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Abstract: We are living at a time that allows the generation of mass data in almost any field of science.
For instance, in pharmacogenomics, there exist a number of big data repositories, e.g., the Library of
Integrated Network-based Cellular Signatures (LINCS) that provide millions of measurements on the
genomics level. However, to translate these data into meaningful information, the data need to be
analyzable. The first step for such an analysis is the deliberate selection of subsets of raw data for
studying dedicated research questions. Unfortunately, this is a non-trivial problem when millions of
individual data files are available with an intricate connection structure induced by experimental
dependencies. In this paper, we argue for the need to introduce such search capabilities for big
genomics data repositories with a specific discussion about LINCS. Specifically, we suggest the
introduction of smart interfaces allowing the exploitation of the connections among individual raw
data files, giving raise to a network structure, by graph-based searches.
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1. Introduction

In the last 20 years, technological progress in high-throughput assays, e.g., next-generation
sequencing, led to a tremendous increase of our data generation capabilities in genomics. As a result,
there are many data collections available providing millions of data points about DNA sequence,
gene expression, metabolic, protein structure or protein interaction data [1]. However, to reveal the
information buried within these data collections, such data need to be analyzable [2]. The problem
is that accessing selected subsets of these “big data” for performing a dedicated analysis is non-trivial
due to the sheer number of data and, more importantly, the complexity of the connections between
different data points. Unfortunately, most data collections do not provide efficient interfaces enabling
a direct access to subsets of raw data, thus hampering downstream analysis.

For reasons of clarity, we would like to highlight that, here, we are concerned with accessing
and selecting raw data, not knowledge that has been derived by processing and analyzing raw data
and stored in knowledge databases. Instead, the data repositories we are concerned with in our paper,
store raw data files (see Figure 1 for a brief overview). In the following, we discuss this problem
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by focusing on the pharmacogenomic data repository LINCS (Library of Integrated Network-based
Cellular Signatures) [3–8] and describe how this lack in querying capability could be compensated.

2. Preliminaries

Before we discuss the problem under consideration, we would like to clarify a couple of terms
used throughout the paper. We use the term data repository for a very general collection and storage of
individual data files without providing any dedicated accessing or searching capabilities. Sometimes,
this may also be referred to as a data library. Here, by lack of dedicated accessing and searching
capabilities, we mean that information about data files can in principle be searched but in an inefficient
way, which may be as simple as a manual browsing of the data.

In contrast, we use the term database to refer to an organized collection and storage of data
for which a database management system (DBMS) is available that allows querying the data from
the database. The term database system refers to the combination of a database with a DBMS.
Here, the term “organized” refers to a specific type of a database, e.g., a relational database or
object-oriented database.

It is important to note that each type of data organization (data repository, database system, etc.)
comes with its own characteristics. Interestingly, the conceptual idea discussed in the following does
not fit nicely into any of these well-known, existing categories, but is situated between them, extending
and modifying characteristics thereof.

3. The Pharmacogenomics Data Repository LINCS

The LINCS data repository is supported by the NIH (National Institute of Health), comprising
5000 genetic perturbagens (e.g., single-gene knockdowns or overexpressions) and 15, 000 perturbagens
induced by chemical compounds (e.g., drugs) [9]. To date, almost two million gene expressions
have been profiled using the L1000 technology [9]. Specifically, the L1000 technology measures the
expression of only 978 so-called landmark genes, and the expression values for the remaining genes
are estimated by a computational model using additional data from the Gene Expression Omnibus
(GEO) [10]. Access to the raw data is provided by GEO (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE92742) but, unfortunately, there is no search functionality provided other than to
select all raw files for download. For this reason, LINCS is merely a collection of files usually called a
data repository.

This particular example of LINCS described above is typical for the current situation of many big
data repositories. Here, we want to emphasize that a data repository is not a database itself. Instead,
it stands for a more generalized term that indicates the lack of basic functionality usually present within
a database yet providing data storage capabilities. In our context, the crucial lack of functionality is the
limited capability to provide efficient ways to query the data within the data repository for selecting
and downloading subsets of the data (files).

To rectify this problem, in our opinion, big data repositories need functionality we summarize
by the term smart interfaces. We envision a smart interface as a web interface that enables extensive
selection capabilities, providing many features for querying, exploration, downloading and analyzing
data and related meta information. It would also support programmatic access via API as a search
functionality to all the attributes contained within the data repository. Using the API, computational
scientists and developers can access the data and build flexible research pipelines. Given the genomic
context of LINCS and related data repositories, the data queries can utilize the dependency structure
between individual data files as implied by, for instance, experimental or biological conditions (see
example below). Hence, queries perform network or graph-based searches within the data repositories
exploiting in this way the existing dependency structure between the individual data files.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
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Smart interfaces: A web interface enabling extensive selection capabilities of raw data,
providing features for graph-based querying, exploration, downloading and analyzing
data and related meta information.

In Figure 1, we show a visualization of our idea. A smart interface exploits the connectivity
structure among the raw data files (see Figure 1A), which can also include metadata if available,
by generating a network representation among the individual data files (see Figure 1B). In the example
of the LINCS database, these connections are given by the combination of cell lines, drugs, dosages
of drugs, etc. for which gene expression profiles have been generated. In general, these correspond
to the attributes of the data files. Importantly, these attributes remain constant and do not change if
more data points are added to a database. Once such a network representation among the data files
is generated, a user query extracts quickly the desired data files, e.g., that correspond to cell line C2,
the drugs D1 and D3 and the dosage Do3 (see Figure 1B and its connection back shown in yellow to
the data files), because each search combination connects to a list of associated data files. In this way,
a smart interface forms a connection between the data repository and the preprocessing and analysis of
the data (see Figure 1C) and its purpose is to provide a graphical-user-interface and query function for
an efficient access to selected data files. We want to emphasize that the network representation should
be part of the smart interface because, in this way, it would be easily applicable for practitioners such
as biologists or clinicians.

data repository

Data repository

Raw Data �les + metadata

Figure 1. (A) A collection of available individual (raw) data files and metadata; (B) Network
representation of connections between the raw data files. A user query (in red) corresponds to
one particular combination of attributes of the data files, which leads to an efficient selection of these
(in yellow); (C) Conceptual integration of the smart interface, which is an application programming
interface (API), into a conventional data analysis pipeline.

4. Technical Considerations

On a technical note, we would like to point out that, here, we focus on a data representation
that would allow users to immediately interact with the data. Through the smart interface, users can
perform highly specialized queries using attributes that naturally connect the individual data files.
The queries can be executed in the web browser or programmatically from the interface. This could be
achieved by using modern generalizations of relational databases [11], e.g., NoSQL [12] or graph [13]
databases, to efficiently store the data for quick access. Unfortunately, non-relational databases have
been naturally fragmented by usage and have drawbacks in scaling, resulting in relatively slow
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progress in integrating large datasets [14]. However, for genomics problems with a constant number
of attributes, e.g., cell lines, drugs, dosages, etc, as is the case for the LINCS data (see below), the
known scaling problems of graph databases do not hamper their usage because new data points do
not lead to a change in the number of attributes and, hence, the database can grow efficiently in the
number of stored data points. An example of this was given by Himmelstein et al. [15] using a graph
database for integrating information from 29 public resources to connect compounds, diseases, genes,
pharmacologic classes, side effects, etc., which helped to identified network patterns that distinguish
treatments from non-treatments drugs [15]. We would like to point out that the result of [15], and
similar approaches [16–18], is a knowledge database that operates on processed and analyzed data,
not on the raw data files as is our major concern in this paper.

For the LINCS data, one can start from a set of files and select certain attributes to create a network
representation by using graph algorithms [19]. This is similar to classical contributions focusing on data
and retrieval based on graph theoretical considerations [20,21], which do technically not fall within
the strict definition of databases because they are lacking the consideration of database management
systems as the most important building block when one refers to the term database. Hence, more
research is required to identify if a database structure, an information retrieval system [22,23] or a
graph-based file organization system [20,21] provides the most appropriate technical realization for
graph-based searches of data repositories in genomics.

5. Conceptual Idea

The general idea of a smart interface is similar to the idea behind Google. If one considers “web
sites” as “data files” and realizes that the “connections between web sites” are implicitly provided by
the “attributes of data files” (see the example above), then the analogy is apparent. Specifically, Google
identifies the connections between web sites by searching the links from and to sites by crawling the
web. This establishes a graph structure between the web sites corresponding to a very large network
upon which graph-based searches that take user queries into account can be executed.

In the case the world-wide-web (WWW) would consist of only a dozen web sites, there would
be no need for a search engine such as Google because a user could quickly go through the list of
these web sites manually. However, for billions of web sites, this is no longer feasible (even if such
a list would exist) because a linear search would lead to exponential searching times. Interestingly,
this is exactly the situation we are facing for data repositories such as LINCS. While the current raw
organization of LINCS or similar data repositories is sufficient for certain tasks, it does not favor the
selection of complexly determined subsets, such as those required for more advanced or specialized
studies. Any additional tool, such as a smart interface, that can be added to facilitate such complex
queries, would make these repositories more useful, efficient and popular. This would not only benefit
users, but also the repositories themselves by reducing work, reducing download costs and increasing
their impact, usage and user satisfaction. This implies also that the true potential of LINCS is currently
not yet unlocked due to this limitation. For technical completeness we would like to note that Google
uses a NoSQL database of columnar type called BigTable [24].

6. Further Applications

We would like to note that our idea extends beyond the LINCS data repository. Other examples
of raw data repositories that would benefit from a similar approach are:

• Gene Expression Omnibus (GEO) [1]
• NCI60 human tumour cell line anticancer drug screen [25]
• ArrayExpress [26]
• Cancer Cell Line Encyclopedia [27]

However, the largest benefit for the community would result from the integration of some (or
all) such data repositories to address the problems by a systems biology approach taking holistically
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all aspects into account. We expect that the smart interface needs to be adapted to the specific
characteristics of the data types in the corresponding data repositories but the conceptual core idea
would be generic to all these different repositories.

In our opinion, the implementation costs would be rather limited because it only requires a
software solution. However, the intellectual costs are considerable because the creation of graph-based
relations among the individual data files requires familiarity with basic graph-theoretical concepts and
graph-search methods [19,28].

7. Conclusions

The transition from simple data repositories to big pharmacological warehouses requires new
forms of data accessing strategies and we think that smart interfaces, enabling graph-based querying
capabilities, provide the needed functionalities. While current repositories offer the possibility to mirror
data to access it in a local implementation, it would carry unduly efforts and costs for most users, many of
whom would not be able to do it (and hence to benefit from the data), and this cost would be best addressed
if data repositories offering advanced search technologies were available, whether at the primary curation
site, or at a separate publicly accessible resource, or both. Otherwise, the opportunities offered by these
big data cannot be translated into new knowledge by means of modern data science [29]. We discussed
our idea for the LINCS data repository and provided a specific outline of the graph structure induced
by the available data files. However, our idea is not limited to LINCS, but we selected this data
repository because of its popularity to emphasize the need for such search capabilities.

Finally, we would like to note that, in our presentation, we focused on the network-based search
capabilities and neglected many other data aspects of practical relevance, e.g., data privacy, data
quality, etc, to convey a clear message. However, we do not want to miss emphasizing that these
aspects are also part of the data analysis pipeline (see Figure 1C) that needs to be integrated into our
framework to obtain a functional implementation.
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