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Abstract: Silver nanoparticles (AgNPs) are widely recognized as a prominent antimicrobial agent
and have found applications in the field of medicine. This study focuses on the synthesis of AgNPs
utilizing the natural reducing agent of Ceylon olive (Elaeocarpus serratus), presenting an economically
viable and ecologically friendly approach. For the first time, this research demonstrated the synthesis
of AgNPs using phytochemicals extracted from Ceylon olive, serving as both natural reducing and
stabilizing agents. The synthesized AgNPs were characterized with UV–visible spectroscopy, a
particle size analyzer (PSA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR),
and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray spectrometer
(EDX). The UV–visible spectra primarily indicated the formation of the AgNPs by the surface plasmon
resonance band around 434 nm. SEM analysis confirmed the presence of silver nanoparticles within
a size range of 50–110 nm, with an average size of approximately 70 nm. FTIR determined that
proteins, phenols, and flavonoids may have acted as reducing and capping agents. Experimental
parameters were optimized to improve the yield and size of the AgNPs and eventually evaluate their
antibacterial properties. The well diffusion method exhibits a significantly larger zone of inhibition
for Gram-negative bacterial strains (18.4 ± 0.55 mm for Pseudomonas aeruginosa and 14.4 ± 0.55 mm
for Escherichia coli) compared to Gram-positive bacterial strains (11.6 ± 0.55 mm for Staphylococcus
aureus and 10.4 ± 0.55 mm for Staphylococcus epidermidis) for 50 µg/mL AgNPs. These findings
demonstrate that AgNPs synthesized with Ceylon olive have the potential to develop into novel
materials for bacterial-mediated diseases.
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1. Introduction

In the current scenario, there has been a notable surge in global interest surrounding
nanostructured metallic nanoparticles, mainly in the fields of nanomedicine [1] and ma-
terial science, owing to their exceptionally high surface-area-to-volume ratio [2]. Among
the metallic nanoparticles, silver metallic nanoparticles (AgNPs) have gained much in-
terest for biomedical [1] and nanocomposite [3] applications due to their exceptional
bactericidal properties [4].

Nanotechnology encompasses a diverse array of methodologies, including chemical,
physical (including laser ablation [5], mechanical milling [6], gas-phase beams and mag-
netron sputtering [7], cluster beam deposition [8], and magnetron sputtering and supersonic
cluster beam deposition [9]), as well as biological approaches (green synthesis and microbial
synthesis) to facilitate the synthesis of metallic nanoparticles. While conventional chemical
methods have long been recognized for their crucial role in nanoparticle production, it is
acknowledged that certain chemicals used in these methods can produce toxic by-products,
posing significant environmental risks. Furthermore, chemical synthesis techniques may
lead to the presence of harmful chemical species adsorbed onto the nanoparticle surfaces.
This occurrence limits the therapeutic and clinical applications of these nanoparticles [10].
In parallel, previous studies have indicated that specific physical procedures entail elevated
temperatures and substantial energy consumption [11,12].

In the realm of microbial synthesis, the process becomes time-intensive due to the
necessary culture preparation and maintenance, distinguishing it from the more efficient
green synthesis method utilizing plant extracts [13,14]. Consequently, green synthesis
stands out as the preferred choice for nanoparticle fabrication when compared to physico-
chemical [15] and microbial alternatives. This preference for green synthesis is attributed
to its cost-effectiveness, minimal energy requirements, eco-friendliness, and inherent scala-
bility for bulk production, achievable through artificial neural network modeling [16,17].
Given these considerations, the pursuit of research into the green synthesis of silver nanopar-
ticles (AgNPs) using plant extracts is paramount to fulfill the growing demand for these
materials. Previous literature has reported the utilization of various fruit extracts in the
synthesis of silver nanoparticles. These extracts include Aegle marmelos [18], Cordia obli-
qua Willd [19], Glycosmis pentaphylla [20], Phyllanthus emblica [21], Diospyros malabarica [22],
Garcinia mangostana [23], and Manilkara zapota [24]. Similarly, leaf extracts from plants
such as Cannabis sativa [25], Cucumis prophetarum [26], Origanum majorana [27], Acer ob-
longifolium plant extract [28], Hagenia abyssinica [29], and Muntingia calabura [30] have also
been explored for this purpose. Additionally, Fernando et al. [31] conducted a study on
the nutritional composition, bioactive compounds, and antimicrobial effects of Elaeocarpus
serratus fruit extract. Biswas et al. [32] investigated the phytochemicals and determined the
cytotoxicity and antimicrobial effects of the ethanol extract of Elaeocarpus serratus. Their
findings revealed that Elaeocarpus serratus primarily consists of alkaloids, glycosides, tan-
nins, saponins, flavonoids, and carbohydrates. The ethanol extract of Elaeocarpus serratus
exhibited potential antibacterial and cytotoxic properties. Moreover, Jayashree et al. [33]
explored the presence of bioactive compounds in acetone, methanol, and water extracts of
the leaf, stem bark, and fruit of Elaeocarpus serratus L. They also studied the antimicrobial
activity of these extracts. Manoharan et al. [34] investigated the antioxidant and antimi-
crobial effects of Elaeocarpus tectorius (Lour.) fruit extract against urinary tract infection
pathogens. Geetha et al. [35] identified phytochemicals in the leaves of Elaeocarpus serratus.
Sircar et al. [36] focused on the antibacterial activity of silver nanoparticles synthesized
from the fruit, seed, and mesocarp–epicarp extract of Elaeocarpus floribundus, a species of
the Elaeocarpaceae family. Their study suggested that these synthesized nanoparticles
have the potential to combat bacterial drug resistance and infections. Furthermore, Kumar
et al. [37] evaluated the antioxidant properties of Elaeocarpus ganitrus Roxb. leaves, finding
significant antioxidant activity attributed to phenolics and flavonoids. Elaeocarpus ganitrus
Roxb. was also investigated for pharmacognostic and antifungal activity [38]. However,
it is noteworthy that, to date, there has been no investigation into the synthesis of silver
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nanoparticles (AgNPs) using the fruit extract from the species of Elaeocarpus serratus (Cey-
lon olive). Therefore, in this study, we utilize the extract from Ceylon olive fruits as a green
reducing agent to synthesize AgNPs.

Ceylon olive (Elaeocarpus serratus) is a highly abundant indigenous plant of Sri Lanka.
The fruit of Ceylon olive exhibits medicinal and antioxidant properties as it has a tremen-
dous amounts of valuable constituents such as flavonoids, condensed tannins, carotenoids,
vitamin C, minerals, and anthocyanins, of which some are beneficial for the prevention of
cancer, cardiovascular diseases, diabetes, neurodegenerative diseases (such as Alzheimer’s
disease), osteoporosis, aging, and cataracts [39]. Despite the fact that many researchers
looked into the medicinal and healing benefits of the plant and the nutritive value of the
fruit, no exploration was made of its oxidative property. Modifying the chemical state,
like the ionization of the reduction process in the synthesis of AgNPs, highly affects the
effectiveness of the formation of AgNPs. In this regard, optimizing the synthesis processes
of AgNPs, including the concentration of plant extract, pH, and temperature of the medium,
is crucial for achieving a good yield. This involves producing a significant quantity of
nanoparticles with regulated size and stability, ensuring consistency in size throughout the
synthesis process. Therefore, the primary objective of this study was to assess the viability
of employing Ceylon olive fruit extract in the synthesis of AgNPs under optimal processing
parameters. Additionally, the synthesized AgNPs were subjected to comprehensive charac-
terization using techniques such as UV–visible spectroscopy, particle size analysis (PSA),
X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Furthermore,
an analysis was conducted to evaluate the antimicrobial efficacy of the synthesized AgNPs
against human pathogenic bacteria.

2. Materials and Methods
2.1. Materials

Silver nitrate (AgNO3 ≥ 99%) and hydrochloric acid (HCl ≥ 37%) were purchased from
Sigma Aldrich, USA and analytical-grade sodium hydroxide (NaOH) was purchased from
Fisher Scientific (Pvt) Ltd, UK. Mature Ceylon olive fruits were collected from Wayamba
University of Sri Lanka, Kuliyapitiya. The bacterial cultures of Escherichia coli and Pseu-
domonas aeruginosa were obtained from the University of Kelaniya, Sri Lanka, while Staphy-
lococcus epidermidis and Staphylococcus aureus were obtained from Wayamba University of
Sri Lanka, Makandura. Ultra-pure water (Milli-Q water) was used for all the experiments.

2.2. Preparation of Ceylon Olive Fruit Extract

Mature Ceylon olives were washed well using Milli-Q water, and seeds were removed
from the olive fruits. The flesh of the Ceylon olive fruits was crushed using a grinder and
then blended by mixing with Milli-Q water (1:5; flesh:Milli-Q water). The contents were
heated in a shaking water bath at 80 ◦C for 30 min. Subsequently, the mixture was subjected
to centrifugation at 4000 rpm for 20 min using a Centurion PRO-HOSP.LLR centrifuge
(UK) to eliminate any residual matter. The supernatant was filtered through Whatman
No. 1 filter papers to obtain a clear solution, which was subsequently stored at 4 ◦C. This
prepared solution was used for the reduction of silver ions in AgNO3.

2.3. Synthesis of AgNPs with Optimization of Process Parameters

The synthesis of AgNPs was conducted using the following protocol:

2.3.1. Effect of the Volume of Ceylon Olive Fruit Extract on the Formation of
Silver Nanoparticles

For the synthesis of AgNPs, we followed the procedure outlined by Calhan and
Gundogan, with necessary adjustments [40]. For this study, 5 µL of the fruit extract per
drop was introduced to accommodate the inclusion of the sample volume. A conical flask
with a solution of 40 mL of 1 mM AgNO3 was heated to 80 ◦C using a magnetic stirrer.
Ceylon olive fruit extract (110 µL) was added dropwise to the AgNO3 solution at 80 ◦C using
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a micropipette while stirring vigorously. After the addition was completed, the contents
were further stirred for about 20 min. The formation of AgNPs was confirmed by the
color change in AgNO3 from colorless to yellowish brown. The experiment was repeated
with 130, 150, and 170 µL of fruit extract. The absorbance spectra of the synthesized
AgNP samples were obtained in the wavelength range of 300–800 nm using a UV–Vis
spectrophotometer (Shimadzu, UV 1800, Japan). Milli-Q water was used as the reference.

2.3.2. Effect of Temperature on the Formation of AgNPs

Elevated temperatures accelerate chemical reactions, influencing the rate of nucleation
and growth of nanoparticles. To investigate this effect, we synthesized AgNPs at different
temperatures. For the optimization of temperature, a solution of 40 mL of 1 mM AgNO3 was
heated to 40 ◦C. The pH of the AgNO3 solution was adjusted to 6. Subsequently, 150 µL of
the fruit extract (the optimal volume determined in Section 2.3.1) was added dropwise (5 µL
of fruit extract per drop) to the AgNO3 solution at 40 ◦C using a micropipette. Vigorous
stirring was maintained throughout this process. After adding fruit extract, the solution
was continuously stirred for an additional 20 min to induce a color change in the AgNO3
solution from colorless to yellowish brown. The experiment was conducted at different
temperatures: 50 ◦C, 60 ◦C, and 70 ◦C for the AgNO3 solution. The optimum temperature
was confirmed through UV–Vis spectrophotometer analysis.

2.3.3. Effect of pH on the Formation of AgNPs

To find the effect of pH, the following procedure was employed: A 0.1 N NaOH
solution was added to adjust the pH of a 40 mL of 1 mM AgNO3 solution to 5 and
the solution was subsequently heated to 60 ◦C (the optimal temperature determined in
Section 2.3.2). Using a micropipette, 150 µL (the ideal volume determined from Section 2.3.1)
of the fruit extract was added dropwise to the AgNO3 solution while vigorously swirling
at 60 ◦C. After that, the mixture was agitated for an additional 20 min to turn AgNO3 from
colorless to yellowish brown. The experiment was repeated at different pH values of 6, 7,
and 8. The optimum pH value was confirmed by UV–Vis spectrophotometer analysis.

2.4. Characterization of AgNPs

The generated AgNPs were centrifuged at 14,000 rpm for 15 min in order to separate
the supernatant and characterize the AgNPs. To get rid of organic matter attached to
AgNPs, centrifugation was used to wash the solid particles with acetone and Milli-Q water.
Upon removing the supernatants, the solid particles were separated. In the preparation for
future use, AgNPs were dried and kept at room temperature in a dark environment.

The particle size and morphology of the AgNPs were characterized using a laser
diffraction particle size analyzer (PSA), X-ray diffraction (XRD), Fourier transform infrared
spectroscopy (FTIR), and a scanning electron microscope (SEM) coupled with energy
dispersive X-ray spectroscopy (EDX).

2.4.1. Particle Size Analysis

Particle size analysis was performed by a laser diffraction particle size analyzer (Fritsch
Analysette 22 nano Plus, Germany) in the wet method. The samples were irradiated with incident
light, and the detectors recorded the energy scattered and absorbed at particular angles.

2.4.2. X-ray Diffraction (XRD) Structural Analysis

The crystalline property of synthesized AgNPs was identified by X-ray diffraction
measurement. AgNPs were first added to a quartz sample holder, and analysis was
performed using Cu-Kα radiation at 40 kV and 30 mA. The data were taken at a 2θ range of
20–80 ◦C. The mean particle size was calculated using the derivation of the Williamson–Hall
uniform deformation model (WH-UDM) as given in Equation (1) [41].

βcosθ = 4εsinθ + (Kλ)/D (1)
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where D, K, ε, and λ denote crystallite size, shape factor (K = 0.9), lattice strain, and X-ray
wavelength (λ = 1.5406 nm), respectively. The crystalline structure was determined by
considering the intercept of the plot (Kλ/D) [41].

2.4.3. Scanning Electron Microscopy Equipped with Energy Dispersive Spectroscopic
(SEM-EDX) Analysis

The surface morphology of AgNPs was examined using a scanning electron micro-
scope (Carl Zeiss EVO 18 Research). To prepare the sample, dried silver nanoparticle
material was placed onto a conductive carbon tape, which was fixed to an aluminum
sample stub. Subsequently, the sample was covered with a gold–palladium coating. The
composition of AgNPs was examined using an EDX (Carl Zeiss Evo 18 Research) system
equipped with a SEM.

2.4.4. Fourier Transform Infrared (FTIR) Analysis

FTIR determined the functional groups of the samples. It can be used to identify the
reduction of silver ions. FTIR spectra of powdered AgNPs were obtained using a Shimadzu
IR Affinity -1S spectrophotometer. The samples were mixed with KBr to form pellets, and
the spectra were recorded at a wavenumber ranging from 4000 to 400 cm−1.

2.5. Antimicrobial Activity

The antimicrobial activity of silver nanoparticles (AgNPs) was assessed utilizing the
agar-well diffusion method, as outlined in the study conducted by Rautela et al. [42],
with certain modifications. The study employed Gram-negative bacterial strains, namely
Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), as well as Gram-positive
bacterial strains, including Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis
(S. epidermidis). To carry out the procedure, a sterile spreader was employed to evenly
distribute 100 µL of each bacterial strain, containing a concentration of 2.6 × 107 colony-
forming units per milliliter (CFU/mL), onto nutrient agar plates. For the purpose of
analysis, four wells, each with a diameter of 5 mm, were created in the agar plate using a
cork borer. Subsequently, each well was filled with 80 µL of the following samples, having
a concentration of 50 µg/mL: AgNPs, Ceylon olive extract, AgNO3, and streptomycin
which served as the control. The evaluation of the antimicrobial effect was based on the
appearance of a clear zone, referred to as an inhibition zone, around each well. This zone
indicated the extent of inhibition caused by the respective samples against the growth of
the bacterial strains under investigation. The experiment was carried out in five replicates.

Minimum Inhibitory Concentration (MIC)

The term MIC refers to the lowest amount of a substance needed to prevent microbes
from growing visibly after an overnight incubation. This study was conducted using the
methodology described by Rautela et al. for the determination of MIC [42].

Six sterilized test tubes containing 5 mL of nutrient broth medium were added with
varying concentrations of AgNPs, such as 30, 15, 7.5, 3.75, and 1.875 µg/mL and one
test tube was kept as a control. They were inoculated with an equal volume (200 µL) of
microbial culture samples with an optical density of 0.5. These samples were incubated
in a shaker incubator at 250 rpm and maintained at 37 ◦C for 24 h. This procedure was
performed in triplicate for all four samples of both Gram-negative and Gram-positive
bacteria. Absorbance measurements were taken at a wavelength of 600 nm, and the data
were utilized to create a graph plotting optical density against the concentration of AgNPs.
The point at which the optical density reached its lowest value indicated the MIC of AgNPs.

To corroborate the results, a further validation step involved the examination of
visible colonies using the agar plate method [43]. This verification was conducted for the
bacterial culture test tubes that exhibited the lowest optical densities, ensuring the absence
of bacterial growth.
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2.6. Statistical Analysis

The diameters of inhibition zones in the antimicrobial activity assessment were given
as mean ± SD (SD: standard deviation). One-way ANOVA was carried out using the
MINITAB 17 version of Tukey’s pairwise comparison test at a p < 0.05 confidence level.

3. Results and Discussion
3.1. Characterization of AgNPs
3.1.1. SEM-EDX Analysis

Scanning electron microscopy (SEM) analysis is an effective technique for investigating
material surface morphology. In this study, SEM analysis was employed to examine
the surface morphology of AgNPs and the structural characteristics of the Ag particles,
illustrated in Figure 1, reveal that the sizes of these nanoparticles fall within the range
of 50–110 nm, with an average size of approximately 70 nm, exhibiting a diverse range
of shapes. Notably, AgNPs exhibited an irregular shape and demonstrated excellent
dispersion, attributed to the coating of nanoparticles by biomolecules. Some AgNPs
were found to exhibit cubic and pebble-like forms [44], depending on parameters such
as pH, temperature, and extract concentration. However, small clusters of particles were
observable due to the tendency of nanoparticles to agglomerate owing to their heightened
surface energy, aiming to minimize surface energy [45]. Comparable outcomes were
documented in the investigation of AgNP synthesis employing Annona squamosa leaf
extract [46]. Additionally, Vander Waals forces might have been aroused between the
phytochemicals employed for reducing metallic particles, as detailed in reference [47].
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Figure 1. SEM image of AgNPs synthesized using Ceylon olive extract and 1 mM AgNO3.

The EDX graph is a vital tool in the green synthesis of AgNPs, as it provides crucial
information about the elemental composition and purity of the nanoparticles generated.
EDX measurement (Figure 2) revealed the characteristic energy absorption peaks of AgNPs
at roughly 3 keV due to surface plasmon resonance. The study conducted by Femi-Adepoju
et al. has confirmed our finding by determining the optical absorption peak for AgNPs at
roughly 3 keV [48]. A high absorption peak for metallic silver ions in the 2.5–3.7 keV range
was reported by Sarwer et al. in their study [49].
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Figure 2. Energy dispersive X-ray spectroscopy of the AgNPs.

3.1.2. XRD Analysis

The crystallinity of green synthesized AgNPs was ascertained by an XRD study
(Figure 3). Bragg’s reflection peaks at 38.26◦, 46.23◦, 64.47◦, 77.54◦, and 81.71◦ were indexed
with respect to five intense peaks of (111), (200), (220), (311), and (222). These peaks
were well matched with the study reported by Ravichandran et al. on the synthesis of
AgNPs [50]. The peaks corresponded to the face-centered cubic (FCC) structure of AgNPs
with reference to Joint Committee on Powder Diffraction Standards (JCPDS) file no. 04-
0783. These five intense peaks observed for the synthesized AgNPs were comparable to
those in the study conducted by Mohammed et al. in the synthesis of AgNPs with Lycium
shawii leaf extract [51]. The average particle size of Ag crystallite was found to be 19 nm
using the graphical method given in Section 2.4.2. A similar result (average size of 19 nm)
was reported in the synthesis of AgNPs using Piper chaba stem extracts [52]. Actually,
the crystallite size was highly dependent on the XRD peak values, which were indirectly
caused by the reducing and capping agents of phytochemicals in the extracts used for the
synthesized AgNPs.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 8 of 18 
 

 

AgNPs with reference to Joint Committee on Powder Diffraction Standards (JCPDS) file 
no. 04-0783. These five intense peaks observed for the synthesized AgNPs were compa-
rable to those in the study conducted by Mohammed et al. in the synthesis of AgNPs with 
Lycium shawii leaf extract [51]. The average particle size of Ag crystallite was found to be 
19 nm using the graphical method given in Section 2.4.2. A similar result (average size of 
19 nm) was reported in the synthesis of AgNPs using Piper chaba stem extracts [52]. Ac-
tually, the crystallite size was highly dependent on the XRD peak values, which were 
indirectly caused by the reducing and capping agents of phytochemicals in the extracts 
used for the synthesized AgNPs. 

 
Figure 3. XRD spectrum of synthesized AgNPs using Ceylon olive extract. 

3.1.3. FTIR Analysis 
FTIR is a universal technique for the identification of functional groups in organic 

or inorganic materials. It determines the distinct absorption and transmission peaks rel-
evant to the frequencies of vibration between the bonds of the particles of a material. 
FTIR analysis was performed to investigate the functional groups of Ceylon olive extract 
responsible for reducing and stabilizing AgNPs. Figure 4 (a, b) show the FTIR spectra of 
Ceylon olive fruit extract and synthesized AgNPs. As shown in Figure 4 (a), strong ab-
sorption peaks appeared at 1041, 1250, 1625, 1729, and 3431 cm−1. The peaks observed in 
the extract shifted toward the higher wavenumber side, such as 1049, 1259, 1651, 1797, 
and 3475 cm−1, respectively. The binding of phytochemicals to the AgNPs can be proved 
not only due to the shifting of peaks to higher wavelengths such as 1041 to 1049 cm−1, 
1250 to 1259 cm−1, 1625 to 1651 cm−1, 1729 to 1797 cm−1, and 3431 to 3475 cm−1 but also 
due to the reduction of peak height [53]. The peak value at 1049 cm−1 was assigned to the 
C-O stretch of the alcoholic group. The peak at 1250 cm−1 corresponded to the vibration 
of the C-O group of the hydroxyl flavonoids [54] and was shifted to 1259 cm−1, inferring 
the involvement of flavonoids in the synthesis of AgNPs. The –OH group of flavonoids 
has the ability to release electrons when inducing light energy, leading to reducing silver 
ions (Ag+) to silver elementary materials (Ago) [55]. The peak at 1651 cm−1 was charac-
teristic of the N-H bending vibration found in polypeptides of protein [56]. The peak at 
3475 cm−1 can be attributed to the stretching vibrations of alcohols and phenolic com-
pounds [57]. The peak at 1473 cm−1 was due to stretching vibrations of aliphatic amines 
[58]. These observations confirmed that functional groups of carboxyl (-C=O) and amine 
(N-H) found in amide linkages of proteins, flavonoids, and phenols were successfully 

Figure 3. XRD spectrum of synthesized AgNPs using Ceylon olive extract.



J. Compos. Sci. 2024, 8, 43 8 of 17

3.1.3. FTIR Analysis

FTIR is a universal technique for the identification of functional groups in organic or
inorganic materials. It determines the distinct absorption and transmission peaks relevant
to the frequencies of vibration between the bonds of the particles of a material. FTIR analysis
was performed to investigate the functional groups of Ceylon olive extract responsible for
reducing and stabilizing AgNPs. Figure 4 (a, b) show the FTIR spectra of Ceylon olive
fruit extract and synthesized AgNPs. As shown in Figure 4 (a), strong absorption peaks
appeared at 1041, 1250, 1625, 1729, and 3431 cm−1. The peaks observed in the extract
shifted toward the higher wavenumber side, such as 1049, 1259, 1651, 1797, and 3475 cm−1,
respectively. The binding of phytochemicals to the AgNPs can be proved not only due to
the shifting of peaks to higher wavelengths such as 1041 to 1049 cm−1, 1250 to 1259 cm−1,
1625 to 1651 cm−1, 1729 to 1797 cm−1, and 3431 to 3475 cm−1 but also due to the reduction
of peak height [53]. The peak value at 1049 cm−1 was assigned to the C-O stretch of the
alcoholic group. The peak at 1250 cm−1 corresponded to the vibration of the C-O group
of the hydroxyl flavonoids [54] and was shifted to 1259 cm−1, inferring the involvement
of flavonoids in the synthesis of AgNPs. The –OH group of flavonoids has the ability
to release electrons when inducing light energy, leading to reducing silver ions (Ag+) to
silver elementary materials (Ago) [55]. The peak at 1651 cm−1 was characteristic of the
N-H bending vibration found in polypeptides of protein [56]. The peak at 3475 cm−1

can be attributed to the stretching vibrations of alcohols and phenolic compounds [57].
The peak at 1473 cm−1 was due to stretching vibrations of aliphatic amines [58]. These
observations confirmed that functional groups of carboxyl (-C=O) and amine (N-H) found
in amide linkages of proteins, flavonoids, and phenols were successfully bound to AgNPs
and stabilized their structure by preventing aggregation. Interestingly, the presence of these
protein, flavonoid, and phenol compounds was found in Ceylon olive fruit extract, verified
through GC-MS analysis in the study conducted by Fernando et al. [31]. Similar results
regarding the binding of these compounds to AgNPs were obtained in a previous study
that focused on the synthesis of AgNPs using Nicotiana tobaccum leaf extract [59].
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3.1.4. Particle Size Analysis

The findings of the wet dispersion laser particle size study of AgNPs are presented in
Figure 5. The Gaussian distribution depicted in Figure 5 indicates that the average nanopar-
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ticle (NP) size falls within the range of 20 to 25 nm. Upon statistical analysis, it was revealed
that the average NP size, conforming to a Gaussian distribution, is approximately 23 nm.
These findings imply the promising applicability of the synthesized silver nanoparticles
(AgNPs) in diverse fields. However, it is noteworthy that these results deviate from the
particle sizes obtained through scanning electron microscopy (SEM). This disparity can be
attributed to the agglomeration of silver nanoparticles during the preparation process for
SEM analysis, particularly through the drying procedure. The agglomeration phenomenon
may lead to an overestimation of particle sizes in SEM images.
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3.2. Visual Observation of the Formation of AgNPs

Ceylon olive fruit extract has shown promise as an effective reducing agent for the
conversion of AgNO3 into AgNPs. The gradual addition of the extract to AgNO3 resulted in
a noticeable change in the solution’s color, shifting from colorless to yellowish brown within
approximately 30 min. This change in color is attributed to the excitation of surface plasmon
resonance (SPR) in the silver nanomaterial, providing clear evidence for the formation
of AgNPs through the reduction of Ag+ to Ag0 [60]. The reduction of Ag+ to Ago was
facilitated by the presence of functional groups such as hydroxyl, carbonyl, and amidogen
in various phytochemicals, including enzymes, amino acids, ascorbic acids, proteins,
flavonoids, tannins, polyphenols, and carbohydrates found in the fruit extract [61,62].
This reduction process initiated the formation of Ag nuclei, subsequently leading to the
synthesis of AgNPs [63].

3.3. Investigatation of the Formation of AgNPs with a UV Spectrophotometer
3.3.1. Effect of Volume of Extract on the Formation of AgNPs

Figure 6 shows the UV–visible spectra of AgNPs synthesized using varying volumes
of Ceylon olive extract (110, 130, 150, and 170 µL). As the volume of added Ceylon olive
extract increased from 110 to 150 µL, the absorbance also increased. This may be due to the
higher reduction rate of Ag+ to Ago to form AgNPs. When increasing the volume of the
extract, more functional groups from molecules such as ascorbic acid, flavonoids, tannins,
and alkaloids become available as reducing agents for reduction reactions. A single and
sharp surface plasmon resonance (SPR) band observed around 434 nm without any shift
in the spectrum (Figure 6) confirmed the formation of AgNPs. A single and sharp SPR
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band is attributed to the uniform size distribution of stable, isotropic-shaped AgNPs mixed
with the capping agents from the Ceylon olive extract. Similar SPR bands were reported
in the synthesis of AgNPs using banana peel extract [64] as a reducing agent. Moreover,
as the extract volume was increased beyond 150 µL to 170 µL, there was a notable shift
in the peak value from 434 to 426 nm, accompanied by a decrease in absorbance. This
shift is likely a result of the collective energy absorption effect of organic compounds and
nanoparticles in the solution due to the excessive presence of fruit extract. Consequently,
this observation highlights the importance of optimizing the amount of extract for the
efficient reduction of Ag+ [65]. It was also noted that the control sample, either silver nitrate
or Ceylon olive extract alone, did not exhibit any characteristic SPR band under the given
conditions, confirming the absence of AgNPs.
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Figure 6. UV–Vis absorption spectra of optimizing volumes of Ceylon olive extract for the synthesis
of AgNPs.

3.3.2. Effect of Temperature

Figure 7 illustrates a rise in absorbance with increasing synthesis temperature, ranging
from 40 ◦C to 70 ◦C. This increase can be attributed to the higher formation of nuclei at
elevated temperatures, leading to a higher production rate of AgNPs.
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The absence of peak sharpness in the absorption spectra at 70 ◦C may be due to the
growth of polydisperse nanoparticles. These findings align with previous research on
silver nanoparticle synthesis using Megaphrynium macrostachyum leaf extract [66]. Therefore,
60 ◦C was chosen as the ideal temperature to synthesize silver nanoparticles using Ceylon
olive extract. This outcome is in line with the outcomes of the synthesis of AgNPs utilizing
stem extracts from Piper chaba [52].

3.3.3. Effect of pH of Medium for the Formation of the AgNPs

The pH of the medium utilized in nanoparticle synthesis is a critical factor governing
the control of nanoparticle size and shape [67]. In this study, the synthesis of AgNPs was
investigated at various pH levels to determine the optimal pH value. Figure 8 illustrates
the influence of pH on AgNPs’ absorbance. As depicted in Figure 8, the spectral peak of
surface plasmon resonance (SPR) bands exhibited pH dependence. At pH 5, the absorbance
peak was indiscernible, which may be due to the deactivation of biomolecules (e.g., reduc-
ing agents) engaged in AgNP synthesis under moderately acidic conditions [65,67]. How-
ever, by increasing the pH from 6 to 7, the absorption of AgNPs increased, and the SPR
band shifted to a lower wavelength from 412 nm to 410 nm due to the shrinking size of
AgNPs [68,69]. Increasing the pH of the synthesis medium affects the nature (electrical
charges) of biomolecules and thus the degree of capping and stabilizing, which leads to the
formation of more nanoparticles [69]. A further increase in pH to 8 resulted in the formation
of an absorption spectrum with a distorted peak, as shown in Figure 8. It might be due
to the overlapping of peaks, which is attributed to the polydispersed nanoparticles [66].
Therefore, pH 7 was selected as the optimum pH of the medium for further studies. Our
results were in line with the report on the extraction of AgNPs using Piper chaba stem
extracts [52], which showed that neutral and basic conditions were very appropriate for the
reduction reaction, facilitating the synthesis of AgNPs, and further confirmed in a research
review written by Vanlalveni et al. [70]. The color variation of the solutions occurred when
changing the pH. It can be attributed to the variation in shape and size of AgNPs [71].
The study conducted by Mothana et al. [72] showed that the color of the solution became
dark brown at higher pH conditions, mainly at alkaline pH. It is due to the ionization of
functional groups available in the extract at high pH. A similar color change was observed
in the study conducted by Davidovic et al. concerning silver colloids coated with the
polysaccharide dextran [73].
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3.4. Antibacterial Activity

Figure 9 and Table 1 display the inhibition zones produced by AgNPs, AgNO3, Ceylon
olive extract, and the control (streptomycin) against the four bacteria. Analysis revealed
that AgNPs exhibited significantly larger inhibition zones for Gram-negative bacteria
(18.4 ± 0.55 mm for P. aeruginosa and 14.4 ± 0.55 mm for E. coli) compared to Gram-positive
bacteria (11.6 ± 0.55 mm for S. aureus and 10.4 ± 0.55 mm for S. epidermidis).
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Table 1. Diameters of zones of inhibition against selected pathogens.

Sample
Average Diameter of Zones of Inhibition (mm)

Pseudomonas aeruginosa Escherichia coli Staphylococcus epidermidis Staphylococcus aureus

AgNPs 18.4 ± 0.55 a 14.4 ± 0.55 a 10.4 ± 0.55 a 11.6 ± 0.55 a

AgNO3 13 ± 0.71 b 11.2 ± 0.83 b 7.4 ± 0.49 b 8.4 ± 0.55 b

Streptomycin (control) 14.8± 1.92 b 13.8 ± 1.09 b 12.8 ± 0.84 c 10.4 ± 1.14 ab

Ceylon olive extract N.D N.D N.D N.D

Means with different superscripts within the same column are significantly different from each other at the
p < 0.05 level. (N.D—not detected).

The susceptibility of bacteria to silver nanoparticles (AgNPs) depends on the structural
characteristics of their cell walls. In the case of Gram-positive bacteria, the cell wall is con-
stituted by a strong peptidoglycan layer with a linear polysaccharide structure cross-linked
with peptides. This arrangement imparts a rigid structure enveloping the cell membrane,
establishing a tough barrier that hampers the penetration of AgNPs [12]. Consequently,
the inhibition zone observed is comparatively lower. Conversely, Gram-negative bacteria
exhibit a thinner peptidoglycan layer, facilitating a more effective penetration of AgNPs and
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inhibition of the bacterial growth. This increased permeability leads to a correspondingly
larger inhibition zone as compared to Gram-positive bacteria. This finding aligns with a
study conducted by More et al. [74]. The surface charge of AgNPs might also have a bacte-
ricidal effect [75]. AgNPs exhibited a significantly larger zone of inhibition compared to
AgNO3, while streptomycin exhibits no significant difference compared to AgNO3 against
P. aeruginosa, E. coli, and S. aureus. The increased inhibition zones observed for AgNPs may
be attributed to the enhanced diffusion capability of small AgNPs within the bacterial agar
medium. These nanoparticles can penetrate bacterial cells and interact with DNA, thiol
groups, and proteins, leading to enzyme inactivation and bacterial cell death by disrupting
cellular metabolism [50,76]. Similar outcomes were observed with AgNPs synthesized
using Cleome viscosa plant extract [77]. Notably, the Ceylon olive extract did not exhibit
antimicrobial effects, possibly due to its low concentration in aqueous form, which may
contain fewer phytochemicals compared to ethanolic or methanolic extracts.

The broth dilution technique is used to determine the MIC of AgNPs against bacterial
strains. By considering both the lowest optical density values and the visual observation of
the absence of bacterial colony growth using the agar plate method, the MIC was found
to be 7.5 µg/mL for E. coli and P. aeruginosa with optical densities of 0.015 ± 0.003 and
0.004 ± 0.001, respectively. In contrast, for S. aureus and S. epidermidis, the MIC was found to
be 15 µg/mL, accompanied by optical densities of 0.05 ± 0.004 and 0.06 ± 0.01, respectively
(Figure 10). Notably, AgNPs exhibited a more potent inhibitory effect on Gram-negative
bacteria compared to Gram-positive bacteria. These findings align with the results of a
study conducted by Gopinath et al., which focused on the biosynthesis of AgNPs using the
bacterial isolate Exiguobacterium sp. KNU1 [78,79]. In their study, they found that AgNPs
inhibited the growth of Gram-negative bacteria (E. coli at 6.25 µg/mL and P. aeruginosa at
7.5 µg/mL) more effectively than Gram-positive bacteria (S. aureus at 9 µg/mL). These
results agree with our findings. Moreover, a larger clear zone was linked to a lower MIC
value, indicating a strong connection between these two parameters. Rautela et al. [42]
conducted a study on the minimum inhibitory concentration (MIC) of AgNPs for E. coli
and S. aureus, reporting values of 2.0 µg/mL and 2.6 µg/mL, respectively. In our study, we
obtained MIC values that were notably higher than those reported by Rautela et al. The
observed variation in MIC values may be attributed to several factors, including differences
in experimental conditions, methodologies of the synthesized nanoparticles, and potentially
the specific bacterial strains employed in our study compared to those in [42]. Recognizing
the influence of strain variations in bacterial species and the variation in the shape of the
synthesized AgNPs, it is reasonable to conclude that such distinctions can contribute to
variations in susceptibility to antimicrobial agents [62].
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Figure 10. Optical density after 24 h with varying concentrations of AgNPs against S. aureus,
S. epidermidis, E. coli, and P. aeruginosa.
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4. Conclusions

In summary, the present study demonstrates the green synthesis of the AgNPs using
aqueous Ceylon olive fruit extract. The novel synthesis is a simple, cost-effective, and
environmentally friendly alternative to the conventional chemical approach. AgNPs were
thoroughly characterized using UV–visible absorption, XRD, EDX, SEM, and FTIR. XRD
studies revealed that AgNPs have a crystalline face-centered cubic structure, and the
average crystallite size was 19 nm. SEM analysis showed that the particles were in the
nanorange and diverse in shape. The study indicated that the morphology of AgNPs
critically depended on pH, temperature, and the volume of extract used for the synthesis.
FTIR spectra attested to the occurrence of functional groups in the plant extracts and
demonstrated that proteins, flavonoids, and phenols were mainly responsible for the
reduction and stabilization. AgNPs synthesized using Ceylon olive extract further exhibited
a significantly higher antibacterial effect against Gram-negative bacterial strains compared
to Gram-positive bacterial strains. The broth dilution method determined that Gram-
negative bacterial strains had a lower minimum inhibitory concentration (MIC) than
Gram-positive bacteria, correlating with the observed zone of inhibition. A larger zone of
inhibition corresponded to a smaller MIC value, and vice versa.

These biofunctionalized AgNPs show promise for the treatment of microbial-mediated
infections. In future research, we plan to conduct additional experiments to optimize the
antibacterial activity of AgNPs considering their growth conditions. Furthermore, we may
explore the incorporation of synthesized AgNPs into rubber latex for the production of
bactericidal gloves.
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