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Abstract: This paper presents a novel on-the-fly, black-box, property-checking through learning
approach as a means for verifying requirements of recurrent neural networks (RNN) in the context of
sequence classification. Our technique steps on a tool for learning probably approximately correct
(PAC) deterministic finite automata (DFA). The sequence classifier inside the black-box consists of
a Boolean combination of several components, including the RNN under analysis together with
requirements to be checked, possibly modeled as RNN themselves. On one hand, if the output
of the algorithm is an empty DFA, there is a proven upper bound (as a function of the algorithm
parameters) on the probability of the language of the black-box to be nonempty. This implies
the property probably holds on the RNN with probabilistic guarantees. On the other, if the DFA
is nonempty, it is certain that the language of the black-box is nonempty. This entails the RNN
does not satisfy the requirement for sure. In this case, the output automaton serves as an explicit
and interpretable characterization of the error. Our approach does not rely on a specific property
specification formalism and is capable of handling nonregular languages as well. Besides, it neither
explicitly builds individual representations of any of the components of the black-box nor resorts
to any external decision procedure for verification. This paper also improves previous theoretical
results regarding the probabilistic guarantees of the underlying learning algorithm.

Keywords: recurrent neural networks; probably approximately correct learning; black-box explainability

1. Introduction

Artificial intelligence (AI) is a flourishing research area with numerous real-life appli-
cations. Intelligent software is developed in order to automate processes, classify images,
translate text, drive vehicles, make medical diagnoses, and support basic scientific research.
The design and development of this kind of systems is guided by quality attributes that
are not exactly the same as those that drive the construction of a typical software system.
Indeed, a salient one is the degree to which a human being (e.g., a physician) can really
understand the actual cause of a decision made by an AI system (e.g., the diagnostic of a
disease). Such attribute is called interpretability [1–3].

Undoubtedly, artificial neural networks (ANN) are currently the cutting-edge AI
models [4]. However, their inherent nature undermines human capability of achieving
acceptable comprehension of the reasons of their outputs. A major obstacle towards inter-
preting their behavior is their deep architectures with millions of neurons and connections.
Such overwhelming complexity attempts against interpretability even if ANN structure
used in a particular context is known (e.g., convolutional neural networks in computer vi-
sion or recurrent neural networks in language translation) and the mathematical principles
on which they are grounded are understood [5].

Thoroughly interpreting the functioning of AI components is a must when they are
used in the context of safety- and security-critical domains such as intelligent driving [6,7],
intrusion, attack, and malware detection [8–12], human activity recognition [13], medical
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records analysis [14,15], and DNA promoter region recognition [16], which involve using
deep recurrent neural networks (RNN) for modeling the behavior of the controlled, moni-
tored, or analyzed systems or data. Moreover, it is paramount to verify their outputs with
respect to the requirements they must fulfill to correctly perform the task they have been
trained for. Whenever a network outcome does not satisfy a required property, it appears
necessary to be able to adequately characterize and interpret the misbehavior, in order to
be able to properly correct the fault, which may involve redesigning and retraining the
network. Indeed, when it comes to interpreting the error of an RNN with respect to a given
requirement, typically expressed as a property over sequences (i.e., a language in a formal
sense) it is useful to do it through an operational and visual characterization, as a means for
gaining insight into the set of incorrect RNN outputs (e.g., wrong classification of a human
DNA region as a promoter) in reasonable time.

One way of checking language properties in the context of RNN devoted to sequence
classification, consists in extracting an automaton, such as a deterministic finite automaton
(DFA) from the network and resort to automata-theoretic tools to perform the verifica-
tion task on the extracted automaton. That is, once the automaton is obtained, it can be
model-checked against a desired property using an appropriate model-checker [17]. This
approach can be implemented by resorting to white-box learning algorithms such as the
ones proposed in [18–20]. However, RNN are more expressive than DFA [21]. Therefore,
the language of the learned automaton is, in general, an approximation of the sequences
classified as positive by the RNN. The cited procedures do not provide quantitative assess-
ments on how precisely the extracted DFA characterizes the actual language of the RNN.
Nonetheless, this issue is overcome by the black-box learning algorithm proposed in [22]
which learns DFA which are probably correct approximations (PAC) [23] of the RNN. This
means that the error between the outputs of the analyzed RNN and the extracted DFA can
be bounded with a given confidence.

When applied in practice, this general approach has several important drawbacks.
The first one is state explosion. That is, the DFA learned from the RNN may be too large to
be explicitly constructed. Another important inconvenience is that when the model-checker
fails to verify the property on the DFA, counterexamples found on the automaton are not
necessarily real counterexamples of the RNN. Indeed, since the DFA is an approximation of
the RNN, counterexamples found on the former could be false negatives. Last but not least,
it has been advocated in [24] that there is also a need for property checking techniques that
interact directly with the actual software that implements the network.

To cope with these issues, Reference [25] devised a technique based on the general
concept of learning-based black-box checking (BBC) proposed in [26]. BBC is a refinement
procedure where DFA are incrementally built by querying a black-box. At each iteration,
these automata are checked against a requirement by means of a model-checker. The
counterexamples, if any, found by the model-checker are validated on the black-box. If
a false negative is detected, it is used to refine the automaton. A downside of BBC is
that it requires (a) fixing a formalism for specifying the requirements, typically linear-
time temporal logic, and (b) resorting to an external model-checker to verify the property.
Moreover, the black-box is assumed to be some kind of finite-state machine.

Instead, the method proposed in [25] performs on-the-fly property checking during the
learning phase, without using an external model-checker. Besides, the algorithm handles
both the RNN and the property as black-boxes and it does not build, assume, or require
them to expressed in any specific way. The approach devised in [25] focuses on checking
language inclusion, that is, whether every sequence classified by the RNN belongs to the set
of sequences defined by the property. This question can be answered by checking language
emptiness: the requirement is satisfied if the intersection of the language of the RNN and
the negation of the property is empty, otherwise it is not. Language emptiness is tackled
in [25] by learning a probably approximately correct DFA. On one hand, if the learning
algorithm returns an empty DFA, there is a proven upper bound on the probability of the
language to be nonempty, and therefore of the RNN not satisfying the property. In other
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words, the property is probably true with probabilistic guarantees given in terms of the
algorithm parameters. On the other, if the output is a nonempty DFA, the language is
ensured to be nonempty. In this case, the property is certainly false. Besides, the output
DFA is an interpretable characterization of the error.

The contribution of this paper is twofold. First, we revise and improve the theoretical
results of [25]. We extend the approach to checking not only language inclusion but any
verification problem which can be reduced to checking emptiness. Besides, we provide
stronger results regarding the probabilistic guarantees of the procedure. Second, we apply
the method to other use cases, including checking context-free properties and equivalence
between RNN.

The structure of the paper is the following. Section 2 reviews probably approximately
correct learning. Section 3 introduces on-the-fly black-box property-checking through
learning. Section 4 revisits the framework proposed in [25] and shows the main theoretical
results. These include improvements with respect to the previously known probabilistic
guarantees of the underlying learning algorithm. Section 5 describes the experimental
results obtained in a number of use cases from different application areas. Section 6
discusses related works. Section 7 presents the conclusions.

2. Probably Approximately Correct Learning

Let us first give some preliminary definitions. There is a universe of examples which
is denoted X . Given two subsets of examples X, X′ ⊆ X , the difference X \ X′ is the set of
x ∈ X such that x 6∈ X′, or equivalently, the set X ∩ X′, where X ⊆ X is the complement of
X. Their symmetric difference, denoted X⊕ X′, is defined as X \ X′ ∪ X′ \ X. Examples are
assumed to be identically and independently distributed (i.i.d.) according to an unknown
probability distribution D over X .

A concept C is a subset of X . A concept class C is a set of concepts. Given an unknown
concept C ∈ C, the purpose of a learning algorithm is to output a hypothesis H ∈ H that
approximates C, where H, called hypothesis space, is a class of concepts possibly different
from C.

The prediction error E of a hypothesis H with respect to the unknown concept C
measured in terms of the probability distribution D is the probability of an example x ∈ X ,
drawn from D, to be in symmetric difference of C and H. Formally:

ED,C(H) = Px∼D [x ∈ C⊕ H] (1)

An oracle EXD,C draws i.i.d examples from X following D, and associates the labels
according to whether they belong to C. An example x ∈ X is labeled as positive if x ∈ C,
otherwise it is labeled as negative. Repeated calls to EXD,C are independent of each other.

A Probably Approximately Correct (PAC) learning algorithm [23,27,28] takes as input
an approximation parameter ε ∈ (0, 1), a confidence parameter δ ∈ (0, 1), a target concept
C ∈ C, an oracle EXD,C, and a hypothesis spaceH, and if it terminates, it outputs an H ∈ H
which satisfies Px∼D [x ∈ C⊕ H] ≤ ε with confidence at least 1− δ. Formally:

P[ED,C(H) > ε] < δ (2)

The output H of a PAC-learning algorithm is said to be an ε-approximation of C with
confidence at least 1− δ, or equivalently, an (ε, δ)-approximation of C.

Typically, EXD,C is indeed composed of a sampling procedure that draws an example
x ∼ D and calls a membership query oracle MQC to check whether x ∈ C. Besides EX and
MQ, a PAC-learning algorithm may be equipped with an equivalence query oracle EQD,C.
This oracle takes as input a hypothesis H and a sample size m and answers whether H is an
(ε, δ)-approximation of C by drawing a sample S ⊂ X of size m using EXD,C, i.e., S ∼ Dm,
and checking whether for all x ∈ S, x ∈ C iff x ∈ H, or equivalently, S ∩ (C⊕ H) = ∅.

We revisit here some useful results from [25].
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Lemma 1. Let C ∈ C and H ∈ H such that H is an (ε, δ)-approximation of C. For any subset
X ⊆ C⊕ H, we have that Px∼D [x ∈ X] ≤ ε with confidence 1− δ.

Proof. For any subset X ⊆ C⊕ H, it holds that Px∼D [x ∈ X] ≤ Px∼D [x ∈ C⊕ H]. It fol-
lows that Px∼D [x ∈ C⊕ H] ≤ ε implies Px∼D [x ∈ X] ≤ ε. Now, for any S ⊆ X satisfying
S ∩ (C⊕ H) = ∅, we have that S ∩ X = ∅. Hence, any sample S ∼ Dm drawn by EQD,C
that ensures Px∼D [x ∈ C⊕ H] ≤ ε with confidence 1− δ also guarantees Px∼D [x ∈ X] ≤ ε
with confidence 1− δ.

Proposition 1. Let C ∈ C and H ∈ H such that H is an (ε, δ)-approximation of C. For any
X ⊆ X :

Px∼D
[
x ∈ C ∩ H ∩ X

]
≤ ε (3)

Px∼D
[
x ∈ C ∩ H ∩ X

]
≤ ε (4)

with confidence at least 1− δ.

Proof. From Lemma 1 because C ∩ H ∩ X and C ∩ H ∩ X are subsets of C⊕ H.

3. Black-Box Property Checking
3.1. Post-Learning Verification

Given an unknown concept C ∈ C, and a known property P ∈ H to be checked on C,
we want to answer whether C ⊆ P holds, or equivalently C ∩ P = ∅. One way of doing it
in a black-box setting consists in resorting to a model-checking approach. That is, first learn a
hypothesis H ∈ H of C with a PAC-learning algorithm and then check whether H satisfies
property P. We call this approach post-learning verification. In order to be feasible, there
must be an effective procedure for checking H ∩ P = ∅.

Assume an algorithm for checking emptiness exists. Proposition 2 from [25], proves
that whichever the outcome of the decision procedure for H ∩ P, the probability of the
same result not being true for C is smaller than ε, with confidence at least 1− δ.

Proposition 2. Let C ∈ C and H ∈ H such that H is an (ε, δ)-approximation of C. For any
P ∈ H:

1. if H ∩ P = ∅ then Px∼D
[
x ∈ C ∩ P

]
≤ ε, and

2. if H ∩ P 6= ∅ then Px∼D
[
x ∈ C ∩ H ∩ P

]
≤ ε,

with confidence at least 1− δ.

Proof.
1. If H ∩ P = ∅ then P = H ∩ P. Thus, C ∩ P = C ∩ H ∩ P and from Proposition 1(3) it
follows that Px∼D

[
x ∈ C ∩ H ∩ P

]
≤ ε, with confidence at least 1− δ.

2. If H ∩ P 6= ∅, from Proposition 1(4) we have that Px∼D
[
x ∈ C ∩ H ∩ P

]
≤ ε, with

confidence at least 1− δ.

When applied in practice, an important inconvenience of this approach is that when-
ever P is found by the model-checker not to hold on H, even if with small probability,
counterexamples found on H may not be counterexamples in C. Therefore, whenever that
happens, we would need to resort to EX to draw examples from H ∩ P and call MQ to
figure out whether they belong to C in order to trying finding a concrete counterexample
in C.

From a computational perspective, in particular in the application scenario of verifying
RNN, we should be aware that the learned hypothesis could be too large and that the
running time of the learning algorithm adds up to the running time of the model-checker,
thus making the overall procedure impractical.
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Last but not least, this approach could only be applied for checking properties for
which there exists a model-checking procedure inH. In our context, it will prevent verifying
nonregular properties.

3.2. On-the-Fly Property Checking through Learning

To overcome the aforementioned issues, rather than learning an (ε, δ)-approximation
of C, Ref. [25] proposed to use the PAC-learning algorithm to learn an (ε, δ)-approximation
of C ∩ P ∈ C. This approach is called on-the-fly property checking through learning.

Indeed, this idea can be extended to cope with any verification problem which can be
expressed as checking the emptiness of some concept Ψ(C) ∈ C, which in the simplest case
is C ∩ P. In such context, we have the following, more general, result.

Proposition 3. Let C ∈ C, Ψ(C) ∈ C and H ∈ H such that H is an (ε, δ)-approximation of
Ψ(C). Then:

1. if H = ∅ then Px∼D [x ∈ Ψ(C)] ≤ ε, and
2. if H 6= ∅ then Px∼D [x ∈ H \Ψ(C)] ≤ ε,

with confidence at least 1− δ.

Proof. Straightforward since Px∼D [x ∈ Ψ(C)⊕ H] ≤ ε, with confidence at least 1− δ, by
the fact that H is an (ε, δ)-approximation of Ψ(C).

Proposition 3 proves that checking properties during the learning phase yields the
same theoretical probabilistic assurance as doing it afterwards on the learned model of the
target concept C. Nevertheless, from a practical point of view, on-the-fly property checking
through learning has several interesting advantages over post-learning verification. First,
no model of C is ever explicitly built which may result in a lower computational effort,
both in terms of running time and memory. Therefore, this approach could be used in cases
where it is computationally too expensive to construct a hypothesis for C. Second, there is
no need to resort to external model-checkers. The approach may even be applied in contexts
where such algorithms do not exist. Indeed, in contrast to post-learning verification, an
interesting fact in on-the-fly checking is that in the case the PAC-learning algorithm outputs
a nonempty hypothesis, it may actually happen that the oracle EX draws an example
belonging to Ψ(C) at some point during the execution, which constitutes a concrete, real
evidence of Ψ(C) not being empty with certainty.

4. On-the-Fly Property-Checking for RNN

In this section we further develop the general principle of on-the-fly property checking
in the context of RNN. More precisely, the universe X is the set of words Σ∗ over a set
of symbols Σ, the target concept inside the black-box is a language C ⊆ Σ∗ implemented
as an RNN, and the hypothesis class H is the set of regular languages or equivalently of
deterministic finite automata (DFA).

4.1. Bounded-L∗: An Algorithm for Learning DFA from RNN

DFA can be learned with L∗ [29], an iterative algorithm that incrementally constructs
a DFA by calling oracles MQ and EQ. PAC-based L∗ satisfies the following property.

Property 1 (From [29]). (1) If L∗ terminates, it outputs an (ε, δ)-approximation of the target
language. (2) L∗ always terminates if the target language is regular.

L∗ may not terminate when used to learn DFA approximations of RNN because, in
general, the latter are strictly more expressive than the former [21,30,31]. That is, there
exists an RNN C for which there is no DFA A with the same language. Therefore, it may
happen that at every iteration i of the algorithm, the call to EQ for the i-th hypothesis Ai
fails, i.e., Si ∩ (Ai ⊕ C) 6= ∅, where Si ∼ Dm is the sample set drawn by EQ. Hence, L∗

will never terminate for C.



Mach. Learn. Knowl. Extr. 2021, 3 210

To cope with this issue, Bounded-L∗ has been proposed in [22]. It bounds the number
of iterations of L∗ by constraining the maximum number of states of the automaton to be
learned and the maximum length of the words used to calling EX, which are typically used
as parameters to determine the complexity of a PAC-learning algorithm [32]. For the sake
of simplicity, we only consider here the bound n imposed on the number of states. This
version of Bounded-L∗ is shown in Algorithm 1.

Algorithm 1: Bounded-L∗

Input : n—Maximum number of output automaton states
ε—Approximation parameter
δ—Confidence parameter

Output : A—Deterministic finite automaton
Equivalent—True if and only if EQ test passed
Counterexample—Only if Equivalent is False

1 OT← InitializeTable();
2 i← 0;
3 repeat
4 i← i + 1;
5 while ¬(Closed(OT) ∧ Consistent(OT)) do
6 if ¬Closed(OT) then
7 OT← CloseTable(OT);
8 end
9 if ¬Consistent(OT) then

10 OT← ConsistentTable(OT);
11 end
12 end
13 A← BuildDFA(OT);
14 Equivalent, Counterexample← EQ(A, i, ε, δ);
15 if ¬Equivalent ∧ States(A) < n then
16 OT← UpdateTable(OT, Counterexample);
17 end
18 until Equivalent ∨ States(A) ≥ n;
19 return A, Equivalent, Counterexample;

Bounded-L∗ works as follows. Similarly to L∗, the learner builds a table of observa-
tions, denoted OT, by interacting with the teacher. This table is used to keep track of which
words are and are not accepted by the target language. OT is built iteratively by asking the
teacher membership queries through MQ. OT is a finite matrix Σ∗ × Σ∗ → {0, 1}. Its rows
are split in two. The “upper” rows represent a prefix-closed set words and the “lower” rows
correspond to the concatenation of the words in the upper part with every σ ∈ Σ. Columns
represent a suffix-closed set of words. Each cell represents the membership relationship,
that is, OT[u][v] = MQ(uv). We denote λ ∈ Σ∗ the empty word and OTi the value of the
observation table at iteration i.

The algorithm starts by initializing OT0 (line 1) with a single upper row OT0[λ], a lower
row OT0[σ] for every σ ∈ Σ, and a single column for the empty word λ ∈ Σ∗, with values
OT0[u][λ] = MQ(u).

At each iteration i > 0, the algorithm makes OTi closed (line 7) and consistent (line
10). OTi is closed if, for every row in the bottom part of the table, there is an equal row in
the top part. OTi is consistent if for every pair of rows u, v in the top part, for every σ ∈ Σ,
if OTi[u] = OTi[v] then OTi[uσ] = OTi[vσ].

Once the table is closed and consistent, the algorithm proceeds to build the conjec-
tured DFA Ai (line 13) which accepting states correspond to the entries of OTi such that
OTi[u][λ] = 1.
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Then, Bounded-L∗ calls EQ (line 14) to check whether Ai is PAC-equivalent to the
target language. For doing this, EQ draws a sample Si ∼ Dµi of size µi defined as
follows [29]:

µi =

⌈
1
ε

(
i ln 2− ln δ

)⌉
(5)

If Si ∩ (Ai ⊕ C) = ∅, the equivalence test EQ succeeds and Bounded-L∗ terminates
producing the output DFA Ai. Clearly, in this case, we conclude that Ai is an (ε, δ)-
approximation of the black-box.

Corollary 1. For any C ⊆ Σ∗, if Bounded-L∗(n, ε, δ) terminates with a DFA A which passes EQ,
then A is an (ε, δ)-approximation of C.

Proof. Straightforward from Property 1(1).

If Ai and C are not equivalent according to EQ, a counterexample is produced. If States(Ai) <
n, the algorithm uses this counterexample to update the observation table OT (line 16) and
continues. Otherwise, Bounded-L∗ returns Ai together with the counterexample.

4.2. Analysis of the Approximation Error of Bounded-L∗

Upon termination, Bounded-L∗ may output an automaton A which fails to pass EQ.
In such cases, A and the target language eventually disagree in k > 0 sequences of the
sample S drawn by EQ. Therefore, it is important to analyze in detail the approximation
error incurred by Bounded-L∗ in such case. In order to do so, let us start by giving the
following definition:

φi(k) = (µi − k)−1
(

µiε + ln
(

µi
k

))
(6)

for all i ∈ N, i ≥ 1. Notice that for all k ∈ [0, µi), φi(k) ≥ ε, and φi(0) = ε.

Theorem 1. For any target concept C, if Bounded-L∗(`, n, ε, δ) returns a DFA A with k ∈ N
EQ-divergences, such that ε̃(k) ∈ (0, 1), then A is an (ε̃(k), δ)-approximation of C, where

ε̃(k) = max{φi(k) | 1 ≤ i ≤ n} (7)

Proof. Let K(Si) = |Si ∩ (A⊕ C)| for Si ∼ Dµi . Using the same arguments as [29], we
have that:

P
[
ED,C(A) > ε̃(k)

]
≤

n

∑
i=1

PSi∼Dµi

[
K(Si) = k ; ED,C(A) > ε̃(k)

]
(8)

Now, for every 1 ≤ i ≤ n:

PSi∼Dµi

[
K(Si) = k ; ED,C(A) > ε̃(k)

]
=

(
µi
k

)(
1− ED,C(A)

)µi−k ED,C(A)k <

(
µi
k

)(
1− ε̃(k)

)µi−k

Using the inequality 1− u < e−u, it follows that:

PSi∼Dµi

[
K(Si) = k ; ED,C(A) > ε̃(k)

]
<

(
µi
k

)
e−ε̃(k)(µi−k) (9)

Therefore, by Equations (6) and (7):

φi(k) = (µi − k)−1
(

µiε + ln
(

µi
k

))
≤ ε̃(k)



Mach. Learn. Knowl. Extr. 2021, 3 212

By definition of µi (Equation (10)), this entails:

−ε̃(k)(µi − k) + ln
(

µi
k

)
≤ −µiε ≤ −i ln 2 + ln δ

Then, (
µi
k

)
e−ε̃(k)(µi−k) ≤ 2−iδ (10)

Thus, from Equations (8)–(10), it follows that:

P
[
ED,C(A) > ε̃(k)

]
<

n

∑
i=1

2−iδ < δ (11)

Hence, A is an (ε̃(k), δ)-approximation of C.

It is important to notice that this result improves the kind of “forensics” analysis
developed in [22], which concentrates on studying the approximation error of the actual
DFA returned by Bounded-L∗ on a particular run, rather than on any outcome of the
algorithm, as it is stated by Theorem 1.

4.3. Characterization of the Error Incurred by the RNN

Let us recall that the black-box checking problem consists in verifying whether Ψ(C) =
∅. Solving this task with on-the-fly checking through learning using Bounded-L∗ as the
learning algorithm yields a DFA which is a PAC-approximation of Ψ(C). Indeed, the
output DFA serves to characterize the eventual wrong classifications made by the RNN
C in an operational and visual formalism. As a matter of fact, Bounded-L∗ ensures that
whenever the returned regular language is nonempty, the language in the black-box is also
nonempty. This result is proven below.

Proposition 4. For any C ⊆ Σ∗ and i > 1, if Bounded-L∗(n, ε, δ) builds an automaton Ai 6= ∅
at iteration i, then C 6= ∅.

Proof. Suppose Ai 6= ∅. Then, Ai has at least one accepting state. By construction,
∃ u ∈ Σ∗ such that OTi[u][λ] = 1. For this to be true, it must have occurred a positive
membership query for u at some iteration j ∈ [1, i], that is, MQj(u) = 1. Hence, u ∈ C.
This proves that C 6= ∅.

This result is important because it entails that whenever the output for the target
language C ∩ P is nonempty, C does not satisfy P. Moreover, for every entry of the
observation table such that OT[u][v] = 1, the sequence uv ∈ Σ∗ is a counterexample.

Corollary 2. For any C, Ψ(C) ⊆ Σ∗, if Bounded-L∗(n, ε, δ) returns a DFA A 6= ∅, then
Ψ(C) 6= ∅. Besides, ∀ u, v ∈ Σ∗ if OT[u][v] = 1 then uv ∈ Ψ(C).

Proof. Straightforward from Proposition 4.

Indeed, from Proposition 4, it could be argued that Bounded-L∗ for Ψ(C) could finish
as soon as OT has a positive entry, yielding a witness of Ψ(C) being nonempty. However,
stopping Bounded-L∗ at this stage would prevent providing a more detailed, explanatory,
even if approximate, characterization of the set of misbehaviors.

Theorem 1 and Corally 2 can be combined to show the theoretical guarantees yielded
by Bounded-L∗ when used for black-box property checking through learning.
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Theorem 2. For any C, Ψ(C), if Bounded-L∗(`, n, ε, δ) returns a DFA A with k ∈ N EQ-
divergences and ε̃(k) ∈ (0, 1), then:

1. A is an (ε̃(k), δ)-approximation of Ψ(C).
2. If A 6= ∅ or k > 0, then Ψ(C) 6= ∅.

Proof.
1. Straightforward from Theorem 1.
2. By Corollary 2, it follows that A 6= ∅ implies Ψ(C) 6= ∅. Let A = ∅ and k > 0. By the
fact that k > 0, we have that A⊕Ψ(C) 6= ∅. Since A = ∅, it results that ∅⊕Ψ(C) = Ψ(C).
Hence, Ψ(C) 6= ∅.

5. Case Studies

In this section we apply the approach presented in the previous sections to a number of
case studies. The teacher is given Ψ(C). For instance, in order to verify language inclusion,
that is, to check whether the language of the RNN C is included in some given language
P (the property), Ψ(C) is C ∩ P. The complement of P is actually never computed, since
the algorithm only requires evaluating membership. That is, to answer MQ(u) on C ∩ P
for a word u ∈ σ∗, the teacher evaluates P(u), complements its output, and evaluates the
conjunction with the output of C(u). It is straightforward to generalize this idea to any
Boolean combination of C with other concepts P1, . . . , Pr. Every concept Pj may be any
kind of property, even a nonregular language, such as a context-free grammar, or an RNN.

We carried out controlled experiments where RNN were trained with sample datasets
from diverse sources such as: known automata, context free grammars, and domain
specific data as a way of validating the approach. However, it is important to remark that
context-free grammars or DFAs are artifacts only used with the purpose of controlling the
experiments. In real application scenarios, they are not assumed to exist at all. Unless
otherwise stated, RNN consisted of a two-layer network starting with a single-cell three-
dimensional LSTM layer [33] followed by a two-dimensional dense classification layer
with a softmax activation function. The loss function was categorical cross-entropy. They
were trained with Adam optimizer, with a default learning rate of 0.5, using two-phase
early stopping, with an 80%-20% random split for train-validation of the corresponding
datasets. The performance of trained RNN was measured on test datasets. Symbols of
the alphabet were represented using one-hot encoding. We stress the fact that knowledge
of the internal structure, training process, or training data (except for the alphabet) is by
no means required by our approach. This information is provided in the paper only to
describe the performed controlled experiments.

We applied our approach in three kinds of scenarios.
First, we studied RNN trained with sequences generated by context-free grammars

(CFG) and checked regular and nonregular properties. In addition, we compared two
different RNN trained with sequences from the same language specification, in order to
check whether they are actually equivalent. Here, Ψ is a Boolean combination of the RNN
under analysis.

Second, we checked regular properties over RNN trained with sequences of models of
two different software systems, namely a cruise controller and an e-commerce application.
The former deals with the situation where post-learning model-checking finds the DFA
extracted from the RNN to not satisfy the property, but it is not possible to replay the
produced counterexample on the RNN. In the latter, we injected canary bad sequences
in the training set in order to pinpoint they end up being discovered by on-the-fly black-
box checking.

Third, we studied domain-specific datasets, from system security and bioinformatics,
where the actual data-generator systems were unknown, and no models of them were
available. In one of these case studies the purpose is to analyze the behavior of an RNN
trained to identify security anomalies in Hadoop file system (HDFS) logsfrom. The exper-
iment revealed the fact that the RNN could mistakenly classify a log as normal when it
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is actually abnormal, even if the RNN incurred in no false positives on the test dataset
during the training phase. The DFA returned by Bounded-L∗ served to gain insight on the
error. In the last case study, we studied an RNN that classifies promoter DNA sequences as
having or not a TATA-box subsequence. Here, post-learning verification was unfeasible be-
cause Bounded-L∗ did not terminate in reasonable time when asked to extract a DFA from
the RNN. Nevertheless, it successfully checked the desired requirement using on-the-fly
black-box checking through learning.

5.1. Context-Free Language Modeling

Parenthesis prediction is a typical problem used to study the capacity of RNN for
context-free language modeling [34].

First, we randomly generated 550,000 sequences upto length 20 labeled as positive or
negative according to whether they belong or not to the following 3-symbol Dyck-1 CFG
with alphabet {(, ), c}:

S −→ S T | T S | T T −→ ( T ) | () T −→ c

The RNN was trained using a subset of 500,000 samples until achieving 100% accuracy on
the remaining validation set of 50,000 sequences. The following properties were checked:

1. The set of sequences recognized by the RNN C is included in the Dyck 1 grammar
above. That is, Ψ1(C) = C ∩ S. Recall that S is not computed, since only membership
queries are posed.

2. The set of sequences recognized by the RNN C are included in the regular property
P = (c)∗. In this case, Ψ2(C) = C ∩ P.

3. The set of sequences recognized by the RNN C are included in the context-free
language Q = (m)n with m < n. Here, Ψ3(C) = C ∩Q. Again, Q is not computed.

Experimental results are shown in Tables 1 and 2. For each (ε, δ), five runs were
executed. All runs finished with 0-divergence EQ. Execution times are in seconds. The
mean sample size refers to the average EQ test size at the last iteration of each run. Figures
show that on average, the running times exhibited by of on-the-fly property checking were
typically smaller than those achieved just to extract an automaton from the RNN. It is
important to remark that cases (1) and (3) fall in an undecidable playground since checking
whether a regular language is contained in a context-free language is undecidable [35].
For case (1), our technique could not find a counterexample, thus giving probabilistic
guarantees of emptiness, that is, of the RNN to correctly modeling the 3-symbol parenthesis
language. For cases (2) and (3), PAC DFA of the intersection language are found in all runs,
showing the properties are indeed not satisfied. Besides, counterexamples are generated
orders of magnitude faster (in average) than extracting a DFA from the RNN alone.

Table 1. Dyck 1: Probably approximately correct (PAC) deterministic finite automata (DFA) extraction
from recurrent neural networks (RNN).

Parameters Running Time (in s) Mean Sample Size
ε δ min max mean

0.005 0.005 1.984 7.205 3.072 1899

0.0005 0.005 3.713 10.445 5.997 20,093

0.00005 0.005 7.982 30.470 9.997 203,007

0.00005 0.0005 8.128 36.621 9.919 249,059

0.00005 0.00005 9.625 41.884 12.185 295,111
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Table 2. Dyck 1: On-the-fly verification of RNN.

Ψ
Parameters Running Time (in s) First

Positive MQ
Mean
Sample Sizeε δ min max mean

Ψ1

0.005 0.005 0.004 0.012 0.006 - 1476

0.0005 0.005 0.051 0.125 0.067 - 14,756

0.00005 0.005 0.682 0.833 0.747 - 147,556

0.00005 0.0005 1.164 1.595 1.340 - 193,607

0.00005 0.00005 1.272 1.809 1.386 - 239,659

Ψ2

0.005 0.005 0.031 34.525 5.762 0.099 1948

0.0005 0.005 0.397 37.846 10.245 0.084 20,370

0.00005 0.005 4.713 30.714 6.547 0.825 206,473

Ψ3

0.005 0.005 0.025 0.966 0.302 0.006 1899

0.0005 0.005 0.267 1.985 0.787 0.070 20,093

0.00005 0.005 4.376 6.479 4.775 0.764 203,007

Second, we randomly generated 550,000 sequences upto length 20 labelled as positive
or negative according to whether they belong or not to the following 5-symbol Dyck-2 CFG
with alphabet {(, ), [, ], c}:

S −→ S T | T S | T T −→ ( T ) | () T −→ [ T ] | [] T −→ c

The RNN was trained on 500,000 samples until achieving 99.646% accuracy on the re-
maining validation set of 50,000 sequences. This RNN was checked against its specification.
For each (ε, δ), five runs were executed, with a timeout of 300 s. Experimental results are
shown in Tables 3 and 4. For each configuration, at least three runs of on-the-fly checking
finished before the timeout and one was able to find, as expected, the property was not
verified by the RNN, exhibiting a counterexample showing it did not model the CFG and
yielding a PAC DFA of the wrong classifications.

Table 3. Dyck 2: PAC DFA extraction from RNN.

Parameters Running Time (in s)
Mean Sample Size Mean ε̃

ε δ Min Max Mean

0.005 0.005 2.753 149.214 19.958 1795 0.00559

0.0005 0.005 23.343 300.000 105.367 18,222 0.04432

0.00005 0.005 42.518 139.763 77.652 186,372 0.16248

Table 4. Dyck 2: On-the-fly verification of RNN.

Parameters Running Time (in s) First
Positive MQ

Mean
Sample Size Mean ε̃

ε δ Min Max Mean

0.005 0.005 0.004 122.388 24.483 90.285 1504 0.00618

0.0005 0.005 55.084 300.000 215.508 42.462 16,604 0.00895

0.00005 0.005 0.695 324.144 158.195 4.545 166,040 0.00005

5.2. Checking Equivalence between RNNs

Following Theorem 2, we present a case where it is of interest to check two RNNs
against each other. An RNN N1 is trained with data from a given language L, and a second
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RNN N2 is trained with sequences from a language L′ contained L. If both networks,
when checked against L are found compliant with it, the following question arises: Are
the networks equivalent? And, if the answer is negative, can the divergences be modeled?
In order to answer those questions, the property to be checked is expressed as a Boolean
composition Ψ(N1, N2) = N1 ≡ N2.

To illustrate this use case, an RNN N1 was trained with data from Tomita’s 5th
grammar [36] (Figure 1) until it reached a 100% accuracy both in all data. Similarly,
a second network N2, with the same characteristics, was trained until complete overfitting
with sequences from a sublanguage (Figure 2).

Figure 1. DFA recognizing Tomita’s 5th grammar.

Figure 2. DFA recognizing a sublanguage of Tomita’s 5th grammar.

The architecture of the networks is depicted in Figure 3 (Network sketches have been
generated using Keras utilities https://keras.io/api/utils/model_plotting_utils/, accessed
on 5 February 2021). For each layer, its type, name (for clarity), and input/output shapes
are shown. In all cases, the first component of the shape vector is the batch size and the last
component is the number of features. For three-dimensional shapes, the middle element
is the length of the sequence. “?” means that the parameter is not statically fixed but
dynamically instantiated at the training phase. The initial layer is a two-dimensional dense
embedding of the input. This layer is followed by a sequence-to-sequence subnetwork
composed of a 64-dimensional LSTM chained to a 30-dimensional dense layer with a ReLU
activation function. The network ends with a classification subnetwork composed of a
62-dimensional LSTM connected to a two-dimensional dense layer with a softmax activation
function. This architecture has a total of 42,296 coefficients.

embedding_input: InputLayer

input: output:

[(?, ?)] [(?, ?)]

embedding: Embedding

input: output:

(?, ?) (?, ?, 2)

recurrent1: LSTM

input: output:

(?, ?, 2) (?, ?, 64)

dense: Dense

input: output:

(?, ?, 64) (?, ?, 30)

recurrent2: LSTM

input: output:

(?, ?, 30) (?, 62)

classification: Dense

input: output:

(?, 62) (?, 2)

Figure 3. Sketch of the architecture used for Tomita’s 5th grammar and its variant.

Each network has been trained in a single phase with specific parameters summarized
in Table 5. This is the reason why batch size and sequence length have not been fixed in
Figure 3 and therefore appear as “?”. The training process of both networks used sets of
randomly generated sequences labeled as belonging or not to the corresponding target
language. These sets have been split in two parts: 80% for the development set and 20%
for the test set. The development set has been further partitioned into 67% for train and
33% for validation.

Table 5. Training parameters used for Tomita’s 5th grammar and its variant.

Network Dataset Size Batch Size Sequence Length Learning Rate

N1 5K 30 15 0.01

N2 1M 100 10 0.001

https://keras.io/api/utils/model_plotting_utils/
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When checking both networks for inclusion in Tomita’s 5th grammar both of them
were found to verify the inclusion, passing PAC tests with ε = 0.001 and δ = 0.0001.
However, when the verification goal was to check N1 ≡ N2, the output was different.
In such scenario, on-the-fly verification returned a nonempty DFA, showing that the
networks are indeed not equivalent. Figure 4 depicts the DFA approximating the language
of their disagreement, that is, the symmetric difference N1 ⊕ N2. After further inspection,
we found out that N2 does not recognize the empty word λ.

Figure 4. DFA approximating N1 ⊕ N2.

5.3. An RNN Model of a Cruise Control Software

Here, we analyze an RNN trained with sequences from the model of a cruise controller
software [37] depicted in Figure 5. In the figure, only the actions and states modeling the
normal operation of the controller are shown. All illegal actions are assumed to go to
a nonaccepting sink state. The training dataset contained 200,000 randomly generated
sequences and labeled as normal and abnormal according to whether they correspond or
not to executions of the controller (i.e., they are recognized or not by the DFA in Figure 5).
All executions have a length of at most 16 actions. The accuracy of the RNN on a test
dataset with 16,000 randomly generated sequences was 99.91%.

Figure 5. Cruise controller: DFA model.

The requirement P to be checked on the RNN is the following: a break action can
occur only if action gas|acc has already happened and no other break action has occurred in
between. P is modeled by the DFA illustrated in Figure 6.

Figure 6. Cruise controller: Property P.
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In this experiment, we compare both approaches, namely our on-the-fly technique vs.
post-learning verification.

Every run of on-the-fly verification through learning terminates with perfect EQ tests
conjecturing that C ∩ P is empty. Table 6 shows the metrics obtained in these experiments
(running times, EQ sample sizes, and ε̃) for different values of the parameters ε and δ.

Table 6. Cruise controller: On-the-fly black-box checking.

Parameters Running Times (in s) First
Positive MQ

Mean
Sample Sizeε δ Min Max Mean

0.01 0.01 0.003 0.006 0.004 - 669

0.001 0.01 0.061 0.096 0.075 - 6685

0.0001 0.01 0.341 0.626 0.497 - 66,847

Table 7 shows the metrics for extracting DFA from the RNN. The timeout was set
at 200 s. For the first configuration, four out of five runs terminated before the timeout
producing automata that exceeded the maximum number of states. Moreover, three of
those were shown to violate the requirement. For the second one, there were three out of
five successful extractions with all automata exceeding the maximum number of states,
while for two the property did not hold. For the third configuration, all runs hit the timeout.
Actually, the RNN under analysis classified all the counterexamples returned by the model-
checker as negative, that is, they do not belong to its language. In other words, there
were false positives. In order to look for true violating sequences, we generated 2 million
sequences with EX for each of the automata H for which the property did not hold. Indeed,
none of those sequences was accepted simultaneously by both the RNN under analysis
and H ∩ P. Therefore, it is not possible to disprove that the RNN is correct with respect
to P as conjectured bye on-the-fly black-box checking. It goes without saying that post-
learning verification required considerable more computational effort as a consequence of
its misleading verdicts.

Table 7. Cruise controller: Automaton extraction.

Parameters Running Times (in s)
Mean Sample Size Mean ε̃

ε δ Min Max Mean

0.01 0.01 11.633 200.000 67.662 808 0.07329

0.001 0.01 52.362 200.000 135.446 8071 0.22684

0.0001 0.01 - - - - -

The cruise controller case study illustrates an important benefit of our approach vs.
post-learning verification: every counterexample produced by on-the-fly property checking
is a true witness of Ψ(C) being nonempty, while this is certainly false for the latter.

5.4. An RNN Model of an E-Commerce Web Site

In this case study, the target concept is an RNN trained with the purpose of modeling
the behavior of a web application for e-commerce. We used a training dataset of 100,000
randomly generated sequences of length smaller than or equal to 16, using a variant of the
model in [22,38] to tag the sequences as positive or negative. Purposely, we have modified
the model so as to add canary sequences not satisfying the properties to be checked. The
RNN achieved 100% accuracy on a test dataset of 16,000 randomly generated sequences.
We overfitted to ensure faulty sequences were classified as positive by the RNN. The goal
of this experiment was to verify whether on-the-fly black-box checking could successfully
unveil whether the RNN learned these misbehaviors.
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We analyzed the regular properties shown in Figure 7, where labels aPSC, eSC, and
bPSC model the actions (associated with their corresponding buttons) of adding products
to the shopping cart, removing all products from the shopping cart, and buying products
in the shopping cart, respectively. Requirement P1, depicted in Figure 7a, states that the
e-commerce site must not allow a user to buy products in the shopping cart if the shopping
cart does not contain any product. Property P2, depicted in Figure 7b, requires the system
to prevent the user to perform consecutive clicks on the buy products button.

(a) E-commerce system: P1 (b) E-commerce system: P2

Figure 7. E-commerce system: Automata of the analyzed requirements.

Table 8 shows the metrics obtained for extracting automata. All runs terminated with
an EQ with no divergences. Therefore, the extracted automata were (ε, δ)-approximations
of the RNN. Although we did not perform post-learning verification, these metrics are
helpful to compare the computational performance of both approaches.

Table 8. E-commerce: PAC DFA extraction from RNN.

Parameters Running Times (in s)
Mean Sample Size

ε δ Min Max Mean

0.01 0.01 16.863 62.125 36.071 863

0.001 0.01 6.764 9.307 7.864 8487

0.0001 0.01 18.586 41.137 30.556 83,482

For each property Pj, j ∈ {1, 2}, the concept inside the black-box is Ψj(C) is C ∩ Pj.
As shown in Table 9, the on-the-fly method correctly asserted that none of the properties
were satisfied. It is worth noticing that all experiments terminated with perfect EQ, i.e.,
k = 0. Therefore, the extracted DFA were (ε, δ)-approximations of Ψj(C). The average
running time to output an automaton of the language of faulty behaviors is bigger than the
running time for extracting an automaton of the RNN alone. Nevertheless, the first witness
of Ψj(C) (i.e., the first witness of nonemptiness) was always found by on-the-fly checking
in comparable time.

Table 9. E-commerce: On-the-fly verification of RNN.

Ψ
Parameters Running Times (in s) First

Positive MQ
Mean
Sample Sizeε δ Min Max Mean

Ψ1

0.01 0.01 87.196 312.080 174.612 3.878 891

0.001 0.01 0.774 203.103 102.742 0.744 9181

0.0001 0.01 105.705 273.278 190.948 2.627 94,573

Ψ2

0.01 0.01 0.002 487.709 148.027 80.738 752

0.001 0.01 62.457 600.000 428.400 36.606 8765

0.0001 0.01 71.542 451.934 250.195 41.798 87,641
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Figure 8 shows an automaton of Ψ1(C) built by the on-the-fly algorithm. For instance,
it reveals that the RNN classifies as correct a sequence where the user opens a session
(label event os), consults the list of available products (label gAP), and then buys products
(bPSC), but the shopping cart is empty: q1; os; q4; gAP; q3; bPSC. Indeed, it provides
valuable information about possible causes of the error which are helpful to understand it
and correcting it, since it makes apparent that every time gAP occurred in an open session,
the property was violated.

Figure 8. E-commerce system: Automaton for Ψ1(C).

Figure 9 depicts an automaton for Ψ2(C). A sequence showing that P2 is not satified is:
q1; os; q5; gAP; q4; bPSC; q3; bPSC. Notice that this automaton shows that P1 is violated
as well, since state q3 is reachable without any occurrence of aPSC.

Figure 9. E-commerce system: Automaton for Ψ2(C).

5.5. An RNN for Classifying Hadoop File System Logs

This experiment concerns the analysis of an RNN trained to find anomalies in logs
of an application software based on Hadoop Distributed File System (HDFS). Data used
in this case study come from [39]. Logs are sequences of natural numbers ranging from 0
to 28 which correspond to different kinds of logged messages. That is, the set of symbols
is Σ = {0, . . . , 29}. The training dataset consists of 4856 normal logs of different lengths.
We built an autoregressive network that predicts the probability distribution of symbols
at each position in the sequence. Symbols are one-hot encoded. The LSTM layer outputs
a 128-dimensional vector which is passed to a 29-dimensional dense layer that outputs
the probability distribution of the next symbol. That is, for every position t ∈ [0, T − 1],
where T is the length of the sequence, the network outputs a vector vt ∈ [0, 1]29, whose
i-th position holds the predicted probability vt(i) = P[σt = i | σ0 . . . σt−1] of number i to
be the t-th symbol in the sequence [40]. Figure 10 shows a sketch of the architecture. This
network has 84,637 parameters. The activation function of the last layer is a softmax and the
loss function is the corresponding categorical cross-entropy. For the sake of readability, we
fixed the sequence length in Figure 10. However, in the actual architecture this parameter
is not statically defined.
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input: InputLayer

input: output:

[(?, 10, 29)] [(?, 10, 29)]

recurrent: LSTM

input: output:

(?, 10, 29) (?, 10, 128)

prob_dist(symbol): TimeDistributed(Dense)

input: output:

(?, 10, 128) (?, 10, 29)

Figure 10. Sketch of the architecture of the language model of Hadoop Distributed File System (HDFS) logs.

For each log in the training set we obtained all complete subsequences of length
T = 10 by sliding a window of size 10 from start to end. Overall, there were a total of
56,283 of such subsequences which were split in 80% (36,020 samples) for training and 20%
(9006 samples) for validation. A single training phase of five epochs was performed using
a learning rate of 10−3 and a batch size of 30.

In order to build a classifier, the RNN is used to predict the probability of a log. Then, a
log is considered to be normal if its predicted probability is beyond a threshold of 2× 10−7.
Otherwise, it is tagged as anomalous. The performance of the classifier was tested on a
perfectly balanced subset of 33,600 samples taken from the test dataset of [39]. No false
positives were produced by the classifier which incurred in an overall error of 2.65%.

During an exploratory analysis of the training dataset, we made the following observa-
tions. First, there were a subset of numbers, concretely {6, 7, 9, 11–14, 18, 19, 23, 26–28}, that
were not present in the normal logs used for training. Let us call this set A for anomalous
message types. Second, many logs have a subsequence containing numbers 4 and 21, such
that their accumulated count was at most 5, that is, #4 + #21 ≤ 5. We analyzed the classifier
with the purpose of investigating whether the RNN actually learned these patterns as
characteristic of normal logs.

Based on those observations, we defined the following properties. The first statement,
P1, claims that the classifier always labels as anomalous any log containing a number in
A. The second one, P2, says that every log satisfying #4 + #21 ≤ 5 is classified as normal.
As in the case study of the e-commerce, for each property Pj, j ∈ {1, 2}, the concept inside
the black-box is Ψj(C) is C ∩ Pj, where C is the classifier. It is worth mentioning that C is
indeed the composition of an RNN with the decision function that labels logs according to
the probability output by the RNN.

Table 10 shows the results obtained with on-the-fly checking through learning. As
in previous experiments, five runs of the algorithm were executed for each configuration.
All runs terminated with perfect EQ tests. Hence, all output hypotheses were (ε, δ)-
approximations of Ψj(C).

Table 10. Hadoop file system logs: On-the-fly verification.

Prop
Parameters Running Times (in s) First

Positive MQ
Mean
Sample Sizeε δ Min Max Mean

Ψ1
0.01 0.01 209.409 1,121.360 555.454 5.623 932

0.001 0.001 221.397 812.764 455.660 1.321 12,037

Ψ2
0.01 0.01 35.131 39.762 37.226 - 600

0.001 0.001 252.202 257.312 254.479 - 8295

On one hand, property P2 is satisfied by C with PAC guarantees. On the contrary,
all runs of the algorithm for Ψ2(C) returned a nonempty automaton and a set of the logs
that violate P2. Therefore, we conclude that C actually classifies as normal some logs
containing numbers in A. Figure 11 depicts the automaton obtained for Ψ1(C). It helps
to understand the errors of C. For example, it reveals that C labels as normal a log that
contains an occurrence of a number in A in its prefix of length 2. This behavior is captured
by paths q0 q1 q2, q0 q1 q6, and q0 q4 q2. Indeed, this outcome highlights the importance of
verification, since it revealed a clear mismatch with the results observed on the test dataset
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where C all logs containing numbers in A were labelled as anomalous because C reported
no false positives whatsoever.

q0 q4

q2A

q5

Σ \ (A ∪ {21})

q6

0, 4, 8, 17, 20, 21, 24, 25

q3

Σ \{0, 4, 8, 17, 20, 21, 24, 25}

21

4, 8, 10, 25

10

q1 Σ \ {2, 3, 8, 10, 21}

2, 3, 8, 10, 21

A

0, 1, 3, 5, 15, 16, 17, 19, 20, 22, 24, 27

A

2, 4, 8, 10, 21, 25

Figure 11. Hadoop file system logs: Automaton for Ψ1(C) obtained with ε = 0.01 and δ = 0.01.

5.6. An RNN for Recognizing TATA-Boxes in DNA Promoter Sequences

DNA promoter sequences are in charge of controlling gene activation or repression.
A TATA-box is a promoter subsequence with the special role of indicating other molecules
the starting place of the transcription. A TATA-box is a subsequence having a length of
six base pairs (bp). It is located upstream close to the gene transcription start site (TSS) from
positions −30 bp to −25 bp (TSS is located at +1 bp). It is characterized by the fact that the
accumulated number of occurrences of A’s and T’s is larger than that of C’s and G’s.

Recently, RNN-based techniques for recognizing TATA-box promoter regions in DNA
sequences have been proposed [16]. Therefore, it is of interest to check whether an RNN
classifies as positive sequences having a TATA-box and as negative those not having it.
In terms of a formal language, the property can be characterized as the set of sequences
u ∈ {A, T, C, G}∗ with a subsequence v of length 6 from −30 bp to −25 bp such that
#A + #T > #C + #G, where #σ is the number of occurrences of σ ∈ {A, T, C, G} in v.

For that purpose, we trained an RNN until achieving 100% accuracy on the training
data consisting of 16,455 aligned TATA and non-TATA promoter sequences of human DNA
extracted from the online database EPDnew (https://epd.epfl.ch/index.php, accessed 5
February 2021). All sequences have a total length of 50 and end at the TSS. Overall, there
were 2067 sequences with TATA boxes and 14,388 sequences without. The LSTM layer had
a 128-dimensional output. In this case, training was performed on a single phase with a
learning rate of 10−3 and a batch size of 64. No validation nor test sets were used. Figure 12
shows a graphical sketch of the model. The input dimension is given by the batch size, the
length of the sequence, and the number of symbols.

input: InputLayer

input: output:

[(?, 50, 4)] [(?, 50, 4)]

recurrent: LSTM

input: output:

(?, 50, 4) (?, 128)

classification: Dense

input: output:

(?, 128) (?, 1)

Figure 12. Sketch of the architecture of the TATA-Box classification network

Table 11 shows the results obtained only with the on-the-fly approach. Indeed, every
attempt to learn a DFA of the RNN C caused Bounded-L∗ to terminate with a timeout.
Therefore, this case study illustrates the case where post-learning verification is not feasible
while on-the-fly checking is. It turns out that all executions concluded that the empty lan-
guage was an (ε, δ)-approximation of the black-box Ψ(C). Thus, C verifies the requirement
with PAC guarantees. It is worth noticing that in the last reported experiment, with ε and δ
equal to 0.0001, the sample used for checking equivalence was about an order of magnitude
bigger than the dataset used for training.

https://epd.epfl.ch/index.php
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Table 11. TATA-box: On-the-fly verification of RNN.

Parameters Running Times (in s)
Mean Sample Size

ε δ Min Max Mean

0.01 0.01 5.098 5.259 5.168 600

0.001 0.001 65.366 66.479 65.812 8295

0.0001 0.0001 865.014 870.663 867.830 105,967

6. Related Work

Regular inference on RNN can be considered to be a kind of rule extraction tech-
nique [41], where the rules that are extracted are represented by a DFA. Several different
approaches for extracting automata out of RNN have been proposed. The method de-
veloped in [19,20] resorts to quantizing the hidden values of the network states and to
using clustering for grouping them into automata states. The algorithm discussed in [18]
combines L∗ and partition refinement. The equivalence query compares the proposed hy-
pothesis with an abstract representation of the network obtained by refining a partition of
its internal states. Those techniques are white box as they rely on some level of knowledge
of the internal structure of the network. They can be applied for post-learning verification
but they are not directly usable for on-the-fly black-box property checking. None of them
provide provable PAC-guarantees on the generated automata.

There are a number of works that perform white-box, compositional, automata-
theoretic verification of temporal properties by learning assumptions but require an external
decision procedure [42–44]. Verification of regular properties of systems modeled as nonreg-
ular languages (expressed as automata equipped with FIFO queues) by means of learning
DFA is proposed in [45]. However, the algorithm is white-box, it relies on a state-based
representation of the FIFO automaton, and it requires being able to compute successor
states of words by transitions of the target automata, which is by no means feasible for
RNN. Our approach also differs from [46], since this work proposes an iterative technique
for regular model-checking based on Trakhtenbrot-Barzdin passive learning algorithm [47]
which requires generating complete datasets of positive and negative sequences.

Regarding BBC-based approaches, on-the-fly property checking through learning
differs from on-the-fly BBC [26] which consists on a strategy for seeking paths in the au-
tomaton of the requirement. In this context, it is worth mentioning test case generation with
learning based testing (LBT) [48]. LBT works by incrementally constructing hypotheses
of the system under test (SUT) and model-checking them against a requirement. The
counterexamples returned by the external model-checker become the test cases. LBT does
not rely on PAC-learning and does not provide provable probabilistic guarantees on the
hypothesis. Somehow, this issue has been partially studied in [49] but at the price of
relaxing the black-box setting by observing and storing the SUT internal state.

White-box verification and testing of safety properties on feed-forward (FFNN) and
convolutional (CNN) neural networks based on Linear Programming (LP) and Satisfia-
bility Modulo Theories (SMT) has been explored in several works, for instance [50–53].
Reluplex [51] is a problem-specific SMT solver which handles ReLU constraints. The
method in [52] exhaustively searches for adversarial misclassifications, propagating the
analysis from one layer to the other directly through the source code. Several works have
approached the problem of checking robustness, which is a specific property that evaluates
ANN resilience to adversarial examples. DeepSafe [54] is a white-box tool for checking
robustness based on clustering and constraint solvers. A black-box approach for robustness
testing is developed in [55]. Those approaches have been applied for image classification
with deep convolutional and dense layers but not for RNN over symbolic sequences.

In the case of RNN, a white-box, post-learning approach for adversarial accuracy
verification is presented in [56]. The technique relies on extracting DFA from RNN but
does not provide PAC guarantees. Besides, no real-life applications have been analyzed but
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only RNN trained with sequences of 0 s and 1 s from academic DFA [36]. In [57] white-box
RNN verification is done by generating a series of abstractions. Specifically, the method
strongly relies on the internal structure and weights of the RNN to generate a FFNN, which
is proven to compute the same output. Then, reachability analysis is performed resorting
to LP and SMT. RNSVerify [58] implements white-box verification of safety properties
by unrolling the RNN and resorting to LP to solve a system of constraints. The method
strongly relies on the internal structure and weight matrices of the RNN. Overall, these
techniques are white-box and are not able to handle arbitrary properties over sequences.
Moreover, they do not address the problem of producing interpretable characterizations of
the errors incurred by the RNN under analysis.

A related but different approach is statistical model checking (SMC) [59,60]. SMC
seeks to check whether a stochastic system satisfies a (possibly stochastic) property with a
probability beyond some threshold. However, in our context, both the RNN is deterministic
and the property are deterministic. That is, any sequence u ∈ Σ∗ either satisfies Ψ(C) or
not. Moreover, our technique works by PAC-learning an arbitrary language expressed as a
formula Ψ(C), where C is an RNN.

7. Conclusions

This paper explores the problem of checking properties of RNN devoted to sequence
classification over symbolic alphabets in a black-box setting. The approach is not restricted
to any particular class of RNN or property. Besides it is on-the-fly because it does not
construct a model of the RNN on which the property is verified. The key idea is to express
the verification problem on an RNN C as a formula Ψ(C) such that its language is empty
if and only if C does not satisfy the requirement and apply a PAC-learning algorithm
for learning Ψ(C). On one hand, if the resulting DFA is empty, the algorithm provides
PAC-guarantees about the language Ψ(C) being itself empty. On the other, if the output
DFA is not empty, it provides an actual sequence of C that belongs to Ψ(C). Besides, the
DFA itself serves as an approximate characterization of the set of all sequences in Ψ(C).
For instance, our method can be used to verify whether an RNN C satisfies a linear-time
temporal property P by checking C ∩ P. Since the approach does not require computing
the complement, it can also be applied to verify nonregular properties expressed, for
instance, as context-free grammars, and to check equivalence between RNN, as illustrated
in Section 5.

On-the-fly checking through learning has several advantages with respect to performs
post-learning verification. When the learnt language that approximates Ψ(C) is nonempty,
the algorithm provides true evidence of the failure by means of concrete counterexamples.
In addition, the algorithm outputs an interpretable characterization of an approximation of
the set of incorrect behaviors. Besides, it allows checking properties, with PAC guarantees,
for which no decision procedure exists. Moreover, the experimental results on a number
of case studies from different application domains provide empirical evidence that the
on-the-fly approach typically outperforms post-learning verification if the requirement is
probably approximately satisfied.

Last but not least, Theorem 1 provides an upper bound of the error incurred by any
DFA returned by Bounded-L∗. Hence, this paper also improves the previously known
theoretical results regarding the probabilistic guarantees of this learning algorithm [22].
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