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Abstract: This paper presents an experimental analysis of the tensile behavior of unidirectional car-
bon/epoxy prepreg, focusing on the nonlinearity observed at the beginning of the stress–strain curve.
Due to the material’s high viscosity, securely holding specimens during testing was challenging,
prompting modifications in the gripping method to ensure reliable data. By using a longer gauge
length, the slippage impact on elastic modulus measurement was minimized, resulting in good
repeatability among the test samples. Experimental findings highlighted the significant interaction
between fiber waviness and the viscous matrix, leading to stiffness reduction. The linear stiffness of
the samples closely matched that of the fibers and remained unaffected by temperature variations.
However, at higher temperatures, the epoxy matrix’s decreased viscosity caused an upward shift
in the stiffness plot within the non-linear region. To support the experimental findings, a microme-
chanical model of prepreg tow with fiber waviness was proposed. An RVE model of periodically
distributed unidirectional waved cylindrical fibers embedded within the matrix was developed to
predict effective material stiffness parameters. The simulation outcomes aligned well with the uniax-
ial tensile test of the prepreg tow, demonstrating the proposed RVE model’s capability to accurately
predict elastic properties, considering factors like fiber arrangement, waviness, and temperature.

Keywords: tensile modulus; prepreg; fiber waviness; RVE

1. Introduction

Various manufacturing techniques have been developed for composites, such as auto-
mated tow laying ATL, automated fiber placement AFP, and compression molding. Their
main objectives are to automate the process, reduce production cycle cost/time, and im-
prove production cycle part quality. Yet, uncertainties in material behavior and processing
conditions can lead to overdesigned parts and, consequently, to increasing weight and cost.
So, many designers prefer using conventional bulk materials with predictable mechanical
behaviors. Therefore, software tools are needed to provide better process modeling and
material characterization [1,2].

AFP and ATL manufacturing techniques rely on process modeling simulations to
predict the path of the fibers and control the process parameters to avoid defect formation.
This process model is used to simulate the machine head path to predict how the prepreg
will be laid down and can also be used to control and predict tape overlap/gap, tow
buckling, and wrinkle formation [3,4]. One of the limiting factors in process modeling for
AFP and ATL is the reliance on using the cured composite material properties when the
material properties for the uncured state are required, as well as assuming ideal properties
associated with the straight fiber material. Variability exists in the material properties
between both states, with the properties of the uncured state being significantly lower
due to the viscous matrix. Furthermore, such properties are generally nonconservative
because stiffness and strength are usually lower than what is predicted by the straight fiber
models [5].
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Several studies have been conducted on the characterization of the bending behavior
of prepregs [6–9]; however, only a few studies have been done to investigate the tensile
properties of prepregs. Potter et al. [10,11] carried out tensile tests of UD prepreg tapes
and reported a considerable nonlinearity in the beginning of the stress–strain curve of all
cases due to the fiber waviness and the resistance the fibers are experiencing as they move
through the highly viscous resin. Zhang et al. [12] performed uniaxial tests on woven
prepreg at temperatures varying between 23 ◦C and 80 ◦C. They studied the effects of
temperature on the nonlinear section of the stress–strain plot and determined that, as
temperature increases, the area of nonlinearity also increases, and the tensile modulus for
the settle-down region slightly reduces. However, the phenomenon and the reasoning
behind the effects on the non-linear region were not addressed. Furthermore, they selected
the stiffness represented by the linear section of the plot to describe the response of the
uncured prepreg. A similar test method was conducted by Sentis et al. [13] in their study
of the tensile behavior of uncured sheet molding compounds. Dangora et al. [1] performed
tensile tests on strips of thermoplastic prepregs for temperatures ranging between 70 to
120 and concluded that increasing temperature decreases tensile modulus, reduces yield
strength/strain, and increases the ductility of samples. Han and Chang [14] performed the
uniaxial tensile test to evaluate the warp and weft behavior of uncured woven fabric prepreg
based on the standard method ASTM D5035. Prior research has extensively investigated the
behavior of short, thin-walled channel-section columns made of carbon/epoxy laminates
under compressive loads using experimental and numerical methods [15–17]. Notably,
Wysmulski [17] developed numerical models that accurately analyze the post-buckling
response of composite structures, considering the impact of compressive load eccentricity.
However, there seems to be no detailed study on the tensile behavior of unidirectional
carbon epoxy prepreg considering the initial fiber waviness of tow and temperature effects
on the tensile modulus.

Fiber waviness is one aspect of the unidirectional prepreg that can affect material
properties and performance. The fiber alignment in the prepreg is a source of variability
between samples and needs to be addressed when studying the mechanical behavior of UD
prepregs [18]. Fiber waviness is any angle of misalignment in the fibers along the lamina’s
fiber direction (1 direction). Due to the viscous matrix, fibers can move between each other,
which disrupts their alignment. Several studies have been carried out concerning the effects
of fiber waviness on the material properties of composite materials and how to measure
waviness [11,19–28], which can be grouped into experimental, analytical, and finite element
approaches. Alves et al. performed an enhanced review of the defects of fiber waviness
generated during fiber-reinforced polymer composites manufacturing [29].

Numerical micromechanical analysis is a useful method for modeling and studying
the properties of heterogeneous materials, especially those with periodic microstructures.
It involves defining a representative unit cell and applying periodic boundary conditions.
Material properties are incorporated at the constituent level to represent the microstructure.
These models are valuable for parametric material studies. Finite elements are used for
analysis due to the complexity of the unit cell analysis with enforced constraints and
boundary conditions. Garnich, Karami, and their collaborators [5,27,30,31] conducted
comprehensive numerical studies on laminates with wavy fibers using linear elastic 3D
FEA models of periodic sinusoidal unit cells. They investigated the effects of amplitude-
to-wavelength ratio and fiber volume fraction on volume-averaged stress and strain. The
results highlighted the importance of local stresses in predicting failure and the strong
influence of fiber waviness on material stiffness. They compared localized stresses in wavy
periodic unit cells with explicitly modeled fibers to straight homogeneous unit cells with
introduced wavy fibers. The equivalence of the two models was demonstrated in linear
elastic analysis. Furthermore, they examined the thermoelastic responses of composites
by conducting FEA on wavy periodic unit cells with different amplitude-to-wavelength
ratios and volume fractions. Their subsequent work involved FEA analysis of a straight
unit cell with implicitly modeled localized fiber waviness, which revealed a significant
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reduction in the strength of composite structures. Kuksenkoa et al. [26] investigated the
large deformation response of composites reinforced by continuous wavy fibers using three-
dimensional finite element analysis. An et al. [32] developed an RVE analysis plug-in tool
in Abaqus/CAE to predict the effective orthotropic viscoelastic properties of unidirectional
composites by taking as input the microstructure geometry and known properties of fibers
and matrix. However, they did not cover the effect of fiber waviness on the tensile behavior
of prepregs.

The main novelty of this work was to propose an RVE model that provides an evalu-
ation of the effective properties of unidirectional carbon epoxy prepreg tow with waved
fiber. Having obtained the stiffness matrix parameters of the tow, we also show how these
properties are changed by the waviness ratio and fiber arrangement and can be used to ex-
plain the nonlinear tensile behavior of the towpreg. The results of this study can be applied
to process modeling of AFP manufacturing to reduce the number of defects occurring in
the process due to the instability of applied tensile loads.

2. Materials and Methods
2.1. Tensile Test

The objective of conducting tensile tests was to analyze the non-linear region of
the stress/strain curve, with a particular focus on loads around 25 N, as these loads are
most relevant to AFP and ATL manufacturing processes. Additionally, there is limited
clarity regarding the underlying mechanism responsible for the nonlinearity observed
in the modulus. It was hypothesized that the initial waviness of the fibers (assumed to
follow a sinusoidal function) and the movement of fibers within the viscous epoxy matrix
contributed to the non-linear behavior during tensile loading. The primary goals of the
tensile testing were to quantify this theory regarding the cause of nonlinearity, propose a
standardized test method for performing tensile tests on uncured prepreg, and gather data
on the tensile modulus for comparison with finite element analysis (FEA) results. This data
would serve as the basis for developing a representative volume element (RVE) model of
composite material with waved fibers.

A unidirectional carbon/epoxy prepreg (Solvay S.A, CYCOM 977-2) supplied by
Bombardier inc.,Montreal, Canada was used for the tensile test. Table 1 summarizes the
characteristics of the UD prepreg. Samples were cut from the prepreg, which was received
in the form of a spool containing narrow and continuous strips. Before conducting the test,
the samples were kept at room temperature for 1 h.

Table 1. Material properties of CYCOM 977-2 [33].

Fiber Resin Resin Content
(%)

Tow Width
(mm)

Tow Thickness
(mm)

12K HTS-196 CYCOM 977-2 40 6 0.2

The uniaxial tests were performed using a HOSKIN tensile testing machine in tension
mode, equipped with a 1 kN load cell and standard knurled grips, as illustrated in Figure 1.
As the focus of the study was not on sample failure, a higher-rated load cell was not
required. To provide heat during the tests, an IR lamp was utilized as a heat source.
Additionally, the temperature of the specimen was measured using an infrared camera
(FLIR T450c, FLIR, US).
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Figure 1. Tensile test setup.

In order to address the issue of slippage caused by the viscous nature of the uncured
prepreg, the standard gripping method had to be modified. Several approaches have
been developed to prevent slippage in the grips, including rapidly curing the ends of the
specimens using heater plates [10], wrapping the grips in sandpaper to add an extra source
of friction in holding the viscous sample [13], and wrapping the sample ends around the
pins [1]. In this study, a specific gripping method was employed. The ends of the prepreg
samples were wrapped around one of the steel rods approximately two times, equivalent
to approximately 8 cm of material. The wrapped ends were then pressed against the other
rod to create a sandwich-like arrangement. The steel bars used had a length of 50 mm and a
cross-section of 5 mm × 5 mm. To ensure proper alignment and application of tensile load
in the fiber direction, the samples were first set up and clamped in the lower grip. They
were then carefully aligned and secured in the upper grip, taking precautions to avoid any
misalignment in the sample setup.

2.2. Tensile Test Validation

Each sample underwent two testing runs to ensure reliable results. The primary
objective of the first run was to establish system stability, validate the gripping technique,
and apply a pre-load to the sample. This initial run followed standard tensile testing
procedures, gradually increasing the load up to a maximum of 100 N at a displacement
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rate of 2 mm/min. Once the first run concluded, the specimen was carefully returned to its
original position, and the load was removed. After resetting the sample, the second run
was conducted, aiming to reach a maximum allowable force of 200 N. The analysis of the
tensile behavior encompassed the results obtained from this second tensile test run.

The influence of gauge length on tensile response was investigated to find the best
possible gauge length. Tensile tests were conducted at room temperature using samples
with varying gauge lengths within the range of 100 to 350 mm. The engineering stress and
engineering strain values were computed based on the recorded force and displacement
measurements during the experimental procedure. During the tests, it was observed that
the outer edges of the sample did not experience tension during the loading process. To
ensure the accuracy of the test results, the outer edges were removed by cutting, as depicted
in Figure 2. Furthermore, it was assumed that the contribution of the uncured epoxy
to the tensile modulus was insignificantly small. As a result, it was considered that the
entirety of the stress was solely exerted on the fibers. This assumption was supported by
the equation of the rule of mixtures (Equation (1)) commonly employed in determining the
elastic modulus:

EC = E f Vf + Em

(
1 − Vf

)
(1)

where Vf and Ef are the fiber volume fraction and elastic modulus, Em represents the
modulus of the resin, and Ec is the combined elastic modulus. The rule of mixtures is
derived from a constant-strain analysis, and it can be used to estimate the upper-bound of
the modulus for a composite system. In this study, the fibers possessed an elastic modulus
(Ef) of 237 GPa, while the matrix had an elastic modulus (Em) of 3 GPa. As a result, with a
volume fraction (Vf) of 60%, the lamina exhibited a modulus of 143 GPa. Considering the
viscous nature of the matrix, it was justified to assume that the modulus of the epoxy had a
negligible contribution to the modulus of the tow. Thus, when calculating the stress within
the sample, the width and thickness of the samples were adjusted based on the volume
fraction of the fibers.
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It was anticipated that the impact of slippage would diminish with increasing gauge
lengths. As the length of the sample was extended, the linear segments of the stress–
strain curves converged to a single slope, as illustrated in Figure 3. The slopes of the
stress–strain curves for longer gauge lengths in the linear region aligned with the expected
tensile modulus predicted by the rule of mixtures. Since the experimental values closely
approached 143 GPa, it was inferred that the influence of slippage was insignificant for
specimen lengths equal to or greater than 300 mm. Consequently, tensile tests were
performed using a gauge length of 300 mm, employing an average of eight samples. Table 2
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summarizes the moduli for the gauge lengths. However, it was expected that there would
be a discrepancy between the modulus values of cured and uncured samples. Cured
prepreg experiences the effects of pressure and temperature, which can to some extent
correct the waviness in the prepreg. On the other hand, waviness cannot be corrected
during uncured tensile testing. Nevertheless, the resulting plots exhibited a linear trend
across all samples, indicating that if there were any slippage within the grips, it would
have resulted in non-linearity. Therefore, the proposed test method demonstrated good
repeatability among the test samples, and the modification made to the grips proved
effective in preventing sample slippage.
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Table 2. Elastic modulus of various gauge lengths.

Gauge Length (mm) Elastic Modulus (GPa)

100 62
150 97
200 101
250 108
300 130
350 130

3. Finite Element Model

This study employed finite element analysis (FEA) to assess the homogenized proper-
ties of a prepreg material featuring a periodic microstructure composed of cylindrical fibers
arranged in sinusoidal paths. In the existing body of literature [32,34,35], analytical and
numerical methods have been extensively employed to assess the effective elastic properties
of unidirectional composites comprised of elastic matrix and fibers via the utilization of
representative volume element (RVE) analysis. In this study, a Python code was developed
to replicate these approaches to evaluate the properties for the prepreg tow with wavy
fibers and including three steps, as follows.

3.1. Create RVE

Three different fiber arrangements, namely, square, diamond, and hexagonal, were
represented by developing three representative volume element (RVE) models using the
Abaqus/CAE 2022 commercial software. The RVE model with a square arrangement is
depicted in Figure 4. The geometrical parameters under consideration included the wave-
length (λ), amplitude (A), and fiber diameter (d). The directions z, x, and y corresponded
to the longitudinal, transverse within the plane of fiber waviness, and transverse normal to
the plane of waviness directions, respectively.
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The fiber material was assumed to be isotropic and elastic, characterized by an elastic
modulus of 237 GPa and a Poisson’s ratio of 0.3. On the other hand, the matrix material was
considered to be an isotropic and linear elastic material, with a Young’s modulus assigned
a value of 3.5 GPa to represent a cured epoxy system [27]. As a result, the prepreg material
exhibited orthotropic behavior.

3.2. Applied Periodic Boundary Conditions

The core principle of the RVE homogenization method involves numerically evalu-
ating the response of a microscale RVE subjected to simple deformation. It is assumed
that the RVE is a representative portion of a periodic material. Therefore, to maintain
the periodicity of the RVE’s external surfaces during the deformation process, periodic
boundary conditions (PBCs) must be applied. This is achieved by pairing opposite faces of
the RVE and enforcing a constraint equation:

ui(a1, x2, x3)− ui(−a1, x2, x3) = 2a1ε0
i1 −a1 ≤ x1 ≤ a1

ui(x1, a2, x3)− ui(x1,−a2, x3) = 2a2ε0
i2 −a2 ≤ x2 ≤ a2

ui(x1, x2, a3)− ui(x1, x2,−a3) = 2a3ε0
i3 −a3 ≤ x3 ≤ a3

(2)

where 2a1, 2a2, and 2a3 are the lengths of the RVE model in the z, x, and y directions,
respectively, and ε0 is the uniform strain applied on the unit cell of the composite material.

Periodic boundary conditions in the RVE can be established by connecting opposite
faces using constraint Equation (2). This equation excludes edges and vertices from the
faces to prevent redundancy. The Python code developed facilitates the generation of
periodic boundary conditions on the RVE model, utilizing coupling constraint equations
(referred to as CE in Abaqus) to enforce the desired conditions.

In general, to write the CEs, one needs to define a reference point and master and
slave nodes. Then, the master and slave nodes are connected by constraint equations
representing PBCs. As noted earlier, the equations for the vertices, edges, and faces are
dealt with separately from each other. The reference point is a dummy node and not
connected to any part of a model; however, it can have arbitrary coordinates. One must
define a load step to apply a defined value of displacement or strain as a boundary condition.
Besides the CE equations, the following boundary conditions were enforced to prevent
numerical singularity associated with rigid body motions. The central node at the center of
the RVE was fixed in all directions. To prevent translations and rotations, the center nodes
at the front and back faces were fixed in directions x and y.

In the context of finite element FE analysis, meshing is an important step that involves
dividing a computational domain into a collection of smaller, interconnected elements. The
quality of the mesh directly affects the accuracy and reliability of the numerical solution
obtained from the FE analysis. Additional restrictions are imposed on the mesh when
dealing with representative volume elements RVEs. One such restriction is the imposition
of periodic boundary conditions; to impose periodic boundary conditions on an RVE, the
paired faces that correspond to the periodic boundaries must be tessellated identically.
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This means that the mesh on these paired faces should be the same or highly similar. One
approach to achieve this is the SWEEP technique in Abaqus. The RVE model was meshed
by C3D8R elements, as shown in Figure 5.
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3.3. Homogenization Method

The application of strain ε0
ij at the boundary leads to a complex internal strain state

within the RVE. Nevertheless, the average strain within the RVE, as demonstrated in
Equation (3), is equal to the applied strain.

εij =
1
V

∫
V

εijdV = ε0
ij (3)

where V is the volume of the RVE. The stiffness matrix for an orthotropic material is:

σ1
σ2
σ3
σ4
σ5
σ6


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
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(4)

The entries in the stiffness tensor Cij can be determined through a series of loads in
which a constant average strain is applied to the homogenized RVE and then the average
stress is measured:

σα = Cαβεβ (5)

where α, β = 1. . . 6. So, the components of the stiffness tensor C are determined by solving
six elastic models of the RVE subjected to the PBCs by Equation (2), where only one
component of the strain is different from zero for each of the six problems. The elastic
behavior of the RVE is analyzed with linear static analysis (*Static, General in Abaqus) by
considering the six loading cases, as listed in Table 3.

Table 3. Six loading cases and calculation of the elastic stiffness matrix Cij.

Loading Case Calculation of Cij

(a) ε0
22 = 1, ε0

11, ε0
33, γ0

23, γ0
13, γ0

12 = 0 C12 = σ11, C22 = σ22, C23 = σ33
(b) ε0

33 = 1, ε0
11, ε0

22, γ0
23, γ0

13, γ0
12 = 0 C13 = σ11, C23 = σ22, C33 = σ33

(c) ε0
11 = 1, ε0

22, ε0
33, γ0

23, γ0
13, γ0

12 = 0 C11 = σ11, C12 = σ22, C13 = σ33
(d) γ0

23 = 1, ε0
11, ε0

22, ε0
33, γ0

13, γ0
12 = 0 C44 = σ23

(e) γ0
12 = 1, ε0

11, ε0
22, ε0

33, γ0
13, γ0

23 = 0 C55 = σ13
(f) γ0

13 = 1, ε0
11, ε0

22, ε0
33, γ0

12, γ0
23 = 0 C66 = σ12
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4. Results and Discussion
4.1. Experiment Results from Tensile Test

A total of eight samples were subjected to the testing procedure developed based on
the evaluation of the test method. The testing process for each specimen consisted of two
separate runs of tensile testing. The first run served to apply a pre-load to the sample,
ensuring the stability of the system and verifying proper alignment and setup of the grips.
After the completion of the first run, the sample was returned to its initial position, and a
few seconds later, the second run of tensile testing was conducted. The results obtained
from the second run of tensile testing were included in the analysis of the tensile behavior.

Plots were generated using the average data obtained from the experimental samples.
These plots provided insights into the non-linear and final linear stiffness exhibited by
the uncured prepreg material. Figure 6 illustrates the stress–strain curve derived from the
average results of all the experiments conducted. The findings indicated that the tensile
response of the uncured carbon fiber initially exhibited a non-linear behavior, followed by
a linear region. Similar observations have been reported in previous studies, where the
non-linear region is referred to as the lead-in region of the reduced modulus [1,10,12,13]. In
our prepreg material, the lead-in (non-linear) region of the stress–strain curve extended up
to 0.2% strain, after which a linear trend was observed.

J. Compos. Sci. 2023, 7, 312 9 of 16 
 

 

Table 3. Six loading cases and calculation of the elastic stiffness matrix Cij. 

 Loading Case Calculation of Cij 
(a) 𝜀 1, 𝜀 , 𝜀 , 𝛾 , 𝛾 , 𝛾 0 𝐶 𝜎 , 𝐶 𝜎 , 𝐶 𝜎  
(b) 𝜀 1, 𝜀 , 𝜀 , 𝛾 , 𝛾 , 𝛾 0 𝐶 𝜎 , 𝐶 𝜎 , 𝐶 𝜎  
(c) 𝜀 1, 𝜀 , 𝜀 , 𝛾 , 𝛾 , 𝛾 0 𝐶 𝜎 , 𝐶 𝜎 , 𝐶 𝜎  
(d) 𝛾 1, 𝜀 , 𝜀 , 𝜀 , 𝛾 , 𝛾 0 𝐶 𝜎  
(e) 𝛾 1, 𝜀 , 𝜀 , 𝜀 , 𝛾 , 𝛾 0 𝐶 𝜎  
(f) 𝛾 1, 𝜀 , 𝜀 , 𝜀 , 𝛾 , 𝛾 0 𝐶 𝜎  

4. Results and Discussion 
4.1. Experiment Results from Tensile Test 

A total of eight samples were subjected to the testing procedure developed based on 
the evaluation of the test method. The testing process for each specimen consisted of two 
separate runs of tensile testing. The first run served to apply a pre-load to the sample, 
ensuring the stability of the system and verifying proper alignment and setup of the grips. 
After the completion of the first run, the sample was returned to its initial position, and a 
few seconds later, the second run of tensile testing was conducted. The results obtained 
from the second run of tensile testing were included in the analysis of the tensile behavior. 

Plots were generated using the average data obtained from the experimental samples. 
These plots provided insights into the non-linear and final linear stiffness exhibited by the 
uncured prepreg material. Figure 6 illustrates the stress–strain curve derived from the av-
erage results of all the experiments conducted. The findings indicated that the tensile re-
sponse of the uncured carbon fiber initially exhibited a non-linear behavior, followed by 
a linear region. Similar observations have been reported in previous studies, where the 
non-linear region is referred to as the lead-in region of the reduced modulus [1,10,12,13]. 
In our prepreg material, the lead-in (non-linear) region of the stress–strain curve extended 
up to 0.2% strain, after which a linear trend was observed. 

 
Figure 6. Average experimental results of the tensile behavior of uncured prepreg. 

A linear trendline fitted to the linear region of the average stress–strain plot (0.2–0.5% 
strain) yielded a slope of 131, corresponding to an average linear modulus of 131 GPa. 
This value aligned closely with the linear modulus obtained in Section 2.2, which was 
reported as 130 GPa. The consistency in the linear modulus underscored the repeatability 
of the test method across the sample size. The experimentally determined values for the 
linear tensile modulus of each individual sample can be found in Table 4. The average 
linear tensile modulus of the uncured carbon fiber prepreg tested in this study was ap-
proximately 135 GPa with a standard deviation of 6 GPa. While this average value pro-
vided a general representation, it is important to note that individual samples were ex-
pected to exhibit a linear tensile modulus within the range of 130–142 GPa. 
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A linear trendline fitted to the linear region of the average stress–strain plot (0.2–0.5%
strain) yielded a slope of 131, corresponding to an average linear modulus of 131 GPa. This
value aligned closely with the linear modulus obtained in Section 2.2, which was reported
as 130 GPa. The consistency in the linear modulus underscored the repeatability of the
test method across the sample size. The experimentally determined values for the linear
tensile modulus of each individual sample can be found in Table 4. The average linear
tensile modulus of the uncured carbon fiber prepreg tested in this study was approximately
135 GPa with a standard deviation of 6 GPa. While this average value provided a general
representation, it is important to note that individual samples were expected to exhibit a
linear tensile modulus within the range of 130–142 GPa.

Table 4. Linear tensile modulus of each sample.

Sample Number Linear Tensile Modulus (GPa)

Sample 1 130
Sample 2 140
Sample 3 130
Sample 4 132
Sample 5 136
Sample 6 141
Sample 7 138
Sample 8 135
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The non-linearity region, ranging from 0% to 0.2% strain and ending at a load of
approximately 30 N, holds significant importance in AFP and ATL manufacturing processes.
These processes typically involve loads that fall within this region of non-linear stiffness.
Although it is challenging to directly measure the loads during AFP and ATL, it is expected
that the tensile modulus of uncured prepreg will lie within the non-linear region of its
stress–strain response. Consequently, modeling the manufacturing process must account
for factors such as waviness, misalignment, and the changing modulus within this region.

The experimental findings indicated that the waviness of the fibers plays a pivotal role
in influencing the mechanical behavior of the uncured prepreg. The non-linear stress–strain
curve arises from the interaction between the fiber waviness and the viscous matrix. The
resistance encountered by the fibers as they are pulled through the resin leads to a reduction
in stiffness. Additionally, the amplitude of the geometric waveform affects the stiffness as
it alters the angle of the fibers, following the principles of classical lamination theory.

According to classical lamination theory, the modulus of composites is directly as-
sociated with the orientation of the fibers. Under the application of uniaxial tensile load,
the viscous nature of the uncured epoxy matrix allows the fibers to align themselves with
the loading direction. As the load and displacement increase, the alignment of the fibers
becomes more closely aligned with the 0-degree direction (the direction of the applied
load), resulting in a higher modulus. Eventually, as the load and displacement reach a
critical point, the majority of the fibers will have their misalignment corrected, leading to a
linear tensile response.

To determine the tensile modulus in the non-linear region, a curve fitting approach
was employed. Firstly, the average plot across all samples was considered, and a second-
order polynomial was utilized to fit a trendline to the range of 0% to 0.2% strain, as shown
in Figure 7. The slope of the trendline was obtained by calculating the first derivative of
the polynomial equation, which corresponds to the average tensile modulus exhibited
by the uncured prepreg at a specific point within the non-linear region. To gain a clearer
understanding of the tensile response in the non-linear region, the curve was divided into
smaller sections, as illustrated in Figure 8. The equations for each trendline are visible on
the curve, and the slope of the trendline represents the tensile modulus of the uncured
prepreg. Applying these trendlines to each test sample, the average tensile modulus per
section was determined in Table 5.
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Table 5. Tensile moduli in non-linear region.

Section Number Tensile Range (N) Average Tensile Modulus (GPa)

1 1–3 20
2 3–6 29
3 6–12 45
4 12–20 63
5 20–30 78

4.2. Effects of Temperature on the Tensile Behavior

The tensile behavior of the prepreg at room temperature revealed that the presence of
waviness in the carbon fibers embedded in the viscous matrix contributed to the occurrence
of the non-linear region. Considering the influence of temperature on the mechanical
performance of the uncured epoxy matrix, the tensile tests were conducted at elevated
temperatures using the same gripping solution as in the room temperature testing. Prior to
testing, the samples were thawed at room temperature for 1 h after being removed from the
freezer. The testing procedure involved applying an initial tensile load up to a maximum of
100 N, followed by returning the sample to its initial condition before conducting a second
tensile test at the elevated temperature.

The results obtained from the tensile tests demonstrated that, at different temperatures,
the prepreg samples exhibited a consistent slope in the linear region, confirming the
assumption that the epoxy matrix’s contribution to stiffness in this region is negligible;
see Figure 9. As was concluded in Section 3.1, the linear stiffness of the UD carbon epoxy
prepreg was closely aligned with that of the fibers, and since the tensile modulus of the
fibers remains independent of temperature, it can be inferred that the linear stiffness of the
prepreg is unaffected by temperature variations. Furthermore, at higher temperatures, the
viscosity of the epoxy matrix decreases, leading to reduced resistance to the movement
of the prepreg. Despite this, on average, the fibers still need to move the same distance
to rectify the waviness within the sample (straighten up). With less resistance to this
movement, the stiffness plot is shifted upwards. The observed temperature effects on the
reduction of the lead-in region during the tensile test aligned with previous findings on
carbon epoxy prepreg [10].
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4.3. Finite Element Model

This section focuses on the computation of homogenized mechanical properties for
composite materials with wavy fibers. The objective was to examine the impact of fiber
waviness on prepreg properties. To achieve this, we analyzed three representative volume
element (RVE) models associated with distinct fiber arrays: hexagonal, diamond, and
square. These models were investigated within a waviness ratio range of 0 to 0.15, and
the resulting homogenized stiffness matrix parameters were computed. The graphical
representation of these parameters can be found in Figure 10. The results for the straight
fiber agreed with [10,12,32,34], showing a slight difference in the three fiber arrangement
models. For the effective Young’s modulus E1, longitudinal Poisson’s ratio ν12, and longi-
tudinal shear modulus G12, the values predicted by the three models were all in excellent
agreement with those noted for a random fiber distribution, which indicates that fiber
arrangement had a negligible effect on these three effective longitudinal material properties.
In contrast, for effective transverse material properties such as transverse Young’s modulus
E2, transverse Poisson’s ratio ν23, and shear modulus G23, the values calculated by the
hexagonal array agreed with the random fiber distribution, confirming that the random
microstructure is well approximated by the hexagonal microstructure.

At lower levels of fiber waviness, there was a high level of agreement in the matrix
stiffness parameters. However, as the waviness value exceeded 0.05, deviations started
to emerge. These deviations were attributed to variations in the numerical discretization
within each fiber array [26,30]. In summary, it can be inferred that fiber waviness has a
significant impact on the longitudinal Young’s modulus but has a negligible effect on other
properties. As the degree of fiber waviness increases, the effective Young’s modulus (E1)
decreases, as observed in the results of the uniaxial tensile tests outlined in Section 3.2.

In accordance with previous discussions, the matrix and fibers were regarded as
materials with linear elastic properties. To facilitate the examination of the temperature’s
impact on the behavior of the waved fiber, the representative volume element (RVE) model
was employed, considering various matrix modulus values. This approach was chosen
since temperature primarily affects the stiffness of the matrix, rather than that of the fibers.
Figure 11 provides insights into the behavior of the RVE model with the square array at
different temperatures, particularly in relation to the matrix stiffness. The figure indicates
that, as the temperature increased, resulting in lower matrix stiffness values, the reduction
in fiber waviness led to a more rapid change in the E1 values. This observation aligned
well with the experimental results discussed in Section 3.2, further confirming the validity
and applicability of the proposed RVE model. These results highlighted the significance of
considering temperature effects on composite materials, specifically the influence of matrix
stiffness, and emphasized the importance of accurately modeling and characterizing such
phenomena for a comprehensive understanding of the material behavior.
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5. Conclusions

This paper presented a comprehensive study of the tensile behavior of unidirectional
carbon epoxy prepreg, combining both experimental and numerical approaches. Eight
samples underwent two separate runs of tensile testing to assess their behavior. The stress–
strain curves from the second run consistently showed a non-linear region followed by
a linear region, in line with previous research. The average linear tensile modulus of the
uncured carbon fiber prepreg was found to be approximately 135 GPa with a standard
deviation of 6 GPa, closely matching the linear modulus of the fiber. According to classical
laminate theory, individual samples are expected to exhibit a linear tensile modulus within
the range of 130–142 GPa. Additionally, it was observed that the non-linear region, which
holds significance for AFP and ATL manufacturing processes, occurred within the 0% to
0.2% strain range. The experimental findings shed light on the interaction between fiber
waviness and the viscous matrix, leading to a reduction in stiffness. Furthermore, the
amplitude of the geometric waveform played a role in impacting stiffness by influencing
changes in fiber angle. Moreover, tensile tests conducted at different temperatures consis-
tently showed a linear region with negligible stiffness contribution from the epoxy matrix
within this range. The linear stiffness of the UD carbon epoxy prepreg closely mirrored
that of the fibers and remained unaffected by temperature variations. However, at higher
temperatures, the decreased viscosity of the epoxy matrix caused the stiffness plot to shift
upward in the non-linear region. At the microscale, a Python code for numerical analysis
was developed in Abaqus/CAE. This code enables the calculation of the orthotropic elastic
properties of unidirectional prepreg with waved fibers, taking the microstructure geometry
and the known properties of constituent materials as inputs. This study revealed that the
arrangement of fibers had a negligible effect on the three effective longitudinal material
properties. On the other hand, fiber waviness significantly impacted the longitudinal
Young’s modulus (E1), while it had a negligible effect on other properties. As the degree of
fiber waviness increased, the effective Young’s modulus (E1) decreased, as corroborated by
the results from uniaxial tensile tests. Furthermore, this research demonstrated that higher
temperatures and lower matrix stiffness values led to a more rapid change in E1 values as
fiber waviness decreased. This alignment between numerical and experimental findings
highlighted the capability of the proposed model to accurately predict the elastic properties
of unidirectional composites with waved fibers.
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