
machine learning &

knowledge extraction

Article

A Matrix Factorization Algorithm for Efficient
Recommendations in Social Rating Networks Using
Constrained Optimization

Nicholas Ampazis * , Theodoros Emmanouilidis and Flora Sakketou

Department of Financial and Management Engineering, University of the Aegean, Kountouriotou 41,
82100 Chios, Greece
* Correspondence: n.ampazis@fme.aegean.gr

Received: 4 June 2019; Accepted: 9 August 2019; Published: 11 August 2019
����������
�������

Abstract: In recent years the emergence of social media has become more prominent than ever.
Social networking has become the de facto tool used by people all around the world for information
discovery. Consequently, the importance of recommendations in a social network setting has
urgently emerged, but unfortunately, many methods that have been proposed in order to provide
recommendations in social networks cannot produce scalable solutions, and in many cases are
complex and difficult to replicate unless the source code of their implementation has been made
publicly available. However, as the user base of social networks continues to grow, the demand
for developing more efficient social network-based recommendation approaches will continue to
grow as well. In this paper, following proven optimization techniques from the domain of machine
learning with constrained optimization, and modifying them accordingly in order to take into
account the social network information, we propose a matrix factorization algorithm that improves
on previously proposed related approaches in terms of convergence speed, recommendation accuracy
and performance on cold start users. The proposed algorithm can be implemented easily, and thus
used more frequently in social recommendation setups. Our claims are validated by experiments on
two real life data sets, the public domain Epinions.com dataset and a much larger dataset crawled
from Flixster.com.

Keywords: collaborative filtering; recommender systems; social networks; matrix factorization;
constrained optimization

1. Introduction

Matrix factorization in collaborative filtering recommender systems is usually performed by
unconstrained gradient descent for learning the feature components of the user and item factor
matrices [1]. This is essentially a “black box” approach, where apart from the minimization of
an objective function (usually the Root Mean Squared Error (RMSE) over the known ratings), generally
no other information or knowledge is taken into account during the factorization process. However
this approach alone cannot solve efficiently a majority of recommendation problems. The most notable
example is the Netflix Prize problem, which dealt with a very sparse, high-dimensional dataset with
more than 100 million training patterns. The winning solutions of the “Bellkor’s Pragmatic Chaos”
team [2–4], made apparent that a huge number of latent factor models, clustering, and K-nearest
neighbors approaches was necessary to be combined (both linearly and non-linearly) in order to
provide an accurate final solution.

In earlier work where our focus was on training feedforward neural networks [5] we showed that,
during training, it is useful to incorporate additional “incremental conditions”, i.e., conditions involving

Mach. Learn. Knowl. Extr. 2019, 1, 928–944; doi:10.3390/make1030053 www.mdpi.com/journal/make

http://www.mdpi.com/journal/make
http://www.mdpi.com
https://orcid.org/0000-0002-7238-4731
http://www.mdpi.com/2504-4990/1/3/53?type=check_update&version=1
http://dx.doi.org/10.3390/make1030053
http://www.mdpi.com/journal/make

Mach. Learn. Knowl. Extr. 2019, 1 929

quantities that must be optimized incrementally at each epoch of the learning process (by the term
“epoch” we denote a training cycle of presenting the entire training set). We thus formulated a general
problem, whereby we sought the minimization of the objective function representing the distance
of the network’s outputs from preset target values, subject to other constraints that represented the
additional knowledge. We then demonstrated how to formulate the general problem of incorporating
the additional knowledge as a constrained optimization task, whose solution lead to a powerful generic
learning algorithm accounting for both target and incremental conditions. Advancing that work,
in a recent study [6], and similarly to other proposed methods [7], we cast the factorization of the
user-by-item ratings matrix as a feedforward neural network training problem, and thus concentrated
on the development of constrained optimization methods that could lead to efficient factorization
algorithms. In that study, we introduced a general constrained matrix factorization framework that
we refer to as FALCON (Factorization Algorithms for Learning with Constrained OptimizatioN), and
presented two examples of algorithms which can be derived from that framework, that incorporate
additional knowledge about learning the factor matrices. The first example (FALCON-M), incorporated
an extra condition that seeks to facilitate factor updates in long narrow valleys of the objective function
landscape, thus avoiding getting trapped in suboptimal solutions. The second example (FALCON-R),
considered the importance of regularization on the success of the factorization models and adapted the
regularization parameter automatically while training.

In a social rating network, recommendations for a user can be produced on the basis of the ratings
of the users that have direct or indirect social relations with the given user. This approach is supported
by sociological models [8], and their verification due to the increasing availability of online social
network data [9]. The models propose that people tend to relate to other people with similar attributes,
and due to the effects of social influence, related people in a social network, in turn, influence each
other to become even more similar. Thorough surveys summarizing the various approaches proposed
for social recommender systems in general, can be found in [10,11].

In this paper, we exploit this information within the FALCON framework and propose a matrix
factorization algorithm for recommendation in social rating networks, called SocialFALCON. Here the
additional information is incorporated as an extra condition that, during training, seeks to render the
latent feature vector of each user as close as possible to the weighted average of the latent feature
vectors of his direct neighbors, without compromising the need for decreasing the objective function.
By achieving maximum possible alignment between the successive feature vectors updates of each user
to that of his direct neighbors, the latent features of users indirectly connected in the social network also
become dependent and hence social network influence gets propagated during training. An important
benefit from this approach also arises for cold start users, that is, for users who have expressed only
a few ratings. These users are more dependent on the propagation of social infuence compared to
users with more ratings, and thus the SocialFALCON model, through the enforcement of the constraint
that their latent features is close to those of their neighbors, can learn user feature vectors for this
challenging category of users as well.

To evaluate the effectiveness of our approach in terms of prediction accuracy and computational
efficiency, we present experimental results to compare its performance with the following baseline and
state of the art algorithms for matrix factorization in recommender systems:

• Regularized SVD (RegSVD): This method is the baseline matrix factorization approach which
does not take into account the social network [12]. We compare our approach against this method
in order to evaluate the improvement in performance induced by the social network information.

• Probabilistic Matrix Factorization (PMF): This is an extension of the baseline matrix factorization
which bounds the range of predictions by introducing non-linearities in the prediction rule [13].
Similarly to RegSVD we compare our approach against this method in order to evaluate the
importance of utilizing social network information.

• SVD++: This is also a matrix factorization approach which also does not take into account any
social network information [14]. However SVD++ takes into account additional information

Mach. Learn. Knowl. Extr. 2019, 1 930

in the factorization model in the form of implicit feedback for each user’s item preference
history. We compare our approach against this method since it achieves state of the art
performance in recommender system tasks against which other algotihms should be compared,
and because it provides a paradigm for extending the baseline matrix factorization approach with
additional information.

• SocialMF: This is a very closely related algorithm to our proposed approach but utilizes the social
network information in a different way in the factorization model [15].

Detailed derivations and descriptions of the above algorithms are presented in the next sections.
To elucidate on the transparency of the results, we have implemented each algorithm from scratch in
low-level C with no dependencies on additional libraries, and we’ve made the source codes publicly
available with documentation and additional supporting materials from Github as described in
Section 8.

Due to the lack of publicly available social rating network datasets, the performance of all
algorithms was evaluated on the two standard social rating network datasets utilized and introduced
respectively in [15], namely the existing Epinions dataset and a large scale dataset that was gained from
Flixster.com. Again for transparency reasons in the reported results, we’ve made publicly available
all the training/validation cross-validation splits that we utilized in our experiments as described in
Section 7.

The rest of this paper is organized as follows: The problem definition of matrix factorization
in recommender systems is presented in Section 2. SVD++, which we consider in our benchmarks
as a state of the art extension of the basic matrix factorization model, and which utilizes implicit
rating information, is discussed in Section 3. Section 4 discusses the recommendation problem in
a social rating network setting and describes SocialMF which is the most closely related method to
our approach. The general constrained optimization FALCON framework is outlined in Section 5.
In Section 6 we derive the SocialFALCON algorithm from the FALCON framework. In the same
section we also discuss some desirable properties of the algorithm, and its advantages over the
SocialMF approach, especially with regards to computational complexity. The real life data sets used
in our experiments are described in Section 7, and the experiments are reported in Section 8. Finally,
in Section 9 conclusions are drawn and we outline some interesting directions for future work.

2. Matrix Factorization for Recommender Systems

In its basic form, matrix factorization for recommender systems describes both users and items
by vectors of (latent) factors which are inferred from the user-by-item rating matrix. High correlation
between user and item factors leads to a recommendation of an item to a particular user [16].

The idea behind matrix factorization is very simple. We define the corresponding matrix
factorization R̂K of the user-by-item ratings matrix R ∈ RN×M as

R̂K = UTV (1)

where U ∈ RK×N and V ∈ RK×M, in order to approximate all the unknown elements of R.
For the recommendation problem, R has many unknown elements, which cannot be treated as

zero, and the application of formal Singular Value Decomposition (SVD), e.g., by Lanczos’ method [17]
would provide erroneous results. Thus, for this case, the approximation task can be defined as follows:

Let r̂ui denote how the u-th user would rate the i-th item, according to the factorization model,
and eui denote the error on the (u, i)-th known rating example (training pattern):

r̂ui =
K

∑
k=1

uukvki (2)

and

Mach. Learn. Knowl. Extr. 2019, 1 931

eui = rui − r̂ui. (3)

In order to minimize this error (and consequently the error over all training patterns) we can
apply the stochastic version of the gradient descent method on each (1/2) · e2

ui to find a local minimum.
Hence the elements of U and V can be updated as follows:

u
′
uk = uuk + η · eui · vki, v

′
ki = vki + η · eui · uuk (4)

where η is the learning rate.
To better generalize on unseen examples, we can apply regularization with factors λu and λv for

the user and item factors respectively, in order to prevent large weights:

u
′
uk = uuk + η · (eui · vki − λu · uuk), v

′
ki = vki + η · (eui · uuk − λv · vki). (5)

Thus, Equation (5) are the user and item factors updates when minimizing the following objective
function by performing unconstrained stochastic gradient descent on Uu and Vi for all users u and all
items i:

L =
1
2

N

∑
u=1

M

∑
i=1

Iui(rui −UT
u Vi)

2 +
λu

2

N

∑
u=1
||Uu||2 +

λv

2

M

∑
i=1
||Vi||2. (6)

In the above equation Iui is an indicator function that is equal to 1 if user u rated item i and equal
to 0 otherwise, and “||.||” denotes the Euclidean norm. In this linear model the predictions are usually
clipped to the [minr, maxr] range appearing in the ratings matrix R.

It is also customary to adjust the predicted rating by accounting for user and item biases, that is,
for systematic tendencies for some users to give higher ratings than others, and for some items to
receive higher ratings than others. We can encapsulate these effects using baseline estimates [14]
as follows:

Denote by µ the overall average rating. A baseline estimate for an unknown rating r̂ui is denoted
by bui and accounts for the user and item effects:

bui = µ + βu + γi. (7)

The vectors β ∈ RN and γ ∈ RM contain the biases for all users and items respectively, and the
elements βu and γi indicate the biases of user u and item i respectively. These can be also learned by
gradient descent if we plugin into Equation (6) the baseline corrected expression for r̂ui as:

r̂ui = bui + UT
u Vi = µ + βu + γi + UT

u Vi. (8)

In this case the updates for βu and γi are given by:

β
′
u = βu + η · (eui − λβ · βu), γ

′
i = γi + η · (eui − λγ · γi) (9)

where λβ and λγ are regularization parameters for the user and item biases respectively. This approach
is usually refered to in the literature as Regularized SVD (RegSVD) [12].

Instead of using a simple linear model, which can make predictions outside of the range of valid
rating values, the dot product between user and item specific feature vectors can be passed through
the logistic function (sigmoid) s(z) = 1/(1 + exp(−z)), which bounds the range of predictions within
[0, 1]. In this case the objective function is modified as follows:

Mach. Learn. Knowl. Extr. 2019, 1 932

L =
1
2

N

∑
u=1

M

∑
i=1

Iui(rui − g(θui))
2 +

λu

2

N

∑
u=1
||Uu||2 +

λv

2

M

∑
i=1
||Vi||2 +

λβ

2
||β||2 +

λγ

2
||γ||2 (10)

where

θui = βu + γi + VT
i Uu (11)

and g(z) = (maxr − minr) ∗ s(z) + minr. This model is usually refered to as Probabilistic Matrix
Factorization (PMF) [13].

Usually the learning rate and the regularization values for each latent factor are determined by
a search for optimal values that optimize the performance on a withheld validation set. There are
various approaches on how this search is performed, but the most common approach is by grid
search [18], where a predefined grid of candidates is set up and on each candidate a model is trained
and evaluated on the validation set. It is obvious that such a scheme is very expensive in terms
of runtime as many different models have to be trained and then evaluated, neverthess it is the
dominating method for parameter selection in matrix factorization models.

3. SVD++

SVD++ [14] is a state of the art extension to the RegSVD model by taking into account implicit
information. The most natural choice for implicit feedback is the item preference history, which tells
us about the items for which the user has expressed a preference (either explicit or implicit). Thus,
the idea is to add a second set of item factors, relating each item i to a factor vector Yi ∈ RK, and model
the factor vector of each user as a function of all factor vectors Yi, for which the user has expressed
a preference.

Following [12,14], SVD++ gives the predicted rating of user u on item i as follows:

r̂ui = bui + VT
i (Uu + |Ru|−

1
2 ∑

j∈Ru

Yj) (12)

where bui is given by Equation (7) and the set Ru contains the items rated by user u (for which we
may or may not know the exact explicit rating). For example, in the Netflix challenge there was extra
information in the qualifying set that users had rated certain movies but the actual value of each rating
was withheld in order to be predicted by the contestants.

Therefore, in order to predict an unknown rating r̂ui, as in (8), SVD++ maintains a vector of factors
Uu for each user but this vector is also complemented by the sum |Ru|−

1
2 ∑j∈Ru Yj that represents the

combination of explicit and implicit feedback.
Plugging in Equation (12) into (6) and taking into account regularization parameters λβ and λγ

for the user and item biases as in Equation (9), we can learn Uu, Vi, and Yi by gradient descent updates
as follows:

U
′
u = Uu + η · (eui ·Vi − λuUu), (13)

V
′
i = Vi + η · (eui · (Uu + |Ru|−

1
2 ∑

j∈Ru

Yj)− λvVi), (14)

Y
′
j = Yj + η · (eui · |Ru|−

1
2 Vi − λyYj), ∀j ∈ Ru, (15)

where λy is the regularization parameter for the items for which the user has expressed a preference.

Mach. Learn. Knowl. Extr. 2019, 1 933

4. SocialMF

In a social rating network, each user u also has a set Nu of other users (direct neighbors) with
which she has a connection. We denote by Tuv the value of social “trust” [15] that user u has on user v
as a real number in [0, 1]. A value of 0 means that there is no trust and a value of 1 means full trust
from u to v. In practice, in most social networks the trust values are binary with Tuv = 0 meaning that
user u does not “follow” user v, and Tuv = 1 meaning that u “follows” v. The trust values can be stored
in a matrix T = [Tuv]NxN , where usually each row is normalized so that ∑N

u=1 Tuv = 1. Note that the
matrix T is asymmetric in general.

SocialMF [15] is a probabilistic model-based solution which incorporates the propagation of trust
in the model, and which has been shown to improve both in terms of the quality of recommendations
and speed over previously proposed approaches such as the Social Trust Ensemble (STE) proposed
in [19]. The main idea behind SocialMF is that the latent feature vectors of a user should be made
dependent on the feature vectors of his direct neighbors in the social network. Using this idea,
latent features of users indirectly connected in the social network will be also dependent and hence the
trust gets propagated. Thus, latent factors for all users and items are learned jointly from the ratings
and the social graph. SocialMF therefore models the users’ feature vectors as:

Ûu = ∑
v∈Nu

TuvUv (16)

where Ûu is the estimated latent feature vector of u given the feature vectors of his direct neighbors.
To this end, SocialMF extends the basic PMF model by considering the following

objective function:

L(R, T, U, V) =
1
2

N

∑
u=1

M

∑
i=1

Iui(rui − g(UT
u Vi))

2 +
λu

2

N

∑
u=1
||Uu||2 +

λv

2

M

∑
i=1
||Vi||2

+
λt

2

N

∑
u=1
||(Uu − ∑

v∈Nu

TuvUv)||2,

(17)

where g(UT
u Vi) is the predicted rating r̂ui of user u on item i. As in PMF, λu, λv and λt are regularization

parameters and Iui is an indicator function that is equal to 1 if user u rated item i and equal to
0 otherwise.

We can find a local minimum of the objective function in Equation (17) by performing gradient
descent on Uu and Vi for all users u and all items i:

∂L
∂Uu

=
M

∑
i=1

IuiVig
′
(UT

u Vi)(g(UT
u Vi)− rui) + λuUu

+λt

(Uu − ∑
v∈Nu

TuvUv)− ∑
v|u∈Nv

Tvu(Uv − ∑
w∈Nv

TvwUw)

 ,

(18)

∂L
∂Vi

=
N

∑
u=1

IuiUug
′
(UT

u Vi)(g(UT
u Vi)− rui) + λvVi. (19)

Note that the derivative of the objective function with respect to the item feature vectors Vi is
simply the same to that of the PMF model.

Mach. Learn. Knowl. Extr. 2019, 1 934

A variation of SocialMF has been proposed in [20] in which the authors train separate matrix
factorization models for each category c that the items belong to, and for which a user u has issued
a trust statement towards v, given that u and v simultaneously have ratings in a category c.

5. Overview of the Falcon Framework

Based on the discussion in the previous sections, it is clear that in all approaches matrix
factorization in recommender systems involves minimization by unconstrained gradient descent
of a suitably chosen objective function with respect to the user and item features and biases. In our
approach we suppose that there are additional relations to be satisfied, that represent additional
knowledge we wish to incorporate into the learning mechanism, and involve all the available features
Uu, Vi, βu and γi (u = 1 · · · N and i = 1 · · · M).

For the rest of our discussion it is convenient to group all the features into a single column vector
w (which we will refer to as the “weight" vector) as follows:

w = (β1 · · · βN , UT
1 · · ·UT

N , γ1 · · · γM, VT
1 · · ·VT

M). (20)

Before introducing the form of the additional relations, we note that in this work we’ll concentrate
on the minimization of the Mean Squared Error (MSE) objective function given by:

L =
1
2

N

∑
u=1

M

∑
i=1

Iui(rui − g(θui))
2, (21)

with the quantities involved explained in Section 2. We will also adopt an epoch-by-epoch (i.e., batch)
optimization framework with the following objectives:

1. At each epoch of the learning process, the vector w will be incremented by dw, so that the search
for an optimum new point in the space of w is restricted to a hypersphere of known radius δP
centered at the point defined by the current w

dwTdw = (δP)2. (22)

2. At each epoch, the objective function Lmust be decremented by a quantity δQ, so that, at the end
of learning, L is rendered as small as possible. To first order, we can substitute the change in L by
its first differential and demand that

dL = δQ. (23)

Within the FALCON framework originally introduced in [6], we can define a certain quantity
Φ that we also wish to incrementally maximize at each epoch subject to the objectives defined
above. Consequently the learning rule can be derived by solving the following constrained
optimization problem:

Maximize Φ (Φ = max) w.r.t dw

subject to dwTdw = (δP)2

dL = δQ.

This constrained optimization problem can be solved analytically by a method similar to the
constrained gradient ascent technique introduced in optimal control in [21], and leads to a generic
update rule for w as follows:

Mach. Learn. Knowl. Extr. 2019, 1 935

First, we introduce suitable Lagrange multipliers λ1 and λ2 to take into account Equations (22) and
(23) respectively. If δP is small enough, the changes to Φ induced by changes in w can be approximated
by the first differential dΦ. Thus, secondly, we introduce the function φ, whose differential is defined as

dφ = dΦ + λ1(dL− δQ) + λ2[(δP)2 − ||dw||2]. (24)

On evaluating the differentials involved in the right hand side, we readily obtain

dφ = F · dw + λ1(G · dw) + λ2[(δP)2 − ||dw||2], (25)

where G and F are given by

G = ∂L/∂w , F = ∂Φ/∂w. (26)

To maximize dφ at each epoch, we demand that

d2φ = (F − λ1G− 2λ2dw) · d2w = 0 (27)

and
d3φ = −2λ2||d2w||2 < 0. (28)

Hence, the factor multiplying d2w in Equation (27) should vanish, and therefore we obtain

dw = − λ1

2λ2
G +

1
2λ2

F. (29)

Equation (29) constitutes the weight update rule, provided that λ1 and λ2 can be evaluated in
terms of known quantities. This can be done as follows:

From Equations (22), (26) and (27) we obtain

λ1 =
IGF − 2λ2δQ

IGG
(30)

with IGG and IGF given by
IGG = ||G||2, IGF = G · F. (31)

It remains to evaluate λ2. To this end, we substitute (29) into (23) to obtain

4λ2
2(δP)2 = IFF + λ2

1 IGG − 2λ1 IGF (32)

where IFF is given by
IFF = ||F||2. (33)

Finally, we substitute (30) into (32) and solve for λ2 to obtain

λ2 =
1
2

[
IGG(δP)2 − (δQ)2

IFF IGG − I2
GF

]−1/2

. (34)

Note that the positive square root value has been chosen for λ2 in order to satisfy Equation (28).

Let us now discuss our choice for δQ. This choice is dictated by the demand that the quantity
under the square root in Equation (34) should be positive. It is easy to show that the term IFF IGG − I2

GF
is always positive by the Cauchy–Schwarz inequality [5]. Now, since IGG = ||G||2 ≥ 0, it follows that
care must be taken to ensure that IGG(δP)2 > (δQ)2. The simplest way to achieve this is to select δQ
adaptively by setting δQ = −ξδP

√
IGG with 0 < ξ < 1. Consequently, the proposed generic weight

update algorithm has two free parameters, namely δP and ξ.

Mach. Learn. Knowl. Extr. 2019, 1 936

6. The SocialFALCON Algorithm

The most important aspect that we will now discuss is the definition of the quantity Φ that
we wish to incrementally maximize at each epoch. Rather than adopting the approach of SocialMF
which imposes a target condition on the latent feature vector of a user as the weighted average of the
latent feature vectors of his direct neighbors, we will adopt and epoch-by-epoch approach so as to
incrementally maximize at each epoch the alignment of the user’s feature vector update to the weighted
average of the feature vectors updates of his direct neighbors at the immediately preceding epoch.

We thus introduce the quantity:

Φ =
N

∑
u=1

dβut ∑
v∈Nu

Tuvdβvt−1 +
N

∑
u=1

dUT
ut ∑

v∈Nu

TuvdUvt−1 (35)

where dUut is the user u feature vector update at the present epoch and ∑v∈Nu TuvdUvt−1 is the weighted
average of the latent feature vector updates of his direct neighbors v at the immediately preceding
epoch. Similarly, dβut is the update of the bias of user u at the current epoch and ∑v∈Nu Tuvdβvt−1 is
the weighted average of the updates of the biases of the user’s direct neighbors at the immediately
preceding epoch. Since within our constrained learning framework the whole weight vector w updates
have constant moduli equal to δP (by Equation (22)), maximization of Φ amounts to minimization of
the angle between each user’s feature vector updates at the present epoch and the weighted average of
the latent feature vector updates of his direct neighbors preceding that epoch.

Hence, for the factorization problem, at each epoch of the learning process we can restore from
the weight vector w the user feature vectors Uu using Equation (20), and update them according to
Equations (29) and (26) as:

dUu = − λ1

2λ2

∂L
∂Uu

+
1

2λ2

∂Φ
∂Uu

= − λ1

2λ2

M

∑
i=1

Iui · eui · g
′
(θui) ·Vi +

1
2λ2

∑
v∈Nu

TuvdUvt−1 . (36)

Similarly the user biases will be updated by:

dβu =
λ1

2λ2

M

∑
i=1

Iui · eui · g
′
(θui) +

1
2λ2

∑
v∈Nu

Tuvdβvt−1 . (37)

As far as the updates of the item feature vectors Vi and item biases γi are concerned, there are
two possible alternatives. The first is to simply update them by:

dVi = −
λ1

2λ2

∂L
∂Vi

and dγi = −
λ1

2λ2

∂L
∂γi

(38)

since there are no dependencies of Φ as defined in Equation (35) from any Vi or γi.
An even more interesting option for updating the item feature vectors and biases is to supplement

the quantity Φ with a term involving an incremental maximization target that we seek to achieve for
each Vi and γi on an epoch-by-epoch basis. To this end, we adopt the approach that we have proposed
in algorithm FALCON-M as described in [6]. According to that approach, the quantity that we wish to
maximize is the alignment between the item feature vector updates at the present and immediately
preceding epoch. Due to the constant moduli of the updates of the whole vector w (Equation (22),
this also amounts to minimization of the angle between the vectors of the successive weight updates
for each Vi, and thus can suppress zig-zagging and allow learning to proceed along relatively smooth
paths. In a sense this is equivalent to adding a momentum term in the updates of each Vi (and γi), with
the important difference that both the coefficients of the gradient (i.e., learning rate) and momentum are
suitably adapted at each epoch of the learning process by the constained update rule of Equation (29).

Mach. Learn. Knowl. Extr. 2019, 1 937

Note that for this approach to work we should redefine Φ as:

Φ =
N

∑
u=1

dβut ∑
v∈Nu

Tuvdβvt−1 +
N

∑
u=1

dUT
ut ∑

v∈Nu

TuvdUvt−1 +
M

∑
i=1

dγit dγit−1 +
M

∑
i=1

dVT
it dVit−1 (39)

where dVit and dVit−1 are the item i feature vector updates at the present and immediately preceding
epoch respectively (similarly for the item i bias updates dγit and dγit−1).

Again we can restore from the weight vector w the item feature vectors Vi using Equation (20),
and update them according to Equations (29) and (26) as:

dVi = − λ1

2λ2

∂L
∂Vi

+
1

2λ2

∂Φ
∂Vi

= − λ1

2λ2

N

∑
u=1

Iui · eui · g
′
(θui) ·Uu +

1
2λ2

dVit−1 . (40)

Similarly the updates for the item biases will be given by:

dγi = − λ1

2λ2

N

∑
u=1

Iui · eui · g
′
(θui) +

1
2λ2

dγit−1 . (41)

Equations (36), (40), (37), and (41) thus constitute our proposed SocialFALCON algorithm for
updating the user features, item features, user biases, and item biases respectively.

6.1. Desirable Properties of SocialFALCON

As is the case with SocialMF, the SocialFALCON model makes the feature vector of each user to be
dependent on the feature vectors of his direct neighbors. Since those neighbors are in turn connected
to other users, recursively, indirect connections in the social network propagate their social infuence
across the entire network. In addition, even for users that have expressed no ratings (cold start users)
but have social connections, there still remains a social update term in their factor update rule, which
means that latent features of those users will at least adapt towards those of their neighbors. Therefore,
despite not having any expressed ratings, feature vectors for these users will be learned as well.

The SocialFALCON model has three further desirable properties. First, despite its seemingly
complex derivation, the factor update rule for both users and items (and their biases) turns out to be
quite simple since it only constitutes from a term proportional to the gradient of the objective function
of Equation (21), and an extra term proportional to the gradient of Φ as given by Equation (39) with
respect to each feature vector. Both of these terms are quite easy to compute as it can be seen from
Equations (36), (37), (40) and (41). For the case of user factors and their biases, the extra term is a
social term adapting the update towards the weighted average of the factors’ updates of the direct
neighbors at the immediately preceding epoch, whereas for the item factors and biases the extra term
acts as momentum.

Second, all the factor update rules can also be viewed as standard gradient descent with
regularization. This is enforced by the hard constraint of Equation (22) that restricts the norm of
the weight vector update dw to a hypersphere (which means that the compoments of the vector w
cannot grow in an uncontrollable fashion), and can be more easily seen if we rewrite, for example,
Equation (40) as:

Mach. Learn. Knowl. Extr. 2019, 1 938

dVi = − λ1

2λ2

N

∑
u=1

Iui · eui · g
′
(θui) ·Uu +

1
2λ2

dVit−1

= − λ1

2λ2

N

∑
u=1

Iui · eui · g
′
(θui) ·Uu +

1
2λ2

(Vi −Vit−1). (42)

The same argument applies, by expansion of the weighted average in the social term, to user
factor updates. An important benefit here is that both the coefficient multiplying the gradient as well
as the reguralization coefficient are automatically adapted at each epoch by the current values of λ1

and λ2.
Finally, the algorithm has only two free parameters, namely δP and ξ which, as we’ll discuss in

the experimental results section, are not very sensitive to the exact setting of their values.

6.2. Complexity Analysis of SocialFALCON

The main overhead to complete an epoch is in evaluating the gradient of the objective function
with respect to the feature vectors of users and items. As it can been seen from Equation (21),
the number of operations per feature vector needed to complete this evaluation is proportional to
the number of rating examples in the training set. In addition we need to calculate the gradient of
Φ as given by Equation (39) with respect to the feature vectors. Following the notation used in [15],
we assume that the average number of ratings per user is r̄, and the average number of direct neighbors
per user is t̄. As reported in the same paper, the computational complexity of computing the gradients
of SocialMF’s objective function L with respect to the number of users in the social rating network is
O(Nr̄K + Nt̄2K). The t̄2 factor is justified if we take a closer look at Equation (18) which computes the
derivative of Equation (17) with respect to each user feature vector Uu so as to update it by gradient
descent. In order to evaluate this derivative, for each user u, one needs to take the following steps:
(a) Find his direct neighbors and aggregate their feature vectors, (b) find the users v in the social
network to which u is a direct neighbor, and (c) ∀v find their direct neighbors w and aggregate their
feature vectors.

In the SocialFALCON model the updates of the user feature vectors are given by Equation (36).
As it can be readily seen from that equation, the evaluation of its second term only requires step (a)
as described above. This makes the total omputational complexity of evaluating the gradients of (21)
and (39) with respect to the number of users O(Nr̄K + Nt̄K). Therefore SocialFALCON is r̄+t̄2

r̄+t̄ times
faster than SocialMF in computing the gradient in each training epoch as it scales linearly with the
number of user connections. Since usually the rating matrix R and trust matrix T are very sparse, t̄ and
r̄ are relatively small, and therefore both SocialMF and SocialFALCON scale linearly with respect to the
total number of users in the social rating network. However in a large social network where the number
of average number of direct neighbors per user is large, the speedup factor provided by SocialFALCON
becomes profound and crucially important in the ability to effectively train a recommender.

We should note here that once the gradient has been evaluated, a relatively small number of
additional operations as given by Equations (31), (33), (34) and (30) (which is independent of the
number of training examples) is needed to complete the update. In addition the updates of all user
and item factors at the immediately preceding epoch should be stored since they are utilized by the
SocialFALCON update rule. This additional computational burden however is very small compared
to the calculation of the gradient since it just involves the evaluation of three inner vector products
as given by Equations (31) and (33). The sizes of these vectors are equal to the size of vector w
(Equation (20)), thus the number of operations involved is (K + 1) ∗ (N + M). This is confirmed by
the actual CPU times measured in our experimental results.

Mach. Learn. Knowl. Extr. 2019, 1 939

7. Datasets

The availability of publicly available social rating network datasets is extremely limited,
presumably due to the sensitive nature of social network data and the proprietary rights of social
networks. To the best of our knowledge there are only very few public social rating network datasets:
The Epinions.com dataset, and a dataset that was crawled from Flixster.com and has been made
available by the authors of [15].

The Epinions dataset (http://www.trustlet.org/wiki/Downloaded_Epinions_dataset) that we
used has 49,289 users, 664,824 ratings and 487,183 connections between users. Possible rating values
are discrete integers in the range (1,5). The average number of ratings per user is 16.5 and each user
has on average 14.3 direct neighbors. The social relations in the dataset are directed.

The Flixster dataset (http://www.cs.sfu.ca/\simsja25/personal/datasets) dataset has
787,213 users, 8,196,077 ratings and 7,058,819 relations between users. Each user, on average, has
rated 55.5 items and has 48.6 social relations. Even though the dataset was crawled by [15] as a directed
network, the social relations are undirected. This means that either duplicates should be removed or be
handled appropriately in the code (we opted for the later choice). Possible rating values are ten discrete
numbers in the range (0.5,5), and in our implementation we scaled rating values by 2 to be integers in
the range (1,10).

In order to evaluate the performance of all algorithms considered in the next section, we used
five-fold cross-validation (CV). We used stratified sampling on user ratings so that, in each fold, 80%
of the ratings of each user were chosen randomly and used for training and the remaining 20% of
user’s ratings were used for evaluation. Due to this sampling scheme, users with only one rating
in the dataset were inevitably excluded from the evaluation set. We have made publicly available
(http://labs.fme.aegean.gr/ideal/socialfalcon-datasets/) both the database schema as well as the
five-fold CV training/validation splits that we’ve used in the experiments.

8. Experimental Results

We compared the proposed SocialFALCON algorithm with four other factorization models:
RegSVD and PMF as described in Section 2, SVD++ as described in Section 3 and SocialMF as
described in Section 4. All algorithms were implemented in low-level C and were compiled with the
GNU gcc 4.6.3 compiler. We should point out that the codebase for RegSVD, PMF and SVD++ has
been carefully developed both in terms of minimizing their runtime and increasing their prediction
accuracy, due to their prior utilization by one of the authors as member in “The Ensemble” team which
was a runner up for the Netflix Prize competition (http://netflixprize.com/leaderboard). For the code
implementation of SVD++, it should be noted that a naive implementation of gradient descent is very
ineffective, because if the implicit items are updated at each training example then the training process
will be very slow. In our implementation we have used the “looping trick” proposed in [22] for NSVD1,
which is a predecessor of SVD++ originally introduced by [12]. This modification produces exactly the
same results as the naive implementation of gradient descent, however it makes a significant difference
in running time, especially for large scale problems.

To the best of our knowledge the authors of [15] have not provided any source code
implementation of SocialMF. The only known publicly available code implementation of SocialMF is
within MyMediaLite (http://www.mymedialite.net/), which is a lightweight, multi-purpose library
of recommender system algorithms. An important bug fix to that code implementation has also been
provided by one of the authors of the present paper (http://mymedialite.net/download/Changes),
which was contributed while developing our own implementation. Nonetheless, the codes for all
algorithms presented in this section have been rewritten from scratch and have been made publicly
available from Github (https://github.com/namp/SocialFALCON). The experiments were run on a
machine with an Intel Core2 Quad CPU (Q9400 @2.66GHz) with 4GB RAM, running Ubuntu 12.04 LTS.

The prediction error was measured in RMSE on the evaluation set of each split defined as:

http://www.trustlet.org/wiki/Downloaded_Epinions_dataset
http://www.cs.sfu.ca/$\sim $sja25/personal/datasets
http://labs.fme.aegean.gr/ideal/socialfalcon-datasets/
http://netflixprize.com/leaderboard
http://www.mymedialite.net/
http://mymedialite.net/download/Changes
https://github.com/namp/SocialFALCON

Mach. Learn. Knowl. Extr. 2019, 1 940

RMSE =

√
1
|E| ∑

rui∈E
(rui − r̂ui)2 (43)

where |E| is the size of the evaluation set E, rui is the actual rating and r̂ui is the prediction.
Table 1 summarises the RMSE of RegSVD, PMF, SVD++, SocialMF and the proposed

SocialFALCON algorithm on the Epinions and Flixster datasets. We report results for two choices of
latent dimensions, specifically K = 5 and K = 10 as was also reported in [15], where it was shown
that increasing K in Epinions did not improve the results, while increasing K in Flixster improved
the results slightly. For all algorithms, each RMSE result is reported along with two numbers: The
average number of epochs required to achieve it and the average time (in seconds) spent at each epoch.
The RMSE numbers reported are the average of the five-fold CV splits. Note that for the Flixster
dataset the average reported RMSE for all algorithms has been divided by 2 in order to compensate for
reporting the error on the original rating values in the range (0.5,5). For fairness in the comparison,
for all algorithms, each run was initialized from a common random seed, and their relevant parameters
were carefully adjusted to achieve the best possible performance. These parameters were found by
utilising grid search and are reported in Appendix A.

Table 1. Experimental results for Epinions and Flixster. In each table cell we report the triplet:
RMSE/average number of epochs/time spent in each epoch (in secs).

Features (K) Algorithm Epinions Flixster

5

RegSVD 1.0490098 61.6 0.064946 0.8577111 166.4 2.1827098
PMF 1.0492854 54 0.0963092 0.868567 14.4 2.3057142

SVD++ 1.0485256 62 0.145221 0.8543018 144 2.9196802
SocialMF 1.048803 3180.6 1.0123998 0.8856209 979 55.8514706

SocialFALCON 1.0428028 216.6 0.3194868 0.8554456 1040.2 3.8049924

10

RegSVD 1.0490002 61.6 0.0941402 0.8483767 187.8 2.2727028
PMF 1.049246 53.8 0.1374766 0.8590072 15.2 2.8283334

SVD++ 1.0483972 61.2 0.2286722 0.845011 180.4 4.134036
SocialMF 1.0487536 3179.6 1.6876002 0.8760801 983.6 72.0185296

SocialFALCON 1.0427142 216.2 0.6428872 0.8484094 1082 5.0869388

For the Epinions dataset, as highlighted in bold, SocialFALCON improves the RMSE of RegSVD,
PMF, SVD++, and SocialMF on both choices of latent dimensions. In both cases, we notice that the
RMSE of SocialFALCON is 0.6% lower compared to that of RegSVD, 0.62% lower than the RMSE of PMF,
and 0.55% lower compared to the RMSE of SVD++. Empirical data on recommender systems research
have shown that such levels of improvement are indeed significant [23]. For example during the
Netflix Prize competition, yearly progress prizes of $50,000 US were offered for the best improvement
of at least 1% over the previous year’s result [24]. The closely related SocialMF method seems to
perform only marginally better than RegSVD and PMF, and marginally worse than SVD++. Naturally,
as explained in the beginning of this section, the codes for RegSVD, PMF, and SVD++ have been
very carefully implemented due to their utilization in the Netflix prize and thus their performance is
expected to be quite good. However the same argument is also true for the code implementation of
SocialMF. In addition all RMSEs are reported with optimal parameters found by grid search, and to this
end, it remains unclear why we have not been able to confirm in our evaluation the much improved
performance of SocialMF over PMF on the Epinions dataset as reported in [15]. A possible explanation
for this is that in their experiments they used a different version of the Epinions dataset and, of course,
our CV splits are different. Another explanation for the poor performance they reported for PMF
is perhaps due to poor code implementation. Still, the results that we obtained by SocialMF for the
Epinions dataset are better than those reported on their paper.

For the much larger Flixster dataset, for both choices of latent dimensions, SocialFALCON
outperforms PMF and SocialMF, and performs as good as RegSVD (which apparently performed

Mach. Learn. Knowl. Extr. 2019, 1 941

remarkably well on this task considering its model simplicity). SVD++ performs marginally better
than SocialFALCON and RegSVD, which can be attributed to the large number of implicit ratings in
the evaluation sets. In general, the RMSE results reported for all algorithms are better than the results
for Epinions. An explanation for this has been given in [15] by noticing that the items in Epinions
are heterogeneous (belonging to categories such as DVD players, cameras, printers, laptops, etc.),
while the items in Flixster are from a single caterory, namely movies. Possibly this makes the rating
signals quite more accurate than those of Epinions, and thus makes the factorization task easier in
general. Despite the large number of social connections in the dataset, apparently SocialMF provided
the worst RMSE score among all the algorithms tested. In this case also we have been unable to
verify the claims of significant RMSE improvement over PMF for the Flixster dataset and, in general,
the SocialMF’s results reported in [15]. It is also interesting to note how much SocialFALCON appears
to improve the RMSE over SocialMF, which is 3.4% for K = 5 and 3.15% for K = 10.

Overall, the proposed SocialFALCON algorithm performs well and it is competitive to state of
the art matrix factorisation methods. More important however, is that it can effectively handle large
datasets. This is supported by the other two numbers, apart from the RMSE, that are shown in each
cell of Table 1. SocialFALCON and SocialMF are batch methods, and hence they require a much
larger number of epochs than stochastic algorithms such as RegSVD, PMF and SVD++. The reason
is that batch methods only have one chance to update the factors after each presentation of the
whole training set, whereas stochastic methods make thousands of updates in one epoch, up to the
N ×M size of the user-by-item ratings matrix. This explains the significant difference, for example,
between PMF and SocialFALCON or SocialMF in the average number of epochs to achieve the reported
RMSE score. We should mention that SocialFALCON’s average number of epochs, as reported for
the various tasks in Table 1, are higher than should be needed in practice. This is because its best
scores were reported for small stepsizes δP discovered by the grid search, as shown in Appendix A,
even thought quite comparable RMSE scores where attained with larger stepsizes and hence fewer
epochs. Similar performances were recorded with 0.5 < δP < 2.0 and 0.7 < ξ < 0.9, indicating that
results are not very sensitive to the exact values of the parameters. Following the example of [25],
we performed additional runs of SocialFALCON using common values (δP = 1.0) and (ξ = 0.85)
on the two datasets. Deterioration of the RMSE compared to the scores reported with the optimal
parameters shown in Table 1, was in both cases never more than 2%, even though for the case of Flixster
there was more than 30% reduction on the required number of epochs. The larger scale problem was
more sensitive to the selection of δP, whereas it was not so sensitive to the selection of ξ (for which
a value around 0.85 worked well in both cases).

The third number shown in each cell of Table 1, reports the average time required to complete
an epoch and is quite informative as it is a measure of the computational complexity of each algorithm.
The numbers show that the complexity/epoch of the SocialFALCON algorithm is not significantly
higher than that of RegSVD and PMF and even SVD++. This is true in spite of the fact that our
implementation of SVD++ is very efficient as we have utilised the “looping-trick" mentioned in the
beginning of this section, which significantly reduces SVD++’s computational burden. Note also that
according to our discussion in Section 6.2, SocialFALCON should theoretically be r̄+t̄2

r̄+t̄ times faster
than SocialMF. Since the Flixster data set is denser than the Epinions data set, the improvement over
runtime efficiency for Flixster should be more prominent than that for Epinions. As we can see from
Table 1, indeed SocialMF is much slower than SocialFALCON. The epoch of SocialFALCON is 2.9 times
faster than that of SocialMF for Epinions and 14.5 times faster for Flixster.

Cold Start Users

Based on the findings of the previous section where, in general, the performance of SocialFALCON
compared to SocialMF was significantly better, we also investigated the performance of these two
closely related methods only on cold start users. As reported in [15], in both Flixster and Epinions more
than 50% of users are cold start users and thus the efficiency of recommendations on this challenging

Mach. Learn. Knowl. Extr. 2019, 1 942

class of users becomes very important. As cold start users we define users that have less than five
ratings in each dataset and at least two, since users with only one rating were not included in the
evaluation set of each fold. To this end, we created a subset of the evaluation set of each CV fold which
contained only cold start users.

Table 2 summarises the RMSE of SocialMF and the proposed SocialFALCON algorithm for cold
start users. For the Epinions dataset, as highlighted in bold, SocialFALCON improves the RMSE
of SocialMF on both choices of latent dimensions. For the Flixster dataset, in both cases (especially
for K = 10), SocialMF performs marginally better than SocialFALCON. On this dataset which has
denser social relations, this can be attributed to the hard preset target distance metric incorporated
into the SocialMF factorization model that, at the end of learning, the latent feature vector of each
user is rendered equal to the weighted average of the latent feature vectors of his direct neighbors.
On the other hand SocialFALCON seeks to minimize that distance incrementally by aligning the
corresponding updates so as to render the latent feature vector of each user as close as possible
to the weighted average of the latent feature vectors of his direct neighbors at the end of learning.
Thus, for cold start users, social connections alone, might play a slightly more dominant role for
providing recommendations in SocialMF than in SocialFALCON, which comes of course with a higher
computational cost as was discuseed in the previous sections.

Table 2. Experimental results for Epinions and Flixster, cold start users only.

Features Algorithm Epinions Flixster

5 SocialMF 1.1265016 1.0904493
SocialFalcon 1.1101022 1.1067439

10 SocialMF 1.126648 1.1094216
SocialFalcon 1.1102382 1.109602

9. Conclusions

In this paper, we proposed an efficient constrained matrix factorization algorithm called
SocialFALCON, for providing recommendations in social rating networks. The algorithm derives from
the FALCON generic constrained matrix factorization which has been previously proposed by authors
of this paper. The FALCON framework allows the incorporation of additional knowledge into the
learning mechanism for determining the user and item factor matrices. In the case of SocialFALCON,
this additional knowledge is embedded into mathematical constraints that, during learning, drive the
feature vector of each user to be dependent on the feature vectors of his direct neighbors in the social
network. Similarly to related proposed approaches, this allows the propagation of social influence
within the factorization model, which has been shown to be an important factor in the social sciences,
in social network analysis and in trust-based recommendations. The propagation of social infuence
also allows for providing recommendations to cold start users that have not expressed many ratings,
since their feature vectors can be learned through their social relations. However, unlike similar
approaches the proposed algorithm has reduced computational complexity, can be implemented easily,
and thus be utilized more frequently in social recommendation setups.

Experimental results on two publicly available datasets showed that the algorithm improves on
baseline and state of the art factorization methods as well as on previously proposed related approaches
in terms of convergence speed and recommendation accuracy. To elucidate on the transparency of our
results, we have made publicly available the source code of the proposed algorithm, as well as the codes
of the algorithms against which it was compared, along with the datasets used in the experiments.

One of the most attractive features of this algorithm is its potential for suggesting several
interesting directions for further improvements. In the same framework for constrained matrix
factorization, it is possible to augment it with further information about learning in social rating
networks, including methods for embedding graph theory measures and indices into the social trust
values and incorporating implicit direct neighbor ratings as utilized in SVD++. It is the concerted

Mach. Learn. Knowl. Extr. 2019, 1 943

incorporation of such detailed information into the same algorithm that will hopefully lead to
increasingly efficient matrix factorization training schemes combining fast learning, good scalability
properties, and powerful generalization capabilities on predicted ratings for unseen items.

Author Contributions: Conceptualization, N.A.; Methodology, N.A. and T.E.; Software, N.A. and T.E.; Validation,
T.E.; Writing–original draft, N.A. and T.E.; Writing–review & editing, F.S.

Funding: F.S. is supported by a PhD Scholarship by the State Scholarships Foundation (IKY), Greece.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Algorithms’ Parameters

In this section we list the learning parameters (discovered by grid search) with which the
algorithms achieved their best performance on each dataset, as presented in the results tables (Table 1
for all users and Table 2 for cold start users only).

In order to boost the performance of RegSVD, PMF, SVD++ and SocialMF we used different
learning rates for the user features and biases (ηu and ηbu respectively) and for the item features and
biases (ηv and ηbv respectively). SVD++ also requires two further parameters for the training of the
implicit item factors, namely ηy and λy which are the learning rate and regularisation parameter
respectively.

SocialFALCON has only two free parameters, namely δP and ξ.

• RegSVD (Epinions): ηu=0.003, ηv=0.00005, ηbu=0.003, ηbv=0.003, λu=0.015, λv=0.1, λβ=0.015,
λγ=0.015

• RegSVD (Flixster): ηu=0.02, ηv=0.005, ηbu=0.02, ηbv=0.005, λu=0.1, λv=0.1, λβ=0.01, λγ=0.01
• PMF (Epinions): ηu=0.005, ηv=0.005, ηbu=0.005, ηbv=0.005, λu=0.1, λv=0.1, λβ=0.01, λγ=0.01
• PMF (Flixster): ηu=0.015, ηv=0.005, ηbu=0.015, ηbv=0.005, λu=0.01, λv=0.01, λβ=0.01, λγ=0.01
• SVD++ (Epinions): ηu=0.003, ηv=0.003, ηbu=0.003, ηbv=0.003, ηy=0.003,λu=0.015, λv=0.5,

λβ=0.015, λγ=0.015, λy=1.0
• SVD++ (Flixster): ηu=0.003, ηv=0.003, ηbu=0.003, ηbv=0.003, ηy=0.003,λu=0.015, λv=0.5, λβ=0.015,

λγ=0.015, λy=1.0
• SocialMF (Epinions): ηu=0.0001, ηv=0.0001, ηbu=0.0001, ηbv=0.0001, λu=0.1, λv=0.1, λβ=0.1,

λγ=0.1, λt=0.1
• SocialMF (Flixster): ηu=0.0001, ηv=0.0001, ηbu=0.0001, ηbv=0.0001, λu=0.1, λv=0.1, λβ=0.1, λγ=0.1,

λt=0.1
• SocialFALCON (Epinions): δP=1.0, ξ=0.8
• SocialFALCON (Flixster): δP=0.3, ξ=0.95

References

1. Takács, G.; Pilászy, I.; Németh, B.; Tikk, D. On the Gravity Recommendation System. In Proceedings of
the 13th ACM International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA,
12–15 August 2007; pp. 22–30.

2. Koren, Y. The BellKor Solution to the Netflix Grand Prize. Available online: http://www.netflixprize.com/
assets/GrandPrize2009_BPC_BellKor.pdf (accessed on 11 August 2019).

3. Toscher, A.; Jahrer, M.; Bell, R. The Big Chaos Solution to the Netflix Grand Prize. Available online:
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf (accessed on 11 August 2019).

4. Piotte, M.; Chabbert, M. The Pragmatic Theory Solution to the Netflix Grand Prize. Available online: http:
//www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf (accessed on 11 August 2019).

5. Perantonis, S.J.; Ampazis, N.; Virvilis, V. A Learning Framework for Neural Networks Using Constrained
Optimization Methods. Ann. Oper. Res. 2000, 99, 385–401. [CrossRef]

6. Ampazis, N.; Emmanouilidis, T. FALCON: A matrix factorization framework for recommender systems
using constrained optimization. Intell. Decis. Technol. 2015, 9, 221–232. [CrossRef]

7. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the
26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [CrossRef]

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://dx.doi.org/10.1023/A:1019240304484
http://dx.doi.org/10.3233/IDT-140218
http://dx.doi.org/10.1145/3038912.3052569

Mach. Learn. Knowl. Extr. 2019, 1 944

8. Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press:
Cambridge, UK, 1994; Volume 8.

9. Crandall, D.; Cosley, D.; Huttenlocher, D.; Kleinberg, J.; Suri, S. Feedback Effects Between Similarity and
Social Influence in Online Communities. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 160–168.

10. Tang, J.; Hu, X.; Liu, H. Social recommendation: A review. Soc. Netw. Anal. Min. 2013, 3, 1113–1133.
[CrossRef]

11. Yang, X.; Guo, Y.; Liu, Y.; Steck, H. A survey of collaborative filtering based social recommender systems.
Comput. Commun. 2014, 41, 1–10. [CrossRef]

12. Paterek, A. Improving regularized singular value decomposition for collaborative filtering. In Proceedings
of the KDD Cup and Workshop, San Jose, CA, USA, 12 August 2007.

13. Salakhutdinov, R.; Mnih, A. Probabilistic Matrix Factorization. In Proceedings of the 20th International
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007;
pp. 1257–1264.

14. Koren, Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas,
NV, USA, 24–27 August 2008; ACM: New York, NY, USA, 2008; pp. 426–434.

15. Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social
networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain,
26–30 September 2010; ACM: New York, NY, USA, 2010; pp. 135–142.

16. Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. Computer 2009,
42, 30–37. [CrossRef]

17. Cullum, J.; Willoughby, R. Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Volume 1,
Theory; Classics in Applied Mathematics, Society for Industrial and Applied Mathematics: Philadelphia, PA,
USA, 2002.

18. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. Acm Trans. Intell. Syst. Technol. 2011,
2, 27:1–27:27. [CrossRef]

19. Ma, H.; King, I.; Lyu, M.R. Learning to recommend with social trust ensemble. In Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, MA,
USA, 19–23 July 2009; ACM: New York, NY, USA, 2009; pp. 203–210.

20. Yang, X.; Steck, H.; Liu, Y. Circle-based Recommendation in Online Social Networks. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China,
12–16 August 2012; ACM: New York, NY, USA, 2012; pp. 1267–1275. [CrossRef]

21. Bryson, A.E.; Denham, W.F. A Steepest-Ascent Method for Solving optimum Programming Problems.
J. Appl. Mech. 1962, 29, 247–257. [CrossRef]

22. Takács, G.; Pilászy, I.; Németh, B.; Tikk, D. A unified approach of factor models and neighbor based
methods for large recommender systems. In Proceedings of the 2008 First International Conference on the
Applications of Digital Information and Web Technologies (ICADIWT), Ostrava, Czech Republic, 4–6 August
2008; pp. 186–191.

23. Feuerverger, A.; He, Y.; Khatri, S. Statistical Significance of the Netflix Challenge. Stat. Sci. 2012, 27, 202–231.
[CrossRef]

24. Bennett, J.; Lanning, S. The Netflix Prize. In Proceedings of the KDD-Cup and Workshop at the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA,
12–15 August 2007.

25. Jacobs, R.A. Increased rates of convergence through learning rate adaptation. Neural Netw. 1988, 1, 295–307.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s13278-013-0141-9
http://dx.doi.org/10.1016/j.comcom.2013.06.009
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/2339530.2339728
http://dx.doi.org/10.1115/1.3640537
http://dx.doi.org/10.1214/11-STS368
http://dx.doi.org/10.1016/0893-6080(88)90003-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Matrix Factorization for Recommender Systems
	SVD++
	SocialMF
	Overview of the Falcon Framework
	The SocialFALCON Algorithm
	Desirable Properties of SocialFALCON
	Complexity Analysis of SocialFALCON

	Datasets
	Experimental Results
	Conclusions
	Algorithms' Parameters
	References

