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Abstract: The knowledge embodied in cognitive models of smart environments, such as machine
learning models, is commonly associated with time-consuming and costly processes such as large-
scale data collection, data labeling, network training, and fine-tuning of models. Sharing and
reuse of these elaborated resources between intelligent systems of different environments, which
is known as transfer learning, would facilitate the adoption of cognitive services for the users
and accelerate the uptake of intelligent systems in smart building and smart city applications.
Currently, machine learning processes are commonly built for intra-organization purposes and
tailored towards specific use cases with the assumption of integrated model repositories and feature
pools. Transferring such services and models beyond organization boundaries is a challenging
task that requires human intervention to find the matching models and evaluate them. This paper
investigates the potential of communication and transfer learning between smart environments in
order to empower a decentralized and peer-to-peer ecosystem for seamless and automatic transfer
of services and machine learning models. To this end, we explore different knowledge types in the
context of smart built environments and propose a collaboration framework based on knowledge
graph principles for describing the machine learning models and their corresponding dependencies.

Keywords: knowledge graph; transfer learning; internet of things; cognitive models

1. Introduction

Today, our built environment is not only producing large amounts of data but—
driven by the Internet of Things (IoT) paradigm—it is also starting to talk back and
communicate with its inhabitants and the surrounding systems and processes. Inspired by
these developments, the front runners in information and communication technology (ICT)
are now exploiting the power of artificial intelligence and machine learning to facilitate
human interaction with smart environments and space services such as thermal comfort
and ambient assisted living [1]. IoT-based systems typically follow a three-layer model
(cf. Figure 1) that consists of: (i) a sensing layer, which acquires the observation of interest
from the environment; (ii) a cognitive layer, which is concerned with context acquisition,
modeling, and reasoning; and (iii) an actuation layer that triggers actions or invokes
services according to some predefined logic. The main effort required for supporting
automatic change management and adaptive systems in an IoT-enabled space lies in the
cognitive layer. Unlike the sense and actuate layers that usually undertake straightforward
tasks, the creation and configuration of the cognitive layer is rather a complicated task
that is not necessarily based on syntactic or deterministic models. Instead, it needs a
deep understanding of incoming events as well as the context of those events. Rule-based
workflows and machine learning models are among common approaches for realizing the
cognitive components.
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Figure 1. Three-layer model of an Internet of Things (IoT)-based system including sensing, context, and actuation layers.

Creating machine learning models is a costly process that requires large amounts
of well-prepared and curated datasets for training and testing processes. This gives
smart environments the incentive to share and reuse the existing models beyond the
boundaries of smart environments. Currently, transferring such cognitive components
beyond the building boundaries is a challenging task that requires human intervention
to evaluate the existing models and adopt the appropriate model based on the criteria
and requirements of target environments. although human intervention for personalizing
the smart environments works well, such methods may soon be infeasible due to the
following challenges:

1. Versatile IoT configurations: Human contribution cannot cope with the ever-increasing
number of IoT devices. By introducing new devices or applying changes to the smart
environment, the configurations and rules need to be revisited and checked. As such,
we need a configuration management approach that supports flexibility, dynamicity,
and incremental change in smart environments.

2. IoT service transfer: While users can manage, train, and configure the services in their
private environment, it is not easy to transfer such configurations to semi-private
spaces, such as hotel rooms, cars, hospital rooms, open city spaces, and offices. For
instance, suppose an individual has defined some rules to maintain his/her thermal
comfort at home based on services such as a motion detector, an air conditioning
system, and the body temperature measured by a wearable device. To achieve the
same thermal comfort in a semi-private environment such as hotel rooms or offices, the
rules need to be adjusted based on the semantics and standards of the target spaces.

3. Transfer learning: The smart space services, embodied in machine learning models,
are commonly associated with time-consuming and costly processes, such as large-
scale data collection, data labeling, network training, and fine-tuning models. Sharing
and reuse of these elaborated models in a different space would facilitate the adoption
of services for the inhabitants and accelerate the uptake of machine learning in smart
building applications. The model adoption process, which is referred to as transfer
learning, is commonly undertaken by a human who is capable of understanding the
implicit semantics of spaces, devices, and the relevant information resources and
services. Therefore, self-explaining and machine-understandable models are the key
requirements to accelerate the transfer learning between smart spaces.

This study set out to investigate the potential of communication and reuse of cognitive
knowledge between smart environments for a seamless and automatic transfer of services
and machine learning models. To this end, we propose a semantic framework that lays
out the description of machine learning processes and makes the corresponding digital
assets explainable and interoperable. This is achieved by creating a knowledge graph
that is aware of the IoT infrastructure of target environments, the semantics of datasets
and features, and the models trained based on those features. The knowledge graph also
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includes the evaluation indicators of machine learning models that facilitate sharing and
reuse of models beyond the organizational boundaries. In this paper, we first present the
different knowledge types in built environments. Then, we introduce the generic transfer
learning framework based on knowledge graph principles. To demonstrate the feasibility
and usefulness of this approach, we showcase a transfer learning scenario between smart
environments. The rest of this paper is structured as follows. In Section 2 we present the
related work in the knowledge graph and machine learning domains. Section 3 presents the
classification of knowledge types in smart environments and introduces a five-star schema
to assess the maturity level of knowledge sharing and reuse between smart environments.
Section 4 describes the knowledge sharing approaches in smart environments, which
is followed by an occupancy prediction case-study in Section 5. Finally, in Section 6,
conclusions are drawn and future work is discussed.

2. Related Work

Recent advances in the knowledge graph [2] and machine learning domains have
revealed their complementary nature and advantages of combining knowledge graphs
and machine learning techniques [3]. More specifically, knowledge graphs and ontologies
are introduced as key technologies for creating explainable and comprehensible machine
learning models for both humans and machines [4]. This includes applying the explainable
artificial intelligence (XAI) methods to overcome the incompleteness in formalization of
trust in machine learning solutions [5], as well as explainable machine learning pipelines
to capture the chain of artifacts that are used to build the cognitive models. An example
of this approach is given in [6], where the authors used knowledge graphs to explain the
transferability of features between domains and offer human-understandable explanations
for transfer learning scenarios. However, this study does not cover the model creation
processes and pipelines. In our proposed approach, the transferred models can be tracked
down to the original models and datasets used for their training/fine-tuning. Another
example of knowledge graph applications in transfer learning is given in [7], where the
authors proposed a rule-learning method for measuring the structural similarity of concepts
between knowledge graphs of source and target domains. In the context of smart buildings,
knowledge graphs can be used as an efficient medium for capturing digital representations
of both physical and functional characteristics of buildings. More importantly, knowledge
graphs can narrow the physical-digital gap via applying a network of digital elements
around our physical built environment for integration of brick-based (i.e., physical space
and IoT devices) and bit-based (i.e., cyberspace and information services) elements [8].
To build and populate the knowledge graph of smart environments, several methods
and standards have been introduced. For instance, the Industry Foundation Classes
(IFC) developed by the BuildingSMART alliance [9] is one of the most mature Building
Information Modeling (BIM) standards and defines an object-based hierarchy of building
entities and concepts for data exchange and data sharing. In this context, several researchers
have proposed domain-specific ontology schemas based on BIM and linked data principles
for supporting the interoperability and data integration in smart built environments [10–12].
Although the BIM standards provide a comprehensive description of buildings’ physical
elements and address many interoperability challenges between building systems and
services, they fail to capture the relationship between static building information and
the real-time dynamic of IoT ecosystems in smart buildings [13]. To this end, the Brick
schema [14] provides a broader coverage of concepts for smart buildings by standardizing
semantic descriptions of the physical, logical and virtual assets in buildings and the
relationships between them. However, the Brick schema does not cover the specific
requirements of machine learning processes and knowledge transfer scenarios.

Several research works, such as [15,16], have explored the potential of transfer learn-
ing for IoT and edge devices but were not geared towards capturing the semantics of
space, IoT devices, or the machine learning models. One of the promising approaches to
describe the semantics of machine learning processes is ML-Schema [17], which offers an
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interchangeable format for the description of machine learning experiments. ML-Schema
also provides us with a set of classes, properties, and restrictions for representing and inter-
changing information on machine learning algorithms, datasets, and experiments. In this
research, we have used and extended the ML-Schema to address the specific requirements
of transfer learning scenarios. This extended schema is the building block of our proposed
knowledge graph that bridges the gap among IoT infrastructure, machine learning artifacts,
and space information.

As machine learning models cross the boundaries of source environments, we need
to assure the integrity and traceability of adopted digital assets such as training datasets
or transferred models and describe the chain of artifacts in creating or transferring the
machine learning models. To address this requirement in machine learning processes,
the feature store concept [18] has been introduced, which supports the feature curation
process and the reuse of machine learning models in various pipelines. One of the first
implementations of feature store is Michelangelo [19], which was introduced by Uber in
2017 and has been used in Uber’s machine learning platform. Another feature store imple-
mentation is MLFlow [20], which offers a metadata store to tackle the challenges of machine
learning lifecycle in experimentation, reproducibility, and reliable production deployment.
TensorFlow Extended (TFX) [21] is Google’s solution for the orchestration of components
in machine learning pipelines, and it provides a configuration framework to express ma-
chine learning pipelines based on the predefined metadata of artifacts, executions, and
pipelines. Hopsworks [22] presented another feature store that defines a metadata model
for describing the machine learning artifacts and also provides a framework to engineer
and store machine learning features at scale.

3. Characteristics of Knowledge Sharing in Built Environments

Before discussing the inter-space learning methods and concepts, we need to identify
the different types of knowledge embodied in a physical space. Our built environment
is made up of various complex and interrelated systems and services that draw upon
interdisciplinary areas such as economics, law, public policy, public health, management,
geography, design, technology, and environmental sustainability. Consequently, the embod-
ied knowledge in built environments comes in various types that cover different aspects of
space information. The embodied knowledge ranges from simple facts and concepts such
as basic space information to more complex knowledge types such as rules, procedures,
and models. Part of this knowledge, which is known as explicit knowledge, can be readily
articulated, codified, stored, and accessed by humans and machines [23] and is communi-
cated through various mediums [24]. On the other hand, cognitive knowledge cannot be
explicitly defined and can be acquired through observation and experimentation.

In this section, we introduce the main categories of knowledge in built environments
and then present a five-star maturity scheme to describe the learning and sharing capability
of smart spaces.

3.1. Knowledge Types in Built Environments

Knowledge is a broad concept that has been extensively debated in philosophy for
many centuries, and still, there is no universal agreement about its definition and dif-
ferent categories. However, due to the increasing interest in organizational knowledge
and knowledge management systems, we need to take a pragmatic approach and de-
fine the required knowledge types in the domains of interest to solve our day-to-day
problems. Based on the previous research in knowledge management and knowledge
management systems [25], we have identified five knowledge types, namely Basic (Priori)
knowledge, Inferred (Posteriori) knowledge, Procedural knowledge, Cognitive knowledge,
and Descriptive knowledge. These categories establish the basis of our inter-space learning
framework. As shown in Figure 2, knowledge types are interrelated and we may infer new
facts about the domain of interest by applying rules to the basic knowledge, executing a
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procedure, or using cognitive models (e.g., machine learning models) to extract new facts
from descriptive knowledge.

When it comes to capturing and sharing the embodied knowledge of the built en-
vironment, there is a handful of machine-interpretable methods and formats for explicit
knowledge categories (i.e., basic, inferred, and procedural categories). Additionally, the
descriptive knowledge (e.g., text documents and images) can be captured and shared
as raw data and used for further processing. However, cognitive knowledge cannot be
explicitly defined and is acquired through observation and experimentation. An example
of this type of knowledge is machine learning models that create explicit and actionable
knowledge from descriptive knowledge resources. For instance, a machine learning model
trained to do face recognition, will receive descriptive knowledge resources such as images
or video streams as input and generate explicit knowledge to be used in business processes
of smart environments.

In the context of smart built environments, the training process of these models
benefits from the big amount of data generated by IoT-enabled spaces. Such models could
yield a significant profit over the lifetime of a building. However, due to the high cost
of training and the need for a large amount of training and testing datasets, the uptake
of machine learning applications in built environments is slow. For instance, a speech
recognition model trained on a rather big and elaborated local dataset, might not work
efficiently in an unknown space, as it cannot cope with the surrounding noise of the target
space. This gives smart environments the incentive to reuse and re-purpose the existing
models via techniques such as transfer learning, where models trained on one task are
re-purposed for a second related task.

Figure 2. Knowledge types and their interrelations.

3.2. Maturity Levels of Knowledge Sharing and Reuse

The methods of knowledge sharing and reuse between smart environments can
range from simple sharing of basic information to more complex methods such as service
composition and transfer learning. In a space collaboration scenario, spaces should on the
one hand be capable of sharing and advertising their own resources (e.g., data and services)
in an efficient way, and on the other hand, should be able to reuse the available resources
to address the raised queries and problems. In order to classify and study different levels
of learning between smart environments, we use the following five-star maturity scheme
to describe the learning/sharing capability of spaces. These five levels are shown in Table 1
and defined as follows:

• Data level (one star): A one-star space is capable of making its static data available
to other spaces and at the same time use the available static data of other spaces.
Examples of such data in a smart environment include basic space information, space
relationships to other building entities, static datasets, and available IoT devices. At
this maturity level, information can be captured in static files, building management
systems, or more elegantly via a knowledge graph that binds various domains together
and makes the data machine-interpretable.

• Stream level (two stars): When space is capable of offering or processing real-time
data streams using stream processing techniques, space is considered to be a two-star
space. In this context, spaces may share their data streams (e.g., via publishing or
broadcasting nodes) or use the available data streams (e.g., via subscription or API
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calls) to access and process the stream data. Similar to data level, the dynamic level
resources can be offered and consumed by means of plain data objects, or by following
the principles of Linked Data and using linked stream data. For example, space may
offer the data of its temperature sensor as linked stream data that can be consumed by
other spaces and systems for various use cases.

• Service level (three stars): A space that is capable of offering services to other spaces or
use the offered services of other spaces is a three-star space. At this level, services are
considered to be black-box components that can be accessed based on their advertised
description. In other words, spaces offer their services as is, and let other spaces call
those exposed services to achieve their goals. For example, space can offer its ML
model as a service and let other spaces use it based on the advertised service signature.
Similar to the data and stream levels, services level can also benefit from a semantic
framework in order to present their signature in a machine-interpretable way.

• Inference level (four stars): A space that is capable of inferring new knowledge or
customizing the available services is a four-star space. At this level, space can interpret
the semantics of available resources such as sensors, actuators, and data streams to
create a solution or adopt and customize an existing solution based on its settings and
requirements. Space can achieve this by means of an inference engine, expert system,
or other available services. As an example, consider an IoT application that depends
on a number of sensors, actuators, and data streams. In order to transfer such a service
chain to a new space, we would need to adopt the blueprint of that IoT application
and customize it based on the available sensors and actuators in the target space.

• Learning level (five stars): A five-star space is capable of undertaking a task by
monitoring its resources or learning from other spaces. For instance, consider the
occupancy prediction use case. A five-star space is able to find ML models from other
spaces with similar goals, create a pipeline to acquire the necessary input features
from its sensor data, and predict the number of people in the space. Additionally, in an
advanced scenario, space may undertake a transfer learning process that re-purposes
existing ML models to achieve better predictions for the target space.

Table 1. The five-star maturity level of knowledge sharing and reuse in smart environments.

Level Shared Knowledge Description

F Data Level Space is capable of making its static data available to other spaces
and using the available static data of other spaces

FF Stream Level Space is capable of offering or processing real-time data streams
using stream processing techniques

FFF Services Level Space is capable of offering services as a black-box component to
other spaces or using the offered services of other spaces

FFFF Inference Level Space is capable of inferring new knowledge or customizing the
available services based on available rules

FFFFF Learning Level Space is capable of undertaking a task by monitoring its resources
or learning from other spaces

4. Learning in Smart Spaces

The communication and learning solutions between smart environments may range
from simple sharing of data and information to more complex knowledge transfer methods
such as transfer learning. In the case of transfer learning, the cognitive knowledge gained
in a specific space is applied to a different space configuration. In this section, we explore
the potential ways of inter-space communication for knowledge sharing and knowledge
reuse purposes.
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4.1. Knowledge Communication Methods

Based on the introduced knowledge types in the previous section, we will now focus
on the different methods for sharing and reuse of embodied knowledge in building spaces
or zones. These communication methods are depicted in Figure 3 and are classified
as follows:

• The first and simplest method of communication between spaces is running queries on
the explicit knowledge. Since the explicit knowledge can be articulated and codified,
the spaces with a common understanding of domain concepts can formulate relevant
queries based on common shared concepts (ontologies) and interpret the returning
results to complete their inferred knowledge. For instance, two spaces that belong to
the same thermal zone of a building can share information about the corresponding
Air Handling Unit (AHU) and its power meter.

• Procedures can be shared as a whole (e.g., black-box service on a cloud) or get adopted
and customized for use in the context of the target space. As an example, consider
a procedure that requires interaction with specific types of sensors/actuators or the
need to communicate with external services to accomplish a task. To adopt such
procedures, we might need to replace the sensors and adjust their communications
based on the resources available at the target space. For instance, in a temperature
control scenario that includes a simple sense-actuate cycle, we need to adjust the
procedure based on the available IoT services in the target space.

• Some domain knowledge can be captured by elaborated models. These models can
transform parts of human tacit knowledge into explicit knowledge that can be used
by machines. Machine learning models are examples of such a knowledge acquisition
method that facilitates the sharing of cognitive-based approaches. Such models can
be repurposed and retrained in the target zone to satisfy the contextual requirements.
For instance, a speech recognition model can be adapted and repurposed to cope with
the noise in the target space.

• A common type of communication between spaces is sharing data in different formats,
frequencies, and structures. Such data could be in the form of raw data that are shared
for data integration purposes or labeled data (e.g., images with labeled objects) for
machine learning purposes.

Figure 3. Zone communication methods.

There is already a handful of research works that exploit the power of semantic webs,
linked data, and knowledge graphs for the capturing and conceptualization of information
and procedures in smart environments. In the next subsection, we focus on inter-space
communication methods for cognitive knowledge and then, in Section 3, through a case
study, the potential of transfer learning between spaces and zones will be investigated.
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4.2. Cognitive Knowledge Reuse

As mentioned earlier, machine learning models are one of the known mediums for
capturing the cognitive knowledge of built environments. Such models can then be shared
and reused in a new domain or repurposed to handle a related new task. In this subsection,
we will take a closer look at different machine learning approaches for the realization of
knowledge transfer in smart environments.

As depicted in Figure 4, models are initially trained using a training dataset and
evaluated based on a test dataset. In a typical machine learning process, the training and
test datasets are built from a common dataset of the target space. For instance, in the
example depicted in Figure 4, “Model A” is trained based on “Training Dataset A” and
evaluated based on “Test Dataset A” to generate the training evaluation.

The simplest method for reusing the cognitive knowledge of a machine learning model
is to borrow the original model and reuse it in target space without any modifications to
the model. Due to the high cost of training, using such pre-trained models is a common
practice in the machine learning domain. However, we might experience a decrease in
the performance of the pre-trained models when applied in a new domain with slightly
different features that have not been encountered during the training process. To this end,
there are several techniques in the transfer learning domain for adopting and repurposing
original models to achieve better performance for the target domain. For instance, a
machine learning engineer might freeze the layers of a source model and add some new
layers and train them based on a smaller dataset for the target domain. A complementary
method is to retrain the source model using a small learning rate based on a small dataset
of the target domain. For instance, in the example depicted in Figure 4, “Model B” is built
based on the source “Model A” using the “Training Dataset B” from the target space, and
then it is evaluated based on a test dataset.

Figure 4. Methods for reusing the cognitive knowledge captured as machine learning models.

5. Case Study: Occupancy Prediction

To demonstrate the feasibility and effectiveness of transfer learning in smart built
environments, we use an occupancy prediction use case that plays an important role
in energy efficiency applications of smart buildings. Counting space occupants can be
implemented using various sensing technologies, such as passive infrared sensors (PIR),
visual cameras, Wi-Fi and Bluetooth-enabled devices, and door sensors. Recently, there
is an increasing interest in measuring the occupant count based on environmental sensor
data such as temperature, humidity, and CO2 level of target spaces. Due to the long
response time and calibration errors, the environmental-based methods are not as accurate
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as other sensing methods such as visual cameras; however, because of privacy and cost
concerns as well as the recent advances in machine learning approaches, these methods are
gaining momentum. To this end, there are various research works regarding occupancy
prediction based on environmental sensor data [26–28] that provide sophisticated methods
based on a combination of sensor types to offer high-accuracy prediction results. In our
paper, rather than creating high-accuracy prediction results, we aim to demonstrate the
sharing and reuse of knowledge between spaces. Hence, we use a simple logistic regression
algorithm [29] to create the occupancy prediction model based on the CO2 level of a source
space and then measure the efficiency of this model when reused in a different space.

5.1. Dataset

We used an open dataset [30] that includes Room level occupant counts and the
related data on indoor environmental indicators including airflow, CO2, relative humidity,
illuminance, and temperature. The dataset comprises 44 full days, collated from March
2018 to April 2019 for a lecture room and two study zones in a public building in the
University of Southern Denmark, Odense campus. Table 2 lists the spaces of this dataset
and their attributes.

To mitigate the long response times of CO2 sensor data to room accupancy, we have
limited the study time to the building’s peak hours (6:00 am to 2:00 pm) and aggregated
the data to 30 min intervals. Then, a collection of statistical metadata was calculated and
added to the description of the dataset. We may use this metadata for finding top candidate
models when a specific service such as occupancy prediction is offered by more than one
space. For describing the statistical metadata, we use and extend the terms and relations
defined by ML-Schema [17]. Figure 5 depicts part of the knowledge graph that describes
the dataset as well as statistical metadata. This dataset includes separate data splits for
training, testing, and fine-tuning/retraining purposes.

Figure 5. Part of the knowledge graph describing dataset features such as occupancy, CO2, and their corresponding
metadata.
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Table 2. Summary of target spaces.

Room ID Room Type Size (m2) Seating Capacity Volume (m3)

Room 1 lecture 139 84 461.48
Room 2 study zone 125 32 418.75
Room 3 study zone 125 32 418.75

5.2. Knowledge Graph

As described previously, the knowledge graph should include both the space informa-
tion and the dataset description. Thus, in addition to the ML-Schema, we would also need
a schema to describe the metadata of smart spaces including sensors, subsystems, and the
relationships among them. To this end, we use the Brick schema [14] that is a uniform
schema for representing metadata in IoT-enabled environments. In the knowledge graph
proposed in this research, we created a bridge between ML-Schema and Brick schema to
describe the dataset, building information, and machine learning processes. As depicted
in Figure 6, machine learning processes can be characterized based on their input data,
output model, and model evaluation indicators, such as the Mean Absolute Error (MAE) or
Mean Squared Error (MSE) of learning processes. Furthermore, each model is dedicated to
a specific task defined by ML-Schema, which helps spaces find the relevant models shared
by other spaces. As such, the models are presented in a self-explainable and interpretable
way to both human users and space agents (machines).

Figure 6. Part of the knowledge graph describing a fine-tuned model.

The training process depicted in Figure 6 undertakes a transfer learning process. In
this specific case, the process includes a fine-tuning step that takes the trained model of
another room (model of Room 2) as input and retrains it based on a small fine-tuning
dataset of the target room (Room 3).
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In the case of multiple competing models, the system needs to assess the fitness of
offered models based on the metadata of source and target spaces. This can be achieved by
one or a combination of the following strategies:

• Several spaces may have similar properties and use (e.g., library or classroom). As
such, the models of space that depend on those properties can be shared and reused
by other similar spaces. The space similarity, depending on the use case, can be
characterized by features such as the room’s function, size, or capacity. In the case of
our occupancy prediction model, rooms of the same size and capacity are expected to
behave similarly.

• The training dataset also plays an important role in the accuracy of model predictions.
If the machine learning model is created based on a small or low variance feature, its
behavior in a new space will be unpredictable. Since all such statistical metadata are
included in the proposed knowledge graph, the space agent can compare the range of
its input features to those of the training dataset of the adopted model and make sure
the model is adequately good for transfer learning purposes.

• The machine learning models are also characterized by their performance indicators.
For instance, the loss indicator, which is widely used in machine learning processes,
can be used for comparison and ranking of the available models for a given task.

5.3. Transfer Learning

During the operation phase, buildings are now producing more data than ever before.
Examples of such data is energy usage statistics, utility information, occupancy patterns,
scheduling information, and financial data. However, this information cannot be used
directly for machine learning purposes and requires time-consuming processes to create
elaborated datasets and features which are vital for training of high-quality machine learn-
ing models. In the machine learning domain, transfer learning aims to eliminate the high
cost of data preparation processes through the sharing and reuse of pre-trained models.

In the proposed use case, we have used the CO2 time series of each room as input
and created a simple logistic regression model [29] to predict the room occupancy count.
Next, we used these models in other rooms and investigated their fitness and performance
compared to the model trained by the target room’s data. Figure 7 depicts the performance
matrix of these models on the test dataset of each room. The rows in this matrix show the
regression models and columns specify the applied test data.

As expected, the model performance was best when it was applied to the test data
of the room itself. Furthermore, rooms with similar characteristics (e.g., size and volume)
show similar performances and as a result, can adopt the models from each other. For
instance, Room 2 and Room 3 in our use case have similar properties, and also their
training datasets are consistent (similar statistical indicators) and as shown in Figure 7, the
performances of transferred models are within an acceptable range. However, Room 1 has
a different characteristics and as a result, the performance of the adopted models compared
to room’s self-created model is not acceptable.

So far we have shown the reuse of applying a model from source space in a different
space as it is and have not applied any transfer learning techniques to adapt it to the target
domain and improve its performance. In practice, the transferred models are partially
retrained based on a smaller dataset from the target domain or undergo a fine-tuning
process with a small learning rate. In the context of the proposed use case, we used the
Room 2 model and applied a simple fine-tuning process to make it fit for the Room 3
environment. To this end, we used a small dataset (100 records compared to the original
training dataset of 700 records) from the target space (Room 3) and retrained the source
model with a small learning rate (10−5 compared to 10−3 of the original training process).
The corresponding transfer learning process was captured in our knowledge graph and
Figure 6 shows how the new fine-tuned model is created and which data is used to retrain
the model. Furthermore, the new model definition includes the evaluation indicators that
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can be used to evaluate the model performance and decide about its deployment in the
new space.

Figure 7. Predicting space occupancy by self-trained model vs. transferred models. The histogram plot in each cell shows
the distribution of errors for the occupancy counting task.

Finally, the evaluation results of models for a given task are presented for the following
three cases:

• Training evaluation: In this case, both training and testing datasets are from the same
space and originate from the same raw dataset or sensors. As discussed earlier, this
model usually offers the best performance.

• Reuse evaluation: In this case, the model is adopted as-is and tested based on a test
dataset from target space. Provided that the source and target spaces have similar
characteristics, this method yields acceptable results at a low cost (no training costs
and a small test dataset for evaluation).
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• Transfer learning and/or fine-tuning evaluation: In this case, the original model is
retrained based on a small training dataset from the target space and usually provides
better results compared to the as-is reuse of original models.

Figure 8 depicts a view of our implemented prototype where the evaluation results of
all relevant models for the occupancy prediction task are summarized. In this view, we
can compare the mean absolute errors of various occupancy prediction models to select
the fittest models to reuse. The blue dots represent the training evaluation where the
model is tested based on the test dataset from the same room. As expected, these models
offer the best performance (smallest error). The red dots in this view represent the reuse
scenarios where a model is evaluated against test datasets of target spaces. Surprisingly,
some of these evaluations (e.g., the Room-1 model) functioned better than the self-dataset
evaluation, which is ideal in a transfer learning scenario. Finally, the green dots represent
the fine-tune cases. As we see in this view, the performance of the newly created model
(Room-2 fine-tuned model) in Room-3 was better than the performance of the original
model (Room-2 model) in Room-3. Furthermore, the performance of the fine-tuned model
is comparable to the best-case scenario where the model is trained based on the Room-3’s
own data.

Figure 8. Snapshot of inter-space learning prototype for evaluation of occupancy prediction models. On the y-axis the
available models for fulfilling the occupancy prediction are shown and the x-axis represents the Mean Absolute Error (MAE)
for comparing the performance of those models.

6. Conclusions and Future Work

Buildings are an integral part of urban settlements and nowadays are getting equipped
with more IoT devices than ever before. In this context, IoT industries and service providers
strive to find more efficient ways to benefit from the growing IoT ecosystem and combine it
with other available information resources to create smarter environments equipped with
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cognitive models. Share and reuse of these elaborated and costly models are among the
key enabling methods for uptake of adaptive services and inter-space collaborations.

Currently, the knowledge transfer between spaces is commonly undertaken by a
human who can understand the implicit semantics of environments, features, and the
relevant information resources and services. However, human contribution cannot cope
with the ever-increasing number of IoT devices. Therefore, self-explaining and machine-
understandable digital assets (e.g., features and models) are the key enablers of transfer
learning beyond the organizational borders. In this paper, we discussed various knowledge
types in built environments and described the relationship between them. This includes
the cognitive knowledge of smart environments, captured in machine learning models
that can be shared and reused via transfer learning methods. We also introduced the
communication methods and potential use cases for knowledge sharing and reuse between
smart environments. We proposed knowledge graphs as a holistic and efficient medium
for communicating the semantics of smart environments and bridging the information gap
among IoT infrastructure, spaces, and machine learning processes. Knowledge graphs can
encompass the semantics of cognitive models and their corresponding resources and boost
transfer learning between smart spaces. Finally, the presented showcase for occupancy
prediction exhibits the feasibility of this approach and how knowledge graphs can facilitate
the transfer of cognitive artifacts between spaces.

As future work, we aim to investigate challenges such as the fitness of adopted
models and the integrity of machine learning artifacts for cross-organizational transfer
learning applications. Furthermore, we will explore the application of real-time linked
dataspaces [31] for enriching the cognitive layer of IoT-enabled spaces and address the
transparency and trust requirements of transfer learning use cases.
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