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Abstract: Ordinary Portland Cement (OPC) production consumes tremendous amounts of fresh
water and energy and releases vast quantities of CO2 into the atmosphere. Not only would an
alternative to OPC whose production requires no water, releases little CO2, and consumes less energy
represent a transformative advance in the pursuit of industrial decarbonization, but the greater
availability of safe drinking water would lead to significantly improved public health, particularly
among vulnerable populations most at risk from contaminated water supply. For any OPC alternative
to be adopted on any meaningful scale, however, its structural capabilities must meet or exceed
those of OPC. An inverse vulcanization of brown grease, sunflower oil, and elemental sulfur (5:5:90
weight ratio) was successfully modified to afford the high-sulfur-content material SunBG90 in
quantities > 1 kg, as was necessary for standardized ASTM and ISO testing. Water absorption (ASTM
C140) and thermal conductivity (ISO 8302) values for SunBG90 (<1 wt% and 0.126 W·m−1·K−1,
respectively) were 84% and 94% lower than those for OPC, respectively, suggesting that SunBG90

would be more resistant against freeze-thaw and thermal stress damage than OPC. Consequently, not
only does SunBG90 represent a more environmentally friendly material than OPC, but its superior
thermomechanical properties suggest that it could be a more environmentally robust material on its
own merits, particularly for outdoor structural applications involving significant exposure to water
and seasonal or day/night temperature swings.

Keywords: sustainable composite; fats and oils; sulfur; ASTM testing; ISO testing; polymer cement

1. Introduction

Concrete serves critical functions in nearly all aspects of human civilization. The
composites that comprise concrete are produced by the mixing of a cementitious binder,
most commonly ordinary Portland cement (OPC), aggregates, and water. In the US alone,
the annual concrete production exceeds 500 million tons, with the concomitant consumption
of nearly 90 million tons of OPC and 250 billion liters of water [1–4]. This demand is driven
by the facts that concretes (i) can be poured and shaped, unlike natural stone, and (ii) have
vastly superior mechanical properties compared to those of bricks and other shapeable
masonries [2,5–7].

Unfortunately, concrete production has a tremendously harmful impact on the envi-
ronment. For example, nearly 1 ton of CO2 is released directly into the atmosphere for each
ton of OPC produced and, furthermore, OPC production requires temperatures > 1400 ◦C,
with an electricity demand that indirectly releases even more CO2 into the atmosphere.
Additionally, concrete production can only use fresh water, and this reduces the availability
of potable water for human consumption [2]. Concretes cannot be recycled and reused
in the same applications as initially poured concretes due to having significantly worse
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mechanical strengths. As a result, vast quantities of concretes end up in landfills. Thus,
there is an urgent need for concrete alternatives that (i) produce less CO2, or even none at
all, (ii) do not consume water, and (iii) can be recycled and reused without any loss in their
mechanical properties.

Given the enormous carbon footprint, energy demand, and water consumption re-
quired for the production of OPC, the development of alternatives to OPC is an area of
intense interest in the scientific community. In particular, if an OPC alternative could be
produced from biomatter without the need for any inorganic carbonates, then it would
enable the production of concretes that could formally remove CO2 from the atmosphere
(i.e., so-called “carbon-negative” materials) [8]. A critical constraint in the design of every
OPC alternative is that it must match or exceed the mechanical properties of OPC itself and
of OPC-derived concretes. Most biomolecules and biopolymers, by nature, must not impair
the microscopic or macroscopic flexibility and motility of an organism, and thus, nearly
all streams of unmodified biomatter exhibit significantly worse compressive strengths
than OPC. If covalent bonds that crosslink individual biomolecules or biopolymer chains
could be introduced into biomatter, then this process could yield materials with mechanical
strength properties comparable to or superior to OPC.

Inverse vulcanization, mechanistically similar to Goodyear’s vulcanization of rubber
(Scheme 1a) [9] is a process developed by Pyun in 2013 that crosslinks olefinic molecules
with chains of polymeric sulfur and affords high-sulfur-content materials (HSMs, Scheme 1b)
that exhibit remarkable thermomechanical properties [10–14]. Notably, the syntheses of
HSMs by inverse vulcanization do not require water, or any other solvent, and require
lower temperatures than other C–S bond-forming processes reported for the synthesis
of HSMs [15–23]. Furthermore, their relatively high sulfur contents (typically > 50 wt%)
prevent any water penetration into, or uptake by, HSMs due to the inherent hydrophobicity
of sulfur [24–29]. A water-repellent alternative to OPC, furthermore, could preclude entirely
some of the degradation/damage pathways that afflict OPC-based concretes [30–35].

Our group [36–38] and others [18,20,39–44] have extensively studied multiple classes
of bio-olefins as the organic substrates in inverse vulcanization reactions to produce
HSMs with commercially viable thermomechanical properties. Triglycerides and free fatty
acids [45,46] are of particular interest to us as components of OPC alternatives given that
many of them naturally contain C=C bonds and thus do not require chemical functionaliza-
tion. If plant-based triglycerides are the only organic substrates in an inverse vulcanization
reaction, then the resulting HSM could formally achieve a negative carbon footprint.

A potential issue for the manufacture of HSMs is that when scale-up to kilogram
quantities is undertaken, there is the potential for temperature spikes resulting from au-
toacceleration (the Trommsdorf effect) [47,48]. The previous reports indicate that a possible
remedy to temperature control issues is to use rapid mechanical stirring, rather than
the magnetic stirring used in small bench top-scale reactions, and to monitor internal
reaction temperature rather than external heating bath temperatures as is often done for
small-scale reactions.

We have previously reported SunBG90 [49], an HSM produced from the inverse
vulcanization of a mixture of brown grease and sunflower, and provided data that showed
that its compressive strength and flexural strength values were more than 100% greater
than the respective values in OPC, and significantly higher than in other analogous plant
oil- or terpene-derived HSMs [50,51]. Based on these findings, we sought to scale up
the synthesis of SunBG90 significantly to enable more rigorous mechanical strength tests
based on ASTM- and ISO-certified methods. Herein we report the synthesis of SunBG90 to
prepare multikilogram-scale prototypes and the shaping of SunBG90 into tiles and bricks
suitable for ASTM/ISO analyses. Our tests demonstrate that SunBG90 is superior to OPC
in multiple aspects, with 84% lower water absorption, 94% lower thermal conductivity, and
an abrasion resistance between those of marble and granite.
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2. Materials and Methods
2.1. Materials and Precautions

Small batches (<100 g) of SunBG90 can be prepared as previously reported [49]. Cau-
tion must be taken during this process, as heating elemental sulfur with organics can result
in the formation of H2S gas. H2S is toxic, foul-smelling, and corrosive. The preparation
of SunBG90 in the large batches that were needed to prepare multi-kilogram prototypes
such as the brick used for the ISO 8302 test involved a reaction of sunflower oil, brown
grease, and sulfur in a 1:1:18 mass ratio, according to the following procedure, in order
to achieve material identical to that resulting from the previously reported small batches.
Sulfur was first melted in an oil bath at 160 ◦C with rapid mechanical stirring. The in-
ternal temperature was then increased to 180 ◦C over 30 min. Once the temperature had
stabilized, brown grease was slowly added to the sulfur while stirring and monitoring the
temperature. No increase in temperature beyond the typical ±3 ◦C was observed. After
the addition of brown grease was complete, the sunflower oil was added dropwise to
the brown grease–sulfur mixture in an analogous manner, again with minimal (±3 ◦C)
temperature variation. The reaction mixture was subsequently stirred for an additional
24 h at 180 ◦C. After this time a homogeneous reddish-black solution was observed. Upon
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cooling to room temperature, the material solidified to a dark solid identified herein as
SunBG90 in quantitative yield.

2.2. Testing According to ASTM C140

Specimens were immersed in deionized water (temperature range: 15–27 ◦C) for 24 to
28 h such that the top surfaces of the specimens were at least 150 mm below the surface
of the water. Specimens were separated from each other and from the bottom of the tank
by at least 3 mm. Samples were weighed before immersion, while suspended by a metal
wire and completely submerged in water, and after removal from water. After saturation,
the specimens were dried in a ventilated oven at 110 ± 5 ◦C for not less than 24 h, and the
weights of the dried specimens were recorded. The utilized test describes the quantity of
water a unit can maintain when saturated, indicating a concrete mix’s level of compaction
or the volume of voids within a specimen. The primary metric used to measure water
absorption is the water absorption rate, typically measured as a percentage of the dry
weight of the tile.

Absorption, % =
ws − wd

wd
× 100

Density (D),
lb
f t3 =

wd
ws − wi

× 62.4

2.3. Testing According to ASTM C1353

A specimen was abraded using rotary rubbing action under controlled pressure con-
ditions and abrasive action. The test specimen was mounted on a turntable platform and
turned on a vertical axis against the sliding rotation of two abrading wheels. One abrading
wheel rubbed the specimen outward toward the periphery and the other rubbed it inward
toward the center while a vacuum system removed wear debris generated during the
test. The resulting abrasion marks formed a crossed arc pattern over an area of approx-
imately 30 cm2. Abrasion resistance was evaluated by determining the loss of volume
due to abrasion and calculating an index of abrasion resistance. This test method allowed
the quantification of the abrasion resistance of dimension stone for relation to end-use
performance, which is used to comparatively rank material performance.

2.4. Testing According to ISO 8302

The measurement of the thermal conductivity of the material under study was carried
out with the Thermal Conductivity Test Tool λ-Meter EP500e according to ISO 8302, which
describes the use of guarded hot plate apparatus that offers measurement accuracy < 1.0% in
the range λ = 10–60 mW/(m·K) (mostly < 0.7%) and reproducibility < 0.5% (mostly < 0.2%).
This meter features a cooling/heating unit with 12 high-performance air-cooled Peltier
modules. The material was placed in the center of the sample holder plate of the equipment,
which closed automatically, applying a pressure of 500 Pa and thus ensuring complete
contact with the temperature plates. A guard of insulating material had to be placed around
the sample. The equipment had means of visualization and controls through touch screens.

2.5. Testing According to Mohs Hardness Test

The Mohs hardness scale was used to measure the scratch resistance of a material.
The idea behind the Mohs hardness scale is quite simple: the hardest material scratches
the softest material. The Mohs hardness scale is based on a scale from 1 to 10, with
diamond—which has a value of 10—being the hardest material. Materials are tested against
each other; if one scratches another, it has a higher value on the Mohs hardness scale.

3. Results and Discussion
3.1. Rationale and Design

One of the principal challenges associated with the use of bio-olefins in plastics,
concretes, or other structural materials is that most bio-olefins are major components
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of foodstuffs and contain significant caloric value to both humans as well as animals.
Using an edible bio-olefin to prepare an inedible plastic, for example, trades a reduction
in CO2 released for an increase in food insecurity. Brown grease, on the other hand, is
a coproduct of animal rendering processes that is not suitable for consumption and is
frequently disposed of by incineration, releasing CO2 into the atmosphere. The inedibility
of brown grease is caused in part by the high levels of free fatty acids it contains, which can
exceed 30% by weight. By using brown grease as the bio-olefin feedstock in HSM syntheses
via inverse vulcanization, there can be a significant decrease in the carbon footprint of
animal-derived foodstuff production.

Inverse vulcanization reactions cannot proceed unless the bio-olefin is sufficiently
miscible in molten elemental sulfur. To improve the miscibility of brown grease, our proto-
cols dictated that we combine it with a plant-based triglyceride in a 1:1 ratio. Although
triglycerides contain significant caloric value, obtaining them from plant-based sources
maximizes the amount of CO2 removed from the atmosphere. Conversely, sulfur is pro-
duced by petroleum refining, which is a net CO2 producer, but millions of tons of elemental
sulfur go unused every year and are instead discarded as solid waste [10,44,49,52–57].
Using inverse vulcanization to crosslink the bio-olefins thus has the additional benefi-
cial environmental effect of actively reducing the amount of solid waste that has already
accumulated in landfills.

Our group previously demonstrated that SunBG90—an HSM prepared via the combi-
nation of 5 wt% brown grease, 5 wt% sunflower oil, and 90 wt% sulfur [49]—exhibited a
compressive strength value (35.9 MPa, Table 1) that was more than double the compressive
strength values of OPC (minimum of 17 MPa required for building foundations), clay
bricks (10 MPa), oak wood (11 MPa), marble (12.5 MPa), and limestone (10 MPa). As
evidence that brown grease does contribute to mechanical strength, rather than simply
diluting the contribution of sunflower oil, it was found that the compressive strengths
of CanBG90 (identical to SunBG90 but with canola oil in place of sunflower oil) [52] and
SunBG90 were more than double that of the analogous HSM comprising only sunflower
oil, SunS90 (17.9 MPa). The inclusion of sunflower oil with brown grease was, however,
previously reported to be required for the effective mixing of brown grease and sulfur to
form a homogeneous material [52].

Table 1. Compressive and flexural strength values for SunBG90 and comparison to other materials.

Materials Compressive Strength (MPa *) Flexural Strength (MPa *)

SunBG90 35.9 7.7
OPC 17 3.7

Clay Bricks 10 3.55
Oak Wood 11 56.5

Marble 12.5 3.4
Limestone 10 2.8

SunS 17.9 ND
CanBG90 32.0 6.5

* Numerical values represent maximum values per material.

In the current work, it was also of interest to evaluate the durability of SunBG90 after
exposure to low temperature and temperature changes. SunBGS90 was thus evaluated after
4 d at −25 ◦C followed by a rapid return to room temperature. Following this thermal
strain, cylinders of SunBG90 showed no changes in their compressive strengths compared
to the cylinders that were allowed to stand at room temperature prior to testing.

3.2. Synthesis and Fabrication

To prepare bricks and tiles of sufficient sizes for ASTM and ISO testing, the sizes of
test samples fabricated from SunBG90 had to be scaled up by a factor of over one hundred
compared to prior reports. Previous scale-up studies on HSMs had revealed the potential
for temperature spikes resulting from autoacceleration (i.e., the Trommsdorf effect) [22,23]
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that could be attenuated by using rapid mechanical stirring and fastidious monitoring
of internal reaction temperature as reagents were mixed. These precautions were also
effective and necessary to produce large batches of SunBG90. Indeed, carrying out the
large-scale preparation of SunBG90 without these temperature control measures had led to
the generation of H2S gas and a material with 70% lower compressive strength than had
been observed for previously reported small-scale (<100 g) preparations of SunBG90. The
careful control of reaction temperature employed in the current report effectively produced
SunBG90 having identical thermal, mechanical, and morphological properties to those
SunBG90 samples previously reported.

Tile- and brick-shaped SunBG90 substrates for water absorption and density (ASTM
C140), abrasion resistance (ASTM C1353) [58,59], thermal conductivity (ISO 8302) [60,61],
and Mohs hardness testing [62–64] were prepared by pouring the molten HSM into the
appropriate silicone mold and allowing each substrate to solidify gradually at room tempera-
ture. Tiles of SunBG90 for water absorption and density tests were obtained from molds with
dimensions of 2 in × 2 in × 0.25 in (Figure 1). For abrasion resistance tests, the necessary
tiles were obtained from larger molds with dimensions of 4 in × 4 in × 0.25 in. For tests of
compressive strength, cylinders with dimensions of 10 mm × 6 mm were prepared.

3.3. Water Absorption and Density (ASTM C140)

In routine construction applications, water absorption by various OPC samples, as
measured by ASTM C140, typically falls in the range of 5.3–8.3 wt% (Table 2). Water
absorption values above this range can cause dangerous decreases in OPC compressive
strength that may lead to structural failures [65–67]. Water absorption by SunBG90 was
dramatically lower (0.83 wt%) than that by OPC, and intermediate of the absorptivity
values for marble and limestone (0.12 and 1.0 wt%, respectively). The density of SunBG90,
measured using ASTM C140, was 1.70 g·cm−3, a value that was significantly lower than that
of any of the construction materials listed in Table 2 besides oak. However, the density of
SunBG90 did fall within the range of values considered acceptable for lightweight concretes
(1.12–1.92 g·cm−3); thus, SunBG90 could potentially function as a drop-in replacement for
OPC-containing lightweight concretes.
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Figure 1. Shaping of SunBG90 by pouring a molten sample into silicone mold (a) to produce tiles (b).
A similar process can be used to produce a variety of other shapes such as the cylinders that were
used for compressive testing (c).

3.4. Thermal Conductivity (ISO 8302)

The test of thermal conductivity was carried out on an HSM composite with a square
geometry and dimensions of 148.3 × 148.7 mm and 40.6 mm thickness (Figure 2) that was
in a dry state and showed relative parallelism and flatness on its sides. The mass of the
sample was 1212 g and its bulk density was 1329 kg/m3. The relative humidity of the
environment surrounding the equipment was 36% and the ambient temperature was 14 ◦C.
Three measurements were made, with temperatures of 10 ◦C, 25 ◦C, and 40 ◦C. The results
were obtained after 8 hours of measurement, and the polynomial y = f (t) = 0.3263(T + 123.40)
was adjusted to obtain the thermal conductivity value of 126.66 mW/(m·K). The result
of the thermal conductivity test of the measured sample yielded 0.126 W/m·K, a value
falling within the range of values for familiar construction materials (Table 2 [68–74]) such
as wood (0.13 W/m·K) and cellular concrete (0.14 W/m·K). These results, summarized
in Table 2, show that SunBG90 is a material with thermal insulation capacities, surpassing
in this capacity other conventional materials such as OPC concrete (2.25 W/m·K), clay
bricks (0.9 W/m·K), adobe bricks (0.85 W/m·K), and limestone (0.85 W/m·K). It has been
observed that considering the value of the thermal conductivity of this material, it would
work very well to cover surfaces that must be thermally insulated, since it exceeds all
conventional construction materials based on cement or masonry, approaching only the
value of wood.
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Table 2. Water absorption, density, and thermal conductivity data.

Materials Water Absorption (% *) Density (g/cm3)
Thermal

Conductivity (W/m·K *)

SunBG90 0.83 1.70 0.126
OPC 5.3–8.3 3.15 2.25

Clay Bricks 8.22 2.5 0.9
Oak Wood 12 0.82 0.197

Marble 0.12 2.64 2.95
Limestone 1 2.71 0.85

* Numerical values represent maximum values per material.
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3.5. Abrasion Resistance (ASTM C1353) and Mohs Hardness Test

Surface abrasion is a noted vulnerability in OPC, OPC-derived concretes [75–77], and
other tile materials, and can be a major pathway by which loss of mechanical strength
and structural integrity occurs [78–80]. An initial evaluation of SunBG90 for its potential
abrasion resistance was undertaken by conducting a quick evaluation of its hardness on the
Mohs scale. Table 3 [81] indicates the known Mohs hardness values, showing that SunBG90
has qualitative surface scratch resistance comparable to that of copper, gold, or silver and
nearing that of marble or limestone. These preliminary tests suggested that SunBG90 may
be a candidate for reasonably good abrasion resistance.

Table 3. Mohs hardness values.

Materials Hmin Hmax

SunBG90 2 2.5
Asphalt 1 2
Sulfur 1.5 2.5
Gold 2.5 3
Silver 2.5 3

Marble 3 4
Limestone 3 4

When ASTM C1353 was performed on SunBG90, an abrasion resistance value of 16 (IW,
Table 4) was observed. The abrasion resistance of SunBG90 was intermediate to that of
limestone and granite (10 and 25, respectively); this was particularly impressive given that
limestone and granite are composed almost entirely of inorganic oxides and carbonates,
whereas the SunBG90 prepared for this work could have contained no more than 0.4 wt%
of such inorganic substances.
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Table 4. Abrasion resistance.

Materials Abrasion Resistance (Iw, HA)

SunBG90 16
Granite 25
Marble 10

Limestone 10
Values from ASTM C1353 Abrasion Resistance of Dimension Stone Subjected to Foot Traffic Using a Rotary
Platform Abrase documentation.

4. Conclusions

We previously demonstrated that brown grease, sunflower oil, and elemental sulfur,
in a 5:5:90 mass ratio, underwent inverse vulcanization to yield SunBG90, an HSM which
exhibited compressive and flexural strengths that exceeded those of OPC. In the present
work, we successfully increased the scale of the inverse vulcanization reaction to prepare
multikilogram batches of SunBG90, thus enabling the thermomechanical properties of
SunBG90 to be tested according to the same ASTM and ISO standards used for OPC-
based concretes.

Water absorption by SunBG90 increased the sample mass by <1% when tested accord-
ing to ASTM C140; this result indicated a value that was five-fold lower than the values
typically measured for OPC (5.3–8.3%). The greater hydrophobicity of SunBG90, as an alter-
native to OPC, would significantly diminish the likelihood of freeze-thaw and corrosion
damage, which often lead to dangerous structural weaknesses in OPC-based concretes.

The surface abrasion of OPC-based concretes can likewise introduce weaknesses that
ultimately result in mechanical failure. In contrast, the abrasion resistance of 16 measured
for SunBG90, when tested according to ASTM 1353, was intermediate to the values observed
for limestone and granite (10 and 25, respectively). The value of 16 for SunBG90 is all the
more impressive when considering the fact that SunBG90 is essentially metal-free (<0.4 wt%
metals), whereas limestone contains has nearly 40 wt% metal content.

Thermal stresses, particularly those resulting from large temperature changes in the
day/night cycle, can cause significant damage to materials exposed to the outdoors. For
SunBG90, a thermal conductivity value of 0.126 W·m−1·K−1 was measured using ISO
8302; this value was 94% and 87% lower than the corresponding values for OPC and
clay bricks, respectively. As a result, the internal volume of SunBG90 that undergoes
temperature changes is significantly smaller, and thus, there will be fewer potential sites
for mechanical failure.

Collectively, these results provide compelling evidence that SunBG90 will be dramati-
cally more resistant to the predominant damage mechanisms which most commonly cause
structural failures in OPC-based concretes. Thus, not only does SunBG90 constitute a
carbon-sequestering alternative to the heavy carbon-footprint material OPC, but it is also
likely to have superior long-term environmental robustness over OPC-based concretes and
thereby decreases risks associated with the structural failures of concrete.
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