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Abstract: Datasets with thousands of features represent a challenge for many of the existing learning
methods because of the well known curse of dimensionality. Not only that, but the presence of
irrelevant and redundant features on any dataset can degrade the performance of any model where
training and inference is attempted. In addition, in large datasets, the manual management of features
tends to be impractical. Therefore, the increasing interest of developing frameworks for the automatic
discovery and removal of useless features through the literature of Machine Learning. This is the
reason why, in this paper, we propose a novel framework for selecting relevant features in supervised
datasets based on a cascade of methods where speed and precision are in mind. This framework
consists of a novel combination of Approximated and Simulate Annealing versions of the Maximal
Information Coefficient (MIC) to generalize the simple linear relation between features. This process
is performed in a series of steps by applying the MIC algorithms and cutoff strategies to remove
irrelevant and redundant features. The framework is also designed to achieve a balance between
accuracy and speed. To test the performance of the proposed framework, a series of experiments
are conducted on a large battery of datasets from SPECTF Heart to Sonar data. The results show the
balance of accuracy and speed that the proposed framework can achieve.

Keywords: machine learning; feature selection; python framework

1. Introduction

The current capacity of cloud services has allowed the storage of large quantities of
data about any possible phenomenon. However, as always, the quality of such data is not
the best that can be achieved [1–3]. Thus, there is interest in improving such data [4–7],
given that it is simpler to improve its quality than produce complex algorithms to handle
low quality datasets. Furthermore, techniques such as Machine Learning have played a
fundamental role in exploiting the potential of such datasets. These techniques consist
mainly of identifying patterns on the data to generate valuable insights to solve problems
where Machine Learning is applied to [8–10]. However, despite its success, Machine Learn-
ing algorithms depend on various pre-processing algorithms to reduce important issues
in learning such datasets. One of the most important is known as the curse of dimension-
ality, which refers to the fact that, when you have a high number of dimensions in your
data, the more complex the interactions are and the more data you need [11,12]. Basically,
such interactions become internal noise in the datasets, decreasing the performance of
Machine Learning algorithms. Thus, the need to select the most informative features, di-
mensionality reduction, in such datasets in order to improve performance on the Machine
Learning algorithms.
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There are three kinds of features in a dataset: relevant, irrelevant, and redundant [4].
Therefore, dimensionality reduction is one of the most popular techniques to remove
noisy and unnecessary features. Dimensionality reduction techniques can be categorized
into feature extraction and feature selection [13]. Feature extraction approaches attempt to
generate new features from the original features such that they are more informative. On the
other hand, feature selection aims to select a small subset of features minimizing possible
redundancies and maximizing relevant features without incurring a loss of information.
Feature extraction and selection methods are capable of improving learning performance
on many models by lowering computational complexity, building better generalizations
and decreasing required storage. Next, we will chronologically mention some of the most
important algorithms to deal with the curse dimensionality.

Principal Component Analysis (PCA) [14] was developed by Karl Pearson in 1901.
This proposal was the first known unsupervised feature extraction method. A couple of
years earlier, Pearson also introduced the Pearson correlation coefficient [15], which allows
us to find a linear relationship between two variables and could be considered one of the
first steps for supervised feature selection.

Around 1936, Fisher developed the linear discriminant analysis (LDA) [16], which is
the first supervised feature extraction method, but it was only designed for two classes.
In 1948, C.R. Rao [17] extended the algorithms’ LDA to generalize for multi-class linear
discriminant analysis in order to treat problems in biological classification. A couple of
years later, the kernel discriminant analysis would establish the idea of linear discrimi-
nant analysis.

ST Roweis and LK Saul, in 2000, developed locally linear embedding [18] for nonlinear
dimensionality reduction. In the same year, De Silva, V. Langford and J.C developed a manifold-
based reduction method called Isomap [19]. In 2003, M. Belkin and P. Niyogi successfully
applied Laplacian eigenmaps [20] for dimensionality reduction in data representation.

In 2005, Hanchuan Peng proposed the feature selection algorithm called minimum
redundancy maximum relevance (mRMR) [21] that introduces the importance of removing
not only irrelevant but also redundant features.

Finally, Van der Maaten introduced t-SNE in 2008 [22], a feature extraction technique
that reduces the number of dimensions preserving the local structure, something very
useful for visualizing datasets with large feature sets. In 2018, Leland McInnes introduced
UMAP [23], an improvement of t-SNE, a technique that also preserves global structure.

This work proposes a method of feature selection using two general approaches: the
first one is called individual evaluation, also known as feature ranking, and the second is a
subset evaluation [24]. In feature ranking, the weight of every feature is assigned according
to its relevance and in subset evaluation, candidate feature subsets are constructed using
heuristic search strategies. The optimal subset is selected by some pre-selected filter
function and, typically, this function tries to measure the discriminating ability of a single
or subset of features to distinguish the different class labels of a problem [6]. Thus, in this
paper, we present a novel framework that employs different measures in order to accelerate
the process of ranking features. The main contributions of the proposed framework are:

• The use of a cascade of Mutual Information Correlation (MIC) algorithms and the
Pearson Correlation to balance speed with accuracy in the process of feature selection;

• A search strategy based in the MIC Score to remove irrelevant and redundant features
by a novel combination of the previous algorithms;

• All this packed in a framework for easy deployment and use.

All this makes the proposed framework a useful tool for feature selection in many
possible setups.

2. Background

Generally, the feature selection measures are categorized into two groups: The first
ones measure the possible dependence and correlation between two features [21,25,26],
and the second ones consist of using metrics to measure possible similarities or dissimi-
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larities between them [7,27]. In this work, we take the decision to use the first approach
by developing a fast framework for feature selection that identifies relevant features, and
remove redundant and irrelevant ones. This choice is based on the fact that it is simpler
to calculate dependence and correlation between features than first calculating a repre-
sentative subspace of a feature space, then to define a metric on it. A classic example of
the use of correlation is the Pearson Correlation [28,29], and a natural evolution of it is
the MIC [30]. Thus, in the following sections, we review all the basic methods behind the
proposed framework.

2.1. Pearson Correlation

The Pearson correlation [28,29] coefficient has been widely used to understand rela-
tionships between pairs of variables. Given its ease to calculate and interpret, the Pearson
correlation is widely used by statisticians to calculate linear correlation between features.
The simplicity of the Pearson correlation r can be observed in (Equation (1)).

rxy =

n
∑

i=1
(xi − x̄)(yi − ȳ)√

n
∑

i=1
(xi − x̄)2

√
n
∑

i=1
(yi − ȳ)2

. (1)

Unfortunately, the Pearson correlation is not a useful metric in general when non-
linearities are involved. Actually, the Pearson correlation is limited to the detection of linear
relationships between variables, and it is not suitable for detecting variable dependencies
that are not linear. Fortunately, its computation is quite fast and produces similar results to
MIC (Section 2.3) when there is a linear relationship and low noise [5] on the features. For
example, (Figure 1) shows an example of two variables with a linear relationship and its
corresponding Pearson score.

Figure 1. A noisy linear relation and its corresponding Pearson score.

2.2. Mutual Information (MI)

Equation (2) is a well-known correlation measure that uses the Shannon entropy [31]
to obtain a wider range of relations between random variables.

I(X; Y) = I(Y; X) = ∑
y∈Y

∑
x∈X

p(x, y)log
[

p(x, y)
p(x)p(y)

]
. (2)
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Although this measure is not normalized in the interval [0, 1], there are versions of
it where their outputs are bounded into such interval. For example, Equation (3) is a
normalized version of the Mutual Information.

R =
I(X; Y)

H(X) + H(Y)
, (3)

where H(X) is the entropy of X.

2.3. Maximal Information Coefficient

The MIC [5,30] is a measure of correlation among two variables. Its general idea
is to establish whether two variables (features) are related linearly or not linearly. For
this, a grid is generated and drawn over their dispersion graph to compute the degree of
relationship between them by square grid. Since the number of possible grids can be large,
it is necessary to find the best number of grid partitions (grid resolution) and their best
location (partition placements). Thus, to compute MIC efficiently , all the grids (x, y) are
explored using the following constraint x · y ≤ n0.6, where n is the total amount of points
representing the data of the tuple. This restriction has been shown to work well in practice
for several problems [5]. Similarly, for each resolution explored, the partition positions that
produce the higher mutual information must be found (Figure 2). Then, the indicator of
mutual information is computed by using the following equation (Equation (4)).

I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
, (4)

where X and Y represent random variables, p(x, y) is the joint probability for the regions
x and y, respectively, while p(x) and p(y) are their marginal probability distributions [5].
(Figure 3) shows a possible 3× 3 partition. The regions marked in blue correspond to the
x = 1 column and row y = 1, respectively. The quadrant for the intersection of column
x and row y is highlighted in yellow with n = 20 data points. With this information,
it is easy to compute the following probabilities p(x), p(y) and p(x, y). Substituting
these probabilities in (Equation (4)), the mutual information of the grid can be calculated.
The following figure (Figure 4) shows the complete procedure to compute the mutual
information for this example.

Figure 2. Partition and placement for the computation of the MIC metric.
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Figure 3. Partial mutual information computation for a 3× 3 grid.

Figure 4. Mutual information computation for a 3× 3 grid.

This operation is repeated for each resolution saving the higher value obtained. Then
the higher mutual information score is normalized between [0, 1] and stored in a charac-
teristic matrix M(x, y). Finally, the value of MIC is considered as the higher normalized
mutual information value contained in matrix M. Thus, the MIC metric is a value in the
interval [0, 1].

Unfortunately, the exhaustive computation of MIC is unpractical for large datasets.
Therefore, it is preferable to use approximation algorithms to estimate the MIC metric.
These algorithms are significantly faster than the use of exhaustive computation. However,
usually slower estimation algorithms have better accuracy than the faster ones. Thus, we
propose, in this framework, an equilibrium between slow and fast algorithms for the MIC
to obtain a better performance.
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2.4. Fast and Accurate MIC Estimation

With the intention of finding a good balance between accuracy and speed, we proposed
a method that uses a sequence of algorithms to speed up the computation of the MIC metric.
Each algorithm of the sequence excels at dealing with a special case of correlation. When
analyzing the correlation of all the possible pairs of features in the dataset, the sequence
is applied from the fastest algorithm to the slowest one. At each step of the sequence,
some feature pairs are pruned when a reasonably good estimation of its MIC metric is
achieved. This prevents unnecessary computation of the slower algorithms over all the
pairs; thus, accelerating the MIC estimation while retaining a good amount of accuracy. The
MIC estimation sequence is composed of the following algorithms: Pearson Correlation,
ParallelMIC and SAMIC.

Section 3 shows the complete criteria used to prune feature pairs on each process stage.
The next subsections detail the nature of the algorithms tested and their role in the final
computation of the MIC metric.

2.4.1. ApproxMaxMI

ApproxMaxMI [5] is a heuristic algorithm to approximate the optimal value of the
MIC metric. The idea behind this heuristic is to consider one axis of the analyzed grids
as being equally partitioned while optimizing the partition placement of the other axis.
The optimization made for each grid axis is performed using a dynamic programming
approach. Then, by repeating the process, the previously unfixed axis is refitted and
equipartitioned. At the end, the maximum of the two obtained scores is used as the final
MIC approximation [5]. In the context of ApproxMaxMI, an axis is equipartitioned if all
of the regions induced by its partitions contain the same number of data points. Finally,
ApproxMaxMI has been implemented on various software packages including Minerva
for R and MINEPY for Python [32].

2.4.2. ParallelMIC

ParallelMIC is a parallelized version of ApproxMaxMI, and accelerates the computa-
tion of MIC by calculating the score for various feature pairs in parallel. To some extent,
ParallelMIC is based on RapidMIC [33]. The difference between the ParallelMIC and
RapidMIC is that it computes MIC by calculating multiple grid resolutions at the same
time. However, the performance of ParallelMIC is slightly better than RapidMIC and,
actually, both algorithms are equivalent when included in the MIC estimation sequence.

For the purpose of this framework, an open source implementation of ParallelMIC
available at https://github.com/ivangarcia88/ffselection, has been written in C++. Rapid-
MIC is also an open source implementation, and it is available in the following URL:
https://github.com/HelloWorldCN/RapidMic (accessed on: 15 March 2021), and it is part
of MICTools software discussed in section (Section 4). Further, table (Table 1) compares
RapidMIC and ParallelMIC against software packages that compute MIC by using Approx-
MaxMI implementations. There, N determines the number of samples in each dataset, and
M the amount of records in each variable. The time reported does not include the reading
time of the dataset into the main memory.

Table 1. Performance comparison (in seconds) for MIC calculations over several software packages.

Dataset RAPIDMIC ParallelMIC

Spellman 1060.649 889.538

MLB2008 350.142 262.95

2.5. SAMIC

SAMIC is an MIC estimation algorithm based on Simulated Annealing. Just as
ApproxMaxMI, SAMIC tries to find MIC by optimizing every possible grid resolution
(Sections 2.3 and 2.4.1). It is based on Simulated Annealing [34] by using random choices

https://github.com/HelloWorldCN/RapidMic
https://github.com/HelloWorldCN/RapidMic
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over a temperature decay function to enforce the exploration of the whole solution space.
In its simplest form, SAMIC will proceed as follows at every grid resolution while keeping
track of the maximum mutual information score MIC found at every step:

1. Set temperature T = 1 and equipartition grid in both axes;
2. Compute the mutual information score MI of the current grid placement;
3. Generate a random neighboring grid placement and compute its new score MInew

(more neighbors can be generated at this step if more precision is needed);
4. Compare both MI and MInew:

• If MI < MInew, then MI = MInew.
• If MI > MInew, generate a random choice r ∈ [0, 1] and make MI = MInew if

and only if e(minew−mi)/T > r.

5. Update temperature T = T · c where c is a cooling factor between 0; and
6. Repeat steps 2 to 6 until T < Tmin.

Algorithm (1) shows the complete pseudocode of SAMIC when running over a single
pair of variables.

In the context of SAMIC, given any grid G placement, a neighbor grid placement G′ is
a new placement with one and only one differently placed partition for each axis. Thus,
Simulated Annealing guarantees finding the optimal solution to the optimization problem
if the temperature decay is sufficiently slow, and the amount of neighbors explored at each
temperature change is vast. However, in a practical setup, the decay ratio and number
of explored neighbors are constrained to ensure the termination of the algorithm in a
reasonable time. SAMIC is way slower than ParallelMIC, but is in fact more precise.

3. A Novel Approach for Feature Selection

In this section, we explain in more detail the proposed framework for feature se-
lection. For this, we present the following figure (Figure 5) that shows the steps of the
proposed framework.

Figure 5. MIC based feature selection process.

The proposed framework works in the following way to obtain the selected features:

• First, feature are ranked by the ParallelMIC score (Section 2.3). This is done to be able
to select possible relevant features;

• Second, these features are pruned by the use of cut strategies to remove the irrelevant
ones (Section ). Although this allows us to remove irrelevant features, it is necessary
to remove redundant features that can provide the same information;

• Third, the use of the Pearson Correlation, ParallelMIC and SAMIC to remove the
redundant features at the pipeline by the use of mutual information (Section 3.1) and
the idea of clustering.

The final result of this process is the set of features with relevant and non-redundant
information. This results in a fast feature selection pipeline to improve classification problems.

3.1. Ranking Features

The first step is feature scoring; this step compares every feature with the target to
determine which features are relevant. If a feature has a high score it is considered relevant,
otherwise it is considered irrelevant. Even MIC Score is limited to the value between the
range [0,1] and it is not trivial to determine a threshold to define if a feature is relevant
or not.
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Algorithm 1: SAMIC One Pair
Data: X, Y sets of records corresponding to a given pair of variables
Data: nneighbors amount of neighbors to evaluate at each temperature
Data: Tmin minimum temperature
Data: c cooling factor
Data: n number of data points
Result: Returns a value in the interval [0, 1] which corresponds to an approximation of the MIC value for X and

Y
begin

mic = −1
mi = −1
for cols from 2 to n0.6 do

for rows from 2 to n0.6 do
if rows · cols < n0.6 then

mi = MIequipart(X, Y, rows, cols)
if mic < mi then

mic = mi
end
Tcur = 1
while Tcur > Tmin do

for i ∈ {1, 2, · · · , nneighbors} do
mitmp = MIrandom(X, Y, rows, cols)
if mi < mitmp then

mi = mitmp
if mic < mi then

mic = mi
end

else
randomChoice = Random number between 0 and 1

if e
(mitmp−mi)

Tcurr > randomChoice then
mi = mitmp

end
end

end
Tcur = Tcur · c

end
else

break
end

end
end
return mic

end

3.2. Removing Irrelevant Features

Search strategies such as forward selection and sequential backward elimination [35]
could be useful to determine a candidate subset of features, but they could be quite time
consuming. A faster option to obtain a good (but not optimal) feature subset is to cut; these
strategies require that features are ranked. The following cuts methods are implemented in
our framework:

• Cut based in a selected number of features. It returns the n best features according to
MIC {r0, r1 ... rn}, where n is a number selected by the user;
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• Cut based on biggest distance correlation. It compares the score of every variable
with the subsequent and makes the cut where the biggest difference between them
is presented;

• Cut based on the best evaluation using classifiers. In addition to the last two methods
R these techniques use classifiers algorithms in order to compare subsets given by
cuts, then selects the best of them;

– Cut distance with validation. This cut method is based on the biggest distance
correlation. Then, it generates multiple subsets based on the n-biggest score
difference and selects the best of them using a classifier;

– Binary Cut. This method tries to reach an optimal cut using binary search over
the set R returning the best subset according to a particular classifier;

– Optimal Cut. It is based on a selected number of features, red but in this case
n change its value in every iteration from 1 to x and returns the best subset
according to the selected classifier.

3.3. Removing Redundant Features

MIC is symmetric; this means MIC(X; Y) = MIC(Y; X). This property is very useful
because, when comparing if two features are related, the order of the arguments using
MIC does not matter. MIC is not transitive in general, but when scores are close to 1,
the behavior is similar to a transitive property. In other words if MIC(X; Y) is close to
1 and MIC(Y; Z) is close to 1, then MIC(X; Z) is more likely close to 1. This provides
the opportunity of grouping features where the features in group are highly correlated.
Creating groups and selecting only the feature with a higher correlation to the target is how
our framework deals with redundant features. The full process is described in Algorithm 3.

In this step the number of pair features could be quadratic to the number of relevant
features, which is the reason in this step we used a cascade of scores to improve the speed
performance. The main idea is to apply the following algorithm from the fastest to the
slowest with each step pruning some pair computation. The sequence is composed of the
following algorithms:

1. Pearson Correlation.
2. ParallelMIC.
3. SAMIC.

The process is described in Algorithm 4. This is a heuristic process based on the
correlation of the comparative between Pearson score vs MIC score [5]. The cascade of
Algorithm 2 is mainly a sequential filter that tries to avoid using computationally expensive
algorithms, pruning pairs of features on each step. Figure 6 illustrates the process.

Figure 6. Algorithm cascade for scoring redundant features.
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The red circles refer to a pair of features. A,B,C,D are thresholds, used to prune pairs.
It is important to notice that this process could lead to a false negative correlation; it is
the price to speed up this process. We notice experimentally that keeping redundant
features is less sensitive than removing redundant features when dealing with the curse of
dimensionality to tune up a machine learning model.

Algorithm 2: MIC Estimation Sequence
Data: X, Y sets of records corresponding to a given pair of variables
Data: A, B, C, D ∈ [0, 1]
Result: Returns a value in the interval [0, 1] which corresponds to an approximation of the MIC value for X and

Y
begin

p = |Pearson(X, Y)|
if B ≥ p ≥ A then

return p
end
r = ParallelMIC(X, Y)
if r ≥ C then

return r
end
s = max{r, SAMIC(X, Y)}
return s

end

Algorithm 3: Detect Groups
Data: G is a matrix that contains the MIC score of the candidate features
Result: D the redundant candidates set
for i ≥ numberRow(G) do

L[i] = ∅
for j ≥ numberColumns(G) do

L[i] ∪ {i}
if G[i, j] ≥ 0.9 then

L[i] ∪ {j}
end

end
end
for i1 ≥ length(L) do

for i2 ≥ length(L) do
if i1 6= i2 then

if i2 6∈ D then
if L[i1] = L[i2] then

D ∪ {i2}
end

end
end

end
end
return D
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Algorithm 4: Feature Selection
Data: X sets of all features in the dataset
Data: y target in the dataset
Result: A set of features ordered by relevance with the target according to MIC
for x ∈ X do

T[x] = MIC(x, y)
end
Sort T in descending order
R = Cut(T)
for x1 ∈ X do

for x2 ∈ X do
if x1 6= x2 then

G[x1, x2] = MIC(x1, x2)
end

end
end
D = DetectGroups(G)
return F = R− D

4. MICTools and MICSelect Software Architecture

In order to test and refine the feature selection and MIC estimation techniques presented
in this project, a pair of software packages were developed. MICTools and MICSelect are
computer programs to perform efficient MIC calculations and feature selection, respectively.

MICTools is implemented in C++ and allows the parallel execution of the previous
algorithm sequence (Pearson, ParallelMIC and SAMIC). MICSelect is implemented in
Python and performs the feature selection tasks; it relies heavily on MICTools to perform
its required MIC calculations. The communication between MICSelect and MICTools
is achieved by a Python wrapper, which is written with the Boost Python library and
the Distutils build system. Even though MICSelect integrates MICTools, it can be used
independently and is compiled as a standalone application.

In order to unify and guarantee the correct execution of both MICTools and MICSelect,
a software architecture has been developed, which is detailed in (Figure 7).

This architecture defines a common set of patterns and data structures to handle the
data between algorithms and manage their results. It also allows MICSelect to make use of
MICTools transparently through a Python wrapper.

The architecture design is composed of four layers. Each layer provides a specific
function. The communication between layers is done through shared data structures,
including execution configuration, input matrix and results array. The architecture layers
are: MICSelect layer, Python wrapper layer and MICTools layer.

The architecture allows us to run each of the MIC estimation algorithms sequentially.
However, each algorithm can run independently from the others. Furthermore, each algo-
rithm of the sequence has been completely parallelized using POSIX threads (pthreads) and
lock free policies [36,37]. The parallelization model used to implement Pearson correlation,
ParallelMIC and SAMIC relies on a Single Instruction Multiple Data (SIMD) design over a
Uniform Memory Access model (UMA) [38]. In practice, this means that every thread of
the CPU will operate over a different set of feature pairs without overlapping. Figure 8
gives an intuition of how the parallelization model works.
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Figure 7. Architecture overview.

Figure 8. Single Instruction Multiple Data (SIMD) model.

Communication between layers is done by the following data structures: routine
configuration, input matrix and results array.

The next subsections explain in detail the role and functions of each architecture’s component.

4.1. MICSelect Layer

The MICSelect layer performs the feature selection method described in algorithm
(Algorithm 3). This layer relies on MICTools to read the datasets and to perform the required
MIC operations. In addition, it deals with the process of cutting, ordering, grouping and
selecting the relevant features of the dataset. A user or program can interact with this
layer by sending instructions to its argument parser. Table (Table 2) shows the available
commands recognized by MICSelect. This layer is implemented in Python as it allows easy
data slicing and filtering.
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Table 2. Parameters of MICSelect.

MICSelect Options

Short Command Value Range Description

Mandatory Options

-i Path Input CSV file.

-y String Target Name of dataset.

Not mandatory options

-r Remove redundant features.

-x Integer [0,4] Step wise feature selection

-s Integer [1,N]
Static cut, gives the number of features selected
sorted by importance. N is the total number of
features in the dataset.

-w Write features correlation in a file.

4.2. Python Wrapper Layer

This layer consents to the communication between MICSelect and MICTools. It is
implemented as a Python module meaning that MICTools can be included in any Python
program. The wrapper functions are the following:

• Instructions passing from MICSelect to MICTools;
• Results parsing to Python standard data structures;
• Automatic handling of memory allocation.

This layer is implemented in C++ using the Boost Python libraries and the Distutils
build system.

4.3. MICTools Layer

The MICTools layer performs the MIC algorithms estimation sequence explained
in Section 3.1. It contains several sub-layers that perform simple tasks, these layers are:
presentation layer, I/O layer, sequence of algorithm layer and dependencies layer.

Since the performance of this layer is critical, it is implemented in C++ with POSIX
Threads as parallelization library. This library ensures portability between Unix compliant
operative systems. This layer can also be compiled as a standalone application independent
of the rest of the architecture.

4.3.1. Presentation Layer

This layer provides the input interface for the MICTools program. A user or application
can utilize this layer to specify commands, arguments, and parameters to MICTools. These
instructions may be introduced as a single command and interpreted by an argument
parser. Table 3 shows the different options accepted as input by MICTools.

4.3.2. I/O Layer

This layer provides the input and output operations to interact with data sources;
for example, datasets contained in CSV files or databases (not implemented). This layer
guarantees the correct reading of datasets and the writing of the resulting data.

4.3.3. Sequence of Algorithms Layer

This layer contains the parallel implementations of the MIC estimation algorithms
supported by MICTools. It allows every algorithm to process any pair of features based on
the algorithm sequence described in Section 3.1.
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4.3.4. Dependencies Layer

This layer contains all the libraries needed by the Algorithms Layer. The libraries
provide functionalities such as parallelization routines, grid management, thread safe
random number, generators, a sequential implementation of ApproxMaxMI (implemented
in C++ from scratch), and other functionalities required by the Algorithms Layer.

4.4. MICTools Auxiliary Data Structures

The auxiliary data structures in MICTools provide a way of communicating for all of
its layers. These datasets mainly contain algorithms’ execution parameters, results, and
common input data.

4.4.1. Execution Configuration

This data structure contains the settings for the current planned execution of MICTools.
It includes all the algorithms that are going to be executed in the current run as well as
their pertinent parameters. The configurations comprise: input data source, output data
source and algorithms’ execution parameters.

Table 3. MICTools supported parameters.

MICTools Options

Short
Command

Long
Command Value Range Description

General options

-a –alpha Double (0, 1] Alpha value for MIC calculations.

-i –input String Input CSV file.

-o –output String Output results file.

-f –keys_file String Filter keys file. Restricts the generated pairs to be constructed
only with those variables present in the file.

-g –target String Name of the variable against which all of the remaining
variables will be paired.

-h –header Indicates that the input file contains a Header line.

-t –max_threads Integer >0 Max number of threads to use during the computation.

-d –default Forces the program to run Pearson, ParallelMIC and SAMIC
using their default parameters.

Analysis options

-P –Pearson Includes Pearson in the analysis schedule.

-R –ParallelMIC Includes ParallelMIC in the analysis schedule.

-S –SAMIC Includes SAMIC in the analysis schedule.

RapidMIC options

-u –clumps Double >0 Number of clumps (must be larger than 0).

-p –min_pearson Double [0, 1] Sets ParallelMIC to compute only those pairs whose Pearson
coefficient absolute value is above the given value.

-e –max_pearson Double [0, 1] Sets ParallelMIC to compute only those pairs whose Pearson
coefficient absolute value is below the given value.

SAMIC options

-n –neighbors Integer >0 SAMIC amount of candidate neighbors to consider for each
temperature of the simulated annealing stage.

-c –cooling Double (0, 1) Temperature cooling factor to be usesd in SAMIC.

-m –min_temp Double (0, 1) Minimum temperature value to be used in SAMIC.

-j –min_parallelmic Double [0, 1] SAMIC min ParallelMIC value. Restricts computation to pairs
with ParallelMIC score above the given value.

-k –
max_parallelmic Double [0, 1] SAMIC max ParalllMIC value. Restricts computation to pairs

with ParallelMIC score below the given value.
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4.4.2. Mutual Input Matrix

This data structure contains reading registers acquired by the data source input. In
addition, it provides the input data to all the algorithms in execution.

4.4.3. Array of Results

This data structure encloses the computed pairs of variables, as well as the results
obtained by each of the performed algorithms over them. When running any of the parallel
algorithms in MICTools, this data structure is segmented in many pieces as threads are
available for the computation. Then, each thread will operate over its corresponding piece,
reading the stored pairs and writing the results to the data structure.

5. Results & Evaluations

In order to evaluate the framework, twelve classification datasets from UCI MLR [39]
and LIBSVM [40] were used. We compare our method against three different algorithms;
STG [41], Random Forest [42] and M1-GA [43]. In every test, we used three models, SVM,
KNN, and Logistic Regression, to get the AUC Score (average). In addition, the implemen-
tation of these models is taken from SciKit-Learn [44] (0.24.2) for Python 3.6. Table 4 shows
the configurations and parametrization of the models used as testing methods.

Table 4. Configurations and Parametrization of Testing Methods.

Algorithm Abbreviation Main Parameters

Logistic Regression LR
penalty: l2
solver: lbfgs
max_iter: 100
random_state: 0
multi_class: auto

K-NearestNeighbor KNN
n_neighbors: 3
algoithm: auto
metric: minkowski
leaf_size: 30

Suport
Vector Classifier

SVC
kernel: rbf
max_iter: no limit
gamma: scale
C (regularization
parameter): 1

The time (seconds) showed in the Table 5, only considers the feature selection process.
Thus, the proposed framework achieves a better balance in accuracy and time complexity.
Our proposal has an execution time quite similar to the random forest algorithm but the
performance is significantly better, almost the same as that of STG.

Table 6 shows the average scores for a stratified five-fold cross-validation with AUC,
F1 Accuracy, Recall and Precision metrics among the testing datasets in our proposal for
the Top 10 Feature Selection method.

Moreover, Figures 9–11 shows the performance among each testing datasets, with the
mean score of three models SVM, KNN and LR using stratified 5-fold cross-validation and
both methods top 10 Feature Selection and Stepwise Feature Selection.

The software–hardware configurations to run the experiments were the following:
Ryzen 5800×, 4 × 16 GB Kingston DDR4, Samsung 1TB 970 Evo Pro, Ubuntu Desktop
18.04 × x86-64. It is clear that the proposed framework can obtain better results over the
testing algorithms. However, we can see that on the Lung Caner and Sonar datasets, for
example, the other algorithms obtain a better AUC, but the time complexities are higher.
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Table 5. Table of results.

Prop. Top 10 STG Random F. M1-GA

Dataset
Name AUC Time AUC Time AUC Time AUC Time

SPECTF
Heart 0.77 0.006 0.76 3.445 0.78 0.061 0.74 379

Cervical
Cancer
(R.F.)

0.93 0.012 0.82 4.376 0..58 0.066 0.94 639

Breast
Cancer
(Diag.)

0.92 0.488 0.81 4.053 0.88 0.067 0.78 2642

Breast
Cancer
(Prog.)

0.74 0.023 0.6 4.321 0.59 0.07 0.62 1340

Sports
articles 0.79 0.164 0.83 4.709 0.79 0.116 0.82 9686

Lung
Cancer 0.82 0.001 0.9 3.359 0.57 0.062 0.94 7773

HCC
Survival 0.67 0.023 0.64 4.028 0.68 0.067 0.65 28345

Duke
Breast
Cancer

0.81 0.182 0.8 10.646 0.75 0.071 0.91 10915

Colon
Cancer 0.89 0.102 0.86 5.191 0.62 0.069 0.92 5046

Leukemia 0.98 0.093 0.74 10.601 0.75 0.067 0.96 15,446
Sonar 0.70 0.127 0.78 3.539 0.81 0.072 0.78 7475
Splice 0.84 0.017 0.87 4.672 0.88 0.095 0.81 781

Average 0.82 0.083 0.784 5.245 0.723 0.074 0.823 7539

Table 6. Scores for Stratified 5-Fold Cross-Validation.

Prop. Top 10 Features

Dataset Name AUC F1 Accuracy Recall Precision

SPECTF
Heart 0.77 ± 0.10 0.73 ± 0.13 0.87 ± 0.10 0.68 ± 0.19 0.84 ± 0.13

Cer. Cancer
(R.F.) 0.93 ± 0.03 0.31 ± 0.31 0.81 ± 0.15 0.37 ± 0.38 0.33 ± 0.33

B. Cancer
(Diag.) 0.92 ± 0.03 0.89 ± 0.04 0.97 ± 0.02 0.86 ± 0.08 0.93 ± 0.03

B. Cancer
(Prog.) 0.74 ± 0.07 0.28 ± 0.18 0.67 ± 0.14 0.25 ± 0.19 0.43 ± 0.33

Sports
articles 0.79 ± 0.05 0.84 ± 0.04 0.83 ± 0.06 0.87 ± 0.06 0.82 ± 0.03

Lung Cancer 0.82 ± 0.12 0.69 ± 0.24 0.87 ± 0.15 0.70 ± 0.29 0.76 ± 0.29
HCC

Survival 0.67 ± 0.07 0.75 ± 0.08 0.72 ± 0.09 0.83 ± 0.15 0.71 ± 0.09

Duke B.
Cancer 0.81 ± 0.10 0.80 ± 0.14 0.95 ± 0.05 0.81 ± 0.22 0.85 ± 0.14

Colon Cancer 0.89 ± 0.09 0.83 ± 0.13 0.94 ± 0.08 0.82 ± 0.13 0.86 ± 0.16
Leukemia 0.98 ± 0.05 0.99 ± 0.03 1.00 ± 0 1.00 ± 0 0.98 ± 0.06

Sonar 0.70 ± 0.11 0.68 ± 0.14 0.75 ± 0.14 0.71 ± 0.22 0.70 ± 0.14
Splice 0.84 ± 0.04 0.84 ± 0.04 0.92 ± 0.04 0.80 ± 0.06 0.88 ± 0.06

Average 0.82 ± 0.07 0.72 ± 0.13 0.86 ± 0.09 0.73 ± 0.16 0.76 ± 0.15
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Figure 9. Original Features—Mean Metrics Scores for LR, KNN, SVC.

Figure 10. Top 10 Features—Mean Metrics Scores for LR, KNN, SVC.

Figure 11. Stepwise Features—Mean Metrics Scores for LR, KNN, SVC.

6. Conclusions

In this work, we present a feature selection framework for large datasets based on a
correlation capable of detecting nonlinear relationships between two features. This corre-
lation was handled by the smart combination of MIC, Pearson Correlation, ParallelMIC
and SAMIC algorithms to obtain precision and speed on the feature selection task. The
experiments reveal that the proposed framework shows better accuracy with lower compu-
tational complexity when applied to different datasets. Therefore, the proposed framework
is capable of detecting the relation between a pair of features at good speeds and accuracies.
However, there are more complex associations between more than two features that need
to be studied to obtain a better way to detect such complex relations. For this, we are con-
ducting research on the use of meta-learning to acquire knowledge on already studied data
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sets, the use of Deep Learning for feature generation and Bayesian causality to extend the
proposed framework into more complex capabilities but maintaining the balance between
speed and accuracy.
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