320 0.64 0.16 0.20
Wine RMSE 0:11 1024 255 320 0.64 0.16 0.20
Chocolate  RMSE 6:1 1149 287 359 0.64 0.16 0.20
Poker RMSE 10:0 20,008 5002 1,000,000 0.02 0.005 0.975
Titanic F1 6:2 463 154 155 0.60 0.20 0.20
Health F1 5:5 59,724 14,932 18,664 0.64 0.16 0.20
Susy F1 0:18 4,000,000 500,000 500,000 0.80 0.10 0.10

The first dataset is the Alcohol dataset [13]. It is our smallest dataset and contains the
most diverse mix of continuous and categorical features. The dataset contains information
on students such as school, gender, age, information like hobbies and goals, their family
and related information such as work, education, size, etc. As quoted from this recent
dataset survey [14], “This dataset has also been uploaded on Kaggle where 305 publicly
available kernels perform exploratory data analysis. Unfortunately, there is not defined any
task with specific validation metric such that there is no leaderboard publicly available”,
so we used the workday alcohol consumption of the student as the final goal. The model
aims to predict the students” workday alcohol consumption which is a target range of 1 to
5 where 1 is very low and 5 is very high consumption.

The next dataset is the Video Games Sales dataset (https://github.com/GregorUT/vg
chartzScrape, https:/ /www.kaggle.com/gregorut/videogamesales, accessed on 26 Septem-
ber 2022). The dataset also does not have a clear final goal or leaderboard information.
There are features of videos games such as rank, publisher, year and Genre and sales infor-
mation. We have information on sales for North America, Europe, Japan, other countries
and global sales. Predicting global sales means we would have to omit information about
sales in other countries as it would be just a simple sum of those sales, so we decided to
predict North American sales given information on the video game and sales information
in other countries not including global sales.
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The Wine Quality dataset [15] aims to predict a quality score between 0 and 10 of the
wine given its features. The features are continuous values representing different acidity
rates, sugar levels, density, pH and more.

The Chocolate Ratings dataset (https://www.kaggle.com/rtatman/chocolate-bar-rat
ings, accessed on 26 September 2022) was created to generate expert opinions on chocolate.
We must predict the expert ratings which are values between 1 and 5 where 1 is bad taste
and 5 is the best taste. The features include the company, location, type of beans, percentage
of cocoa, and origin information.

The Poker Hand dataset [16] is an extremely large selection of poker hands. Each
sample is a set of 5 cards indicating the card numbers as 5 features and their suits as 5 more
features. The final goal of this dataset is to predict the poker hand such as 0 for nothing,
1 for one pair, 2 for two pairs, 3 for three of a kind, 4 for a straight, 5 for a flush, 6 for a full
house, 7 for four of a kind, 8 for straight flush, and 9 for a royal flush. We used this as a
regression problem where higher (9) the better hand and lower (0) the worse the hand.

The Titanic dataset (https://www.kaggle.com/c/titanic/data, accessed on 26 Septem-
ber 2022) uses information on passengers of the Titanic to predict whether they survived.
The features include gender, cabin, location of embarkment, ticket class (1st, 2nd, 3rd),
number of siblings or spouses, number of parents or children, age and fare. The goal
is to predict the survival of the individual (yes or no) using F1 as a metric. There is a
predefined test set without labels which must be submitted through Kaggle to be evaluated,
but our results reflect a train/validation/test split from the labelled train set only. We
also take our best available model for this dataset and run it through Kaggle to get a test
score for their test set in the experiments section. Note that a new dataset Titanic Extended
(https:/ /www.kaggle.com/pavlofesenko/titanic-extended, accessed on 26 September 2022)
was introduced with many more features while minimizing the number of empty features
derived from the literature allowing others to achieve 100% accuracy, so we opted to use
the more difficult prior version for testing without knowledge of the extended features and
containing missing information.

The Health Insurance dataset (https://www.kaggle.com/anmolkumar/health-insur
ance-cross-sell-prediction, accessed on 26 September 2022) aims to predict vehicle insurance
sales to customers of health insurance. We are given information on the policy holder such
as a unique ID (omitted in training), gender, age, has a driving license, region, types of
vehicle information like age and damage, and information on their premiums. The goal is
whether the customer will accept the vehicle insurance which is a binary prediction using
F1 as a metric.

The Susy dataset [17] is our largest dataset containing 4 million training samples, 500k
validation and 500k test samples. The test set was predefined for this dataset as the last 500k
samples in the list. The dataset contains simulation data of a particle collider with the goal
to find rare particles. There are eight kinematic features of the collision and 10 functions
of those features with the final goal distinguishing signal from background using F1 as
a metric.

2.2. Methodology

To predict on these datasets, we use tabular neural networks repurposed from
FastAl [2] with cycle training procedures. FastAl's tabular model architecture is shown in
Figure 1. It starts with a concatenation of categorical embeddings and continuous features,
then linear layers follow with optional batch normalization at each stage. We implemented
batch normalization in the pruning process as an optional parameter, but results were better
without the batch norm layers and removing them left us with smaller and faster models
(also removed for the original model for fair speed comparisons). The cycle training proce-
dure increases and reduces the learning rate as needed to reach the best local minimum, so
we are able to set standard learning rates for all models of a dataset and automatically train
our pruning approaches. The FastAl tabular structure is well suited to obtain leading results
and we improve the model in terms of accuracy and speed through cycles of pruning in this
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paper. We kept the number of training epochs the same for all pruned versions of a dataset
as defined by the lottery ticket hypothesis and used early stopping to avoid overfitting the
models based on validation scores. The data was preprocessed by converting categorical
features to embeddings, filling missing values and normalizing continuous features.

Categorical Features Continuous Features

Embeddings Batch Norm

Concat

> ]

[ Batch Norm |

I Linear Layer 1 (1600 Neurons) |
¥

[ ReLU |

I Batch Norm |

[ Linear Layer 2 (800 Neurons) |

[ ReLU |

I Batch Norm |
¥
I Linear Layer 3 (1 Neuron) |

I Output |

Figure 1. Diagram of the FastAlI architecture. When we reference a model such as [1600, 800], we
refer to a model with 1600 neurons in linear layer 1, 800 neurons in layer 2, and 1 neuron in layer 3.

The models were altered to allow pruning of full nodes selected by different pruning
selection strategies to improve inference time. Pytorch provides functionality to select
weights to prune with L1 norm pruning, a generic LN norm pruning, and random pruning.
We chose the popular default methods provided by Pytorch L1 and random and including
the case where we do not select a norm such as N = —inf. N = 1 selects nodes based on the
sum of all weights thus pruning nodes with large weights. So, the reasoning for N = —inf
was to select nodes based on the smallest weight. The approach we describe ideally finds
optimal nodes based on a few tests of N = 1 (largest), N = —inf (smallest) or something
between using random pruning. We pruned all weights associated with nodes from the
linear layers of the model depending on a rate P where the Pytorch functions provide a
mask on the nodes setting all the weights to 0.

While the pruning functionality provided by Pytorch is useful for testing, we wanted
the full benefit of smaller models which provide inference and training time improvements
rather than a mask over the weights which still require computation. In this case we
designed a simple approach to fully prune the weights. First, we save the initial untrained
weights of the model W0. Then we train the model until we reach the optimal validation
stopping point and record the weights W1. Next, we generate pruning masks for W1
depending on the selected norm (or random) and pruning rate P, then apply the masks on
the initial untrained weights W0. The remaining subset of weights from W0 will be copied
over to a smaller blank model sized appropriately for the non-zero weights. Finally, we
continue to train the pruned model depending on the iterative or one-shot styles described
below using the smaller network.
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2.2.1. Iterative Pruning

A simple iterative approach can be thought of as starting with a model size and
reducing it slowly until we reach an optimal size based on criteria for accuracy and speed
performance. The iterative approach uses a pruning rate p = 0.5 (50%) which we found to be
suitable for scaling the model down without leaping over quality model reductions. First,
we describe the standard iterative approach in our tests using a large model potentially
containing many lottery tickets. Second, we describe an alteration to the iterative approach
by first selecting a well performing model not necessarily large in size, then pruning this
model which ideally contains higher quality lottery tickets (perhaps not as many to find).

The first approach uses a starting point of a large model [1600, 800] where the parame-
ters are the sizes of the linear layers, respectively. We call this starting point the original
model. We train the original model, prune it at the rate of P, then repeat on the pruned
model until we reach the smallest state possible (ideally [1, 1]). We evaluate each size to
find an optimal reduction point for each dataset.

More formally, for a given model with weights wy and nodes [Ny, Mp]l, we apply a
prune rate of P onto the nodes iteratively for all states k with nodes [Ny, My] and weights
wy where wy, is a subset of wy and wy_; for all k. The pruned nodes at each state k are
selected by training the weights of wy_; and selecting them based on a given measure of
norm, then wy is the the set of remaining weights reset to their original starting point in wy.
The validation score of each state of trained weights wj, are recorded and used to select the
optimal prune state k.

In the second approach, we instead train at various starting points of different model
sizes starting with [1600, 800], then continuing with [800, 400] and so on reducing the size
by 50% at each step. We train each original model in search of the best starting point for the
best performing model. In other words we search for the best k = i in terms of model size
[N;, M;] (selected based on validation score) and start our pruning strategy at w; using the
first iterative strategy to find an optimal state k where k >= i. We run iterative pruning
like described in the first approach on this potentially smaller model ideally containing
better lottery ticket weights available for the pruning strategy to select (instead of a large
selection and stopping at a local minima of lower quality weights).

The second approach naturally searches for the optimal model size from the start which
already increases accuracy of the model compared to other tabular approaches compared
in the results section, then adding pruning finds even smaller sizes while potentially
increasing accuracy. Thus, the clear difference between our suggested second approach and
the standard first approach is model size. Both can maintain accuracy in a similar manner,
but the second approach is able to do so with a smaller model size in general.

2.2.2. One-Shot Pruning

The one-shot pruning approach works like iterative, but uses a prune rate of P = 1.0.
This means we prune the entire model with weights wy in one shot reducing it down entirely
to a size of [Ny = 1, My = 1] and weights wy. We adapted one-shot pruning to run on all
the potential starting points k = 0. ..i we described in iterative (second approach), then we
select the best performing one-shot model. We find in general one-shot does not perform
well, but is included in our results for comparisons. This result highlights the benefit of
finding an optimal stopping point using iterative without pruning weights too hastily.

3. Experimentations, Results, and Discussion

The goal of our paper is to set a new standard comparison for all tabular datasets using
the best pruning strategy for tabular models while optimizing inference speeds. Thus, we
present results on three important factors to this goal. The first demonstrates our ability to
reduce train and inference times, the second presents a set of results for our best performing
models on a wide variety of datasets, and the last is a comparison to a variety of other
tabular approaches to show a clear lead in results. We also run an optimization for model
size with minimal affect to accuracy.
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In all tests, all random seeds were set to the same value to allow fair comparisons and
reproducibility of any result shown. We paid careful attention to have the model weights
set to the same initial states for all styles of pruning and datasets fixed and batched exactly
the same, thus the only change is in model size and weight select which are exact subsets
of the original model. Training has early stopping after a fixed number of epochs for each
dataset. The computations were made on a 2-CPU system for all tests, no use of a GPU.
It is important for us to show that these models can run fast on a CPU machine which is
ideal for any kind of application especially with low-hardware requirements, or give any
researcher the ability to use these models.

3.1. Train and Inference Time per Model Size

Tables 2 and 3 show the time taken to run the tabular models. The first table contains
the training times averaged over all epochs while the second contains the inference time on
the test set. The tables present the number of seconds taken and the reduction of time in
percentage compared to the largest model. The trend shows that a smaller model can lead
to faster training and faster inference until we reach extremely small models of a few nodes,
at which point improvement time between small models is down to a few milliseconds
difference which can be masked by possible noise on the processor running other tasks.
The small datasets of a few hundred samples do not provide much insight, but the larger
datasets show a better downtrend. These results show us that it is not necessary to prune
down to the smallest state possible for speed improvements while we attempt to find an
optimal size for accuracy.

Table 2. Train times averaged over all epochs. The size column shows the prune states representing
the number of nodes in each layer of the neural network, each state 50% smaller than the last. Then
for each dataset we provide the average epoch train time in seconds followed by the percentage
improvement from [1600, 800] in parentheses.

Size Alcohol Games Wine  Chocolate Poker Titanic Health Susy
021s  3547s 090s 1.04s 1933s  0.38s 139.50s 3611.18s

1600800 500 (0.0%)  (0.0%)  (0.0%)  (0.0%) (0.0%)  (0.0%)  (0.0%)
900 400 0155 12235 049 065s  1249s 025s 5240s 1168.57s
/ (4.7%) (65.5%) (454%)  (37.3%)  (354%) (32.8%) (624%)  (67.6%)
100000 Ol4s  658s  039s 055s  10.10s 023s  3245s 529.79s
/ (302%) (81.6%) (56.1%)  (46.8%)  (47.7%) (40.0%) (76.7%)  (85.3%)
200 100 Ol4s  524s 0365 0545 852s  021s 30.28s 425545
' (33.0%) (852%) (59.5%)  (48.3%)  (55.9%) (43.7%) (78.3%)  (88.2%)
o050 Olds  457s  035s 0.54s 777s  021s 27.68s 3374ls
' (322%) (87.1%) (60.6%)  (47.8%)  (59.8%) (44.8%) (80.2%)  (90.7%)

50 25 0.14s  454s  034s 052 72s  021s 27.18s 314.14s
' (302%) (87.2%) (61.6%)  (49.8%)  (62.7%) (44.3%) (80.5%)  (91.3%)
s 13 0.14s  547s  035s 0.51s 636s  021s 2737s 280.77s
' (335%) (84.6%) (61.5%)  (50.5%)  (67.1%) (43.9%) (80.4%)  (92.2%)
37 0.14s  430s  034s 0.51s 507s  021s  272s  289.77s

' (324%) (87.9%) (61.5%)  (50.7%)  (73.8%) (45.0%) (80.5%)  (92.0%)
73 0.14s  431s  034s 052 495s  021s 2691s 287.14s

’ (32.1%) (87.9%) (61.5%)  (49.6%)  (74.4%) (45.0%) (80.7%)  (92.0%)
- 0.14s  463s  034s 052s 524s  021s 2725 292285

' (302%) (86.9%) (62.2%)  (50.5%)  (72.9%) (44.9%) (80.5%)  (91.9%)
1 0.14s  447s  033s 050's 556s  021s  2428s  302.94s

(33.9%) (87.4%) (62.6%)  (52.0%)  (712%) (45.2%) (82.6%)  (91.6%)
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Table 3. Inference times on test set in a similar format to train times. For each dataset we provide the
inference time on the test set in seconds followed by the percentage improvement from [1600, 800]
in parentheses.

Size Alcohol Games  Wine  Chocolate Poker Titanic Health  Susy

1600. 800 0.06 s 0.82s 0.08 s 0.11s 213.77s  0.06s 422 33.83s
! (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%)
800, 400 0.06 s 0.7s 0.08 s 0.1s 22094s  0.06s 3.79s 24.12's
’ (4.0%)  (14.5%)  (8.7%) (7.7%) (—3.4%) (4.8%) (10.1%) (28.7%)
400, 200 0.06 s 0.7s 0.07 s 0.1s 188.36s  0.05s 3.71s 21.54s
’ (3.8%)  (15.3%) (10.1%) (9.0%) (11.9%) (17.0%) (12.0%) (36.3%)
200,100 0.05s 0.68 s 0.09 s 0.1s 166.78s  0.05s 4.03s 22.75s
’ (10.5%) (17.5%) (—8.3%) (9.3%) (22.0%) (159%) (44%) (32.8%)
100, 50 0.05s 0.68 s 0.07 s 0.1s 154.82s 0.05s 4.04s 2194 s
! (11.0%)  (16.9%) (11.8%) (9.8%) (27.6%) (17.7%) (4.1%) (35.2%)
50,95 0.05s 0.7 s 0.07 s 0.1s 153.34s  0.05s 4.03s 20.55 s
’ (11.0%)  (14.3%) (13.6%) (10.9%) (28.3%) (16.9%) (4.5%) (39.3%)
25 13 0.05s 0.7s 0.08 s 0.1s 132.77s  0.06s 4.09s 19.3s
! (11.1%)  (14.6%) (10.0%) (12.4%) (37.9%) (139%) (3.0%) (43.0%)
13,7 0.05s 0.68 s 0.07 s 0.1s 105.15s  0.06s 4.06 s 19.7 s
! (11.8%) (16.9%) (14.3%) (11.0%) (50.8%) (10.9%) (3.7%) (41.8%)
73 0.05s 0.68 s 0.07 s 0.1s 105.67s  0.05s 4.03s 20.57 s
’ (12.2%) (174%) (12.3%) (12.0%) (50.6%) (18.4%) (44%) (39.2%)
31 0.06 s 0.68 s 0.08 s 0.1s 106.74 s 0.05s 3.65s 22.04s
! (4.4%) (17.5%)  (8.5%) (10.0%) (50.1%) (18.4%) (13.5%) (34.9%)
11 0.05s 0.68 s 0.07 s 0.1s 103.05s 0.05s 3.59s 20.54 s

(83%) (17.5%) (15.6%)  (145%)  (51.8%) (15.6%) (14.8%) (39.3%)

3.2. Dataset Accuracy

Table 4 highlights our best performing models accuracy-wise. In bold are the models
with the best accuracy. The table presents the RMSE or F1 depending on the dataset task,
the size of the model, the difference in percentage compared to the original model, and the
pruning mode that generated the result. Iterative on the largest model (approach 1) has
the best likelihood of generating a better model with 5/8 datasets improving. Iterative
on the best performing model (approach 2) has one best case tied with approach 1 for the
poker dataset, but it happens that the largest model was the best performing model, so
both approaches generated the same result. Meanwhile approach 2 can maintain similar
accuracy in many datasets while lowering the model size by a substantial margin (all
datasets show less than or equal model sizes compared to approach 1). For example,
the chocolate dataset maintains exactly the same accuracy loss between both approaches,
but we were able to find the smallest possible model state [1, 1] compared to the large
[200, 100] of approach 1. Other notable examples are the health ([200, 100] to [7, 3]) and
Susy ([200, 100] to [100, 50]) datasets which are our largest test sets. One-shot had one case
of generating a best performing model for the smallest dataset in our experiments. There
were two datasets, Wine and Chocolate, which could not be pruned further without some
loss in accuracy, but they can be pruned extremely small with little degradation in accuracy.
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Table 4. Comparison of accuracy (RMSE/F1) for each dataset between the original tabular models,
and iterative/one-shot modes. First result is the best performing original models, second result is
best performing iterative when pruning the best original model (approach 2), third result is best
performing iterative when pruning the largest model [1600, 800] (approach 1), and the final result is
the best performing one-shot model. Results are shown in RMSE/F1 depending on the dataset along
with the model size, then we include the difference in percentage along with the pruning mode for
the model. Bold is marked as best performing accuracy.

Best Iterative Iterative
Dataset Original (Approach 2) (Approach 1) One-Shot
Acc Acc Diff% Acc Diff% Acc Diff%
Size Size Mode Size Mode Size Mode
Alcohol 0.90356 0.89509  +0.937%  0.89941 +0.459%  0.89357 +1.106%
7,3 1,1 L1 1,1 LN 1,1 LN/Rand
Games 0.30398 0.30136  +0.862%  0.26265 +13.596%  0.45927 —51.086%
25,13 13,7 L1 100, 50 LN 1,1 Rand
Wi 0.59206 0.59935 —1.231%  0.59863 —-1.11% 0.61947 —4.63%
mne 100, 50 13,7 L1 25,13 LN 1,1 Rand
Chocolate 0.46411 0.48331 —4.137%  0.48291 —4.051%  0.48117 —3.676%
200, 100 1,1 All 200, 100 LN 1,1 L1/LN
Poker 0.56241 0.53551 +4.783% 0.53551 +4.783% 0.76128 —35.36%
1600, 800 400, 200 L1 400, 200 L1 1,1 L1
Titanic (F1) 0.78571 0.78571 +0.000% 0.7931 +0.941%  0.78333 —0.303%
13,7 7,3 LN 13,7 L1 1,1 L1/LN
Health (F1) 0.82263 0.82322  +0.072%  0.82428 +0.201%  0.82242 —0.026%
800, 400 7,3 LN 200, 100 Rand 1,1 LN
Susy (F1) 0.77080 0.77071  —0.012%  0.77109 +0.038%  0.75316 —2.289%
y 200, 100 100, 50 Rand 200, 100 L1 1,1 L1/LN

3.3. Comparison to Tabular Models and Other Approaches

We compare the tabular models to other models in Table 5 and found that even the
original model has the best performing accuracy for all but a few results. In this case the
Health dataset using SVM/RF and Susy using GB resulted in a better accuracy than the
original model, all comparisons shown are to the original tabular model. The table shows
the following models: K Nearest Neighbors (KNN), Linear Regression (LR), Support Vector
Machine (S§VM), Gradient Boosting (GB), Decision Tree (DT) and Random Forest (RF). We
also used the equivalent classifier version of these models for the classification tasks using
F1 as a measure of accuracy. All models were tested on the exact same train, validation and
test sets and we also preprocessed the data in the same way converting text/categorical
features to values, normalizing continuous features and filling in missing values. All
models were tuned appropriately for each dataset individually, the best parameters were
selected based on their validation score and present the test score in the table. Note that
Susy has KNN and SVM missing, this is because even with a 32 CPU machine and weeks
of computation we could not produce a result in a reasonable timeframe, so we omitted
them from the table. To fully train these models several times over for parameter tuning
on a large dataset like Susy would be costly and time consuming, if it is computationally
feasible. This highlights the benefit of having a faster model such as our pruned tabular
neural network that can scale appropriately for large datasets with minimal resources such
as CPUs (using 2 or less).
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Table 5. Comparison of different models to the original tabular model in Table 4, top is RMSE/F1
depending on the dataset and bottom is the difference in percentage compared to the original tabular
model. Note that the pruned tabular models are not reflected in these results and the difference is only
computed for original. We have two missing results for Susy due to the size of the train/valid /test
set as KNN and SVM are too inefficient to compute these scores.

Dataset KNN LR SVM GB DT RF

Alcohol 0.94405 0.96838 0.94680 0.92735 1.08500 0.93949

—4481%  —7174%  —4786% = —2.633%  —20081%  —3.976%

Commes 1.0253 0.61135 0.67062 0.65778 0.70800 0.68026
—237.292% —101.115% —120.613% —116.389% —132.91% —123.784%

Wine 0.65610 0.62515 0.59983 0.62044 0.81586 0.59915

~10.816%  —5589%  —1312%  —4793%  —37.800%  —1.198%

Chocolate 0.51295 0.51541 0.50163 0.49299 0.63895 0.47952

~10523%  —11.053%  —8.084%  —6223%  —37.672%  —3.320%

Poker 0.73195 0.77344 0.74685 0.57836 1.06652 0.67302
~30.145%  —37.522%  —32.795% = —2.836% = —89.634%  —19.667%

Titanic 1) 688%2 0.73504 0.73504 0.73214 0.68421 0.74380

—12370%  —6.449%  —6.449% = —6.818%  —12.918%  —5.334%

Health F1) 079414 0.82106 0.82367 0.82204 0.71185 0.82392

—3.463%  —0.191% +0.126% —0.072%  —13.467%  +0.157%

0.68483 0.77121 0.69232 0.76648

Susy (F1) N/A ~11.153% N/A +0.053%  —10.182%  —0.560%

In comparison with other approaches, some datasets do not have reported results
such as Video Games, Alcohol and Chocolate. The Titanic dataset is shown on Kaggle to
achieve 100% on the test set using random forest and other approaches due to an extended
features dataset derived from the literature. We used the version without extended features,
thus running our best model (L1 iterative [13, 7]) on Kaggle’s test set gives us a score
of 0.77511, but the result is incomparable to those using the extended features achieving
perfect results. Because of missing available comparisons, we provide comparisons using
exactly the same data split and preprocessing for all datasets using several models in Table 5
as mentioned previously.

For the Red Wine dataset, this paper [18] reports the following RMSE results: 0.63245
using a 3 layer neural network, 0.61163 using GB, 0.62145 using SVM, and 0.62201 using
ridge regression. In this case we hold the best result with 0.59206 RMSE (+3.200%) using an
original tabular model sized at [100, 50].

This paper [19] reports several F1 scores on the Health dataset: 0.80 using KNN,
0.77 using naive bayes, 0.76 using LR, 0.81 using RF, 0.80 using MLP, 0.72 using SVM. Our
best model using random iterative pruning (approach 1) and a size of [200, 100] achieves
an F1 score of 0.82428 (+1.763%).

This paper [20] reports accuracy as their metric and achieve the following results on
the Poker dataset: 0.7687 using the Heterogeneous Dynamic Ensemble Selection based
on Accuracy and Diversity (HDES-AD) approach, and 0.9068 using their HDES-ADP
variant. They also report a comparison to Diversity for Dealing with Drifts (DDD) [21] with
0.7867, Online Accuracy Updated Ensemble (OAUE) [22] with 0.7325, and Active Fuzzy
Weighting Ensemble (AFWE) [23] with 0.7126. These approaches all use techniques to
train ensembles of models and in particular [20] generates models based on diversity and
accuracy. We used RMSE instead of accuracy, but reran our models using F1 to optimize
the models for this comparison. We achieved 0.87915 F1, 0.88360 accuracy (—2.558%) using
L1 iterative [800, 400] (approach 1), and a similar score with a smaller model 0.87958 F1,
0.88462 accuracy (—2.446%) using Random iterative [400, 200] (approach 1).
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Authors in this paper [24] use a 70/30 train-test split on the Susy dataset at random.
We used the recommended test set provided for our results of 10% in size using the final
500k samples in the list and a validation set of 10%. They report accuracy as their metric
with the following scores: 0.7884 using LR, 0.774 using RF, 0.7546 using DT, 0.793 using GB.
We achieved a better result of 0.77109 F1 using L1 iterative [200, 100] (approach 1), and an
accuracy of 0.80285 (+1.242%).

3.4. Optimizing for Model Size Only

Finally, as our last result, we show a comparison of model size to the original tabular
model by selecting the smallest model we can with less than 2% divergence in RMSE or F1.
The goal of this test is to find the smallest model possible allowing for a small margin of
error. We do the same with the original models, so we select the best size for original with
less than 2% divergence in accuracy from the best performing RMSE/F1 original model.
Then we apply the same rule to iterative and finally one-shot. The results are shown in
Table 6 highlighting in bold the smallest model following the described conditions. We
show the original model size, then we present the difference in accuracy of other models
and the prune rate from the same original model. In 7 out of 8 datasets we can generate a
smaller model with minimal affect to RMSE/F1 including original with selection. In 6 of
8 datasets we outperform original with selection for 2% divergence generating models over
85% smaller and many over 98% smaller.

Table 6. Best models selected by size with less than 2% divergence in accuracy of the original model.
For each dataset (first column), we noted the size of the original model in the second column. Then we
show the smallest possible model with <2% divergence in accuracy for each of the original, iterative on
best original, iterative on [1600, 800], and finally one-shot. The table shows the percentage difference
in RMSE or F1, and P the prune rate compared to original. If the difference in accuracy is >2%,
then that was the best performing model accuracy-wise and we could not produce a valid smaller
model using that approach. Bold is the smallest model which does not exceed the 2% divergence in
accuracy rule.

Iterative Iterative
Dataset Orig. Orig(i)nal <2% <2% One-Shot
2% (BestOrig) (11600, 800])
Size Diff (P) Diff (P) Diff (P) Diff (P)

Alcohol 7,3 —0.923% (0.600) +0.937% (0.800)  +0.459% (0.800)  +1.106% (0.800)
Games 25,13  —0.158% (0.737) +0.862% (0.474) +4.168% (—0.974) —51.086% (0.947)
Wine 100,50  0.000% (0.000) —1.231% (0.867) —1.110% (0.747)  —4.630% (0.987)
Chocolate 200,100  0.000% (0.000) —4.137% (0.993) —4.441% (0.993) —3.676% (0.993)
Poker  1600,800 —0.768% (0.969) —0.349% (0.984) —0.349% (0.984) —35.360% (0.999)
Titanic 13,7 0.000% (0.000)  —1.754% (0.800) —0.303% (0.900)  —0.303% (0.900)
Health ~ 800,400 —0.085% (0.997) —0.188% (0.998) —0.287% (0.998)  —0.026%(0.998)
Susy 200,100 —1.758% (0.987) —0.381% (0.987) —0.397% (0.987)  —2.289% (0.993)

4. Conclusions and Future Work

In conclusion, we presented two approaches to pruning tabular neural networks,
iterative and one-shot, based on the lottery ticket hypothesis using structured node pruning.
We presented our variation of the iterative approach (2) which highlights its ability to find
smaller models with similar performance in accuracy to the original iterative approach
(1). The results are presented for 8 tabular datasets of different sizes and feature sets. We
improved accuracy in 6 of the 8 datasets when considering accuracy alone. We also show
up to 85% reduction in nodes in 6 of 8 datasets considering model size with limited affect
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to RMSE/F1 and over 98% reduction for many of them. We show that the tabular models
outperform several other tabular models where comparisons were not available such as
KNN, RE SVM, DT, LR and GB. Finally, when comparing to other papers, we show an
improvement of +3.200% in RMSE for the Wine dataset, +1.763% in F1 for the Health
dataset and +1.242% in accuracy for the largest dataset of 5 million samples, Susy.

We found that the iterative approach while pruning a large model obtains the majority
of top results compared to pruning better but smaller models, or in comparison to one-
shot pruning. We go beyond just masking weights and implement a structured pruning
approach reducing the model architecture to layer sizes as low as [1, 1] while improving
accuracy in comparison to large model sizes like [1600, 800] for the alcohol dataset. Finally,
for each dataset, we show the advantage in training and inference time of structured
pruning at each pruning state. Future work will be focused on pruning layers once the size
of a layer reaches one node, and other focuses will be on feature selection using the lottery
ticket hypothesis where pruning nodes responsible for certain features will result in the
removal of that feature.

While this approach shows improvements in terms of model size, training time,
inference time, and in many cases accuracy, there are some limitations. The approach
currently requires the original model to be trained in order to select lottery tickets, then
retrained to evaluate the smaller model. In addition to this limitation, the selection process
of the weights are limited to the method used to measure the weights. While they show
improvements, they do not allow us to directly choose the model size and depend on us
finding an optimal state. Future work would focus on removing any need to train the
original model while allowing us to focus on weight selection for a given size rather than
weight reduction to an arbitrary size.

We asked the question “if these smaller networks perform just as well as the larger
ones, could one not train the smaller network architecture to begin with?”, and we believe it
is clear that given the right set of initial weights for the network, a smaller, faster and better
network can be trained to begin with. We show the existence of these weights through
iterations of pruning, so perhaps there exists an approach to initializing the network as
a function of the data using lottery weights. Future work will utilize the information we
learned from our results to find said models without ever training the original model which
can be adapted generically to any neural network.
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Abbreviations

The following abbreviations are used in this manuscript:

AFWE Active Fuzzy Weighting Ensemble

BERT Bidirectional Encoder Representations from Transformers

Cat Categorical

Cont Continuous

DDD Diversity for Dealing with Drifts

DT Decision Tree

GB Gradient Boosting

GNN Graph Neural Network

GPT Generative Pre-trained Transformer

HDES-AD  Heterogeneous Dynamic Ensemble Selection based on Accuracy and Diversity
KNN K-Nearest Neighbors

LR Linear Regression

MACs Multiply-Accumulate Operations

NLP Natural Language Processing

OAUE Online Accuracy Updated Ensemble

RF Random Forest

SVM Support Vector Machine

TabBERT  Tabular Bidirectional Encoder Representations from Transformers
TabGPT Tabular Generative Pre-trained Transformer

TNN Tabular Neural Network
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