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Abstract: Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry
because of their robust mechanical properties and strength to weight ratio. A significant drawback
of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes
as it tends to bridge, resulting in various defects in the final product. However, CFRP made from
Stretch Broken Carbon Fiber (SBCF) aims to solve this issue by demonstrating superior formability
compared to conventional continuous CFRPs. To study and validate the performance of SBCF, a
statistical design of the experiment was conducted using three different types of CFRPs in tow/tape
form. Hexcel (Stamford, CT, USA) IM7-G continuous carbon fiber impregnated with Huntsman (The
Woodlands, TX, USA) RDM 2019-053 resin system, Hexcel SBCF impregnated with RDM2019-053
resin, and Montana State University manufactured SBCF impregnated with Huntsman RDM 2019-053
resin were tested in a multitude of forming trials and the data were analyzed using a statistical
model to evaluate the forming behavior of each fiber type. The results show that for continuous
fiber CFRP tows forming, Fmax and ∆max do not show statistical significance based on temperature
fluctuations; however, in SBCF CFRP tows forming, Fmax and ∆max is dominated by the temperature
and geometry has a low statistical influence on the Fmax. The lower dependence on tool geometry at
higher temperatures indicates possibly superior formability of MSU SBCF. Overall findings from this
research help define practical testing methods to compare different CFRPs and provide a repeatable
approach to creating a statistical model for measuring results from the formability trials.

Keywords: carbon fiber; formability; stretch broken carbon fiber; pre-preg; forming test fixture;
mechanical properties; statistical modeling

1. Introduction

Manufacturing cost for processing carbon fiber reinforced polymers (CFRPs) is one
of the main reasons for the limited use of carbon fiber in modern mechanical components
despite its superior properties compared to traditional metallics and other fiber compos-
ites [1]. Recent advances in the production of carbon fiber (CF) filaments aim to bridge
the gap between the mechanical and environmental advantages of CF, and the relative
ease of manufacturing for metallic components. Stretch broken carbon fiber (SBCF) has
proven more formable than traditional CF while maintaining superior mechanical prop-
erties compared to metallic parts [2]. SBCF is produced by utilizing standard continuous
fiber tows and stretching it at a pre-determined length using differentially driven rollers so
that the fiber breaks at its natural flaws. This process creates an aligned discontinuous tow
that can be sized and impregnated by resin into a ply similar to traditional CF pre-preg.
The primary benefit of the discontinuous fiber is that, as the temperature approaches the
cross-linking temperature of the resin system, the fibers can slide past each other when
pressure is applied [3]. As a result of this phenomenon, when a laminate is laid into a
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complex mold, the stretch-broken fibers are free to follow the contours of a part’s shape
more effectively than continuous fibers due to the latter’s low strain to failure rate (~2%).

Mechanical properties for uncured CFRP tows are not widely reported, primarily
because the cured laminate is of most interest to designers for structural applications. For
mesoscale testing of formability at tow level, the mechanical characteristics of both the resin
matrix and the carbon fiber are essential because they directly affect the yield stress and
yield strain, and both contribute to CFRP formability. Formability is defined by the ease
with which a material can be formed while still maintaining its pre-formed properties [4].
The strength of uncured SBCF CFRPs has shown high dependence on temperature, so
mechanical property data on uncured laminated tows are of limited use for characterizing
formability in this test.

To successfully supplant metallics as the premier material of choice for numerous
applications, SBCF must be proven to be easily formable so that manufacturing costs are
reduced sufficiently enough to make the final product cost-effective. Commonly referred
to as plastic deformation, it is known that ductile materials are usually better suited for
forming than brittle crystalline materials such as CF [5]. Since SBCF is discontinuous
in nature, it acts as a pseudo-ductile material before curing; therefore, superior forming
is expected. Due to the recent and ongoing development of this material and testing
equipment and methods of characterization, only limited studies have been conducted to
evaluate this behavior of SBCF [1,2]. Montana State University (MSU) has recently designed
and implemented a forming fixture that subjects impregnated CF tows into a state of stress
termed stretch forming to evaluate the load response of different CF formulations under
various geometrical and environmental conditions. The primary objective of this study was
to understand the behavior of different types of uncured CFRP and develop a statistical
relationship between test forming fixture variables and peak load and displacement values
of CF. This relationship is hypothesized to allow future determinations of forming metrics
without testing samples physically.

2. Materials and Methods
2.1. Mechanical Properties of IM7 Carbon Fiber

The CFRPs used in this study were manufactured from a Hexcel carbon fiber base
feed stock IM7 CF. IM7 is a high-performance CF that is approved for military aerospace
applications. The distinguishing factor between high-performance CF and standard grade
CF is the manufacturing controls that are in place during the production of the CF. During
the production of high-performance CF, environmental conditions are tightly monitored as
well as the tooling conditions. This results in a CF with tight specifications with minimal
inherent flaws before being impregnated and cured into the final component [6]. At room
temperature (RT), the mechanical properties of the individual CF filaments in a SBCF
tow are of little importance because the fiber is primarily discontinuous past the break
length of the fiber. The strength of unimpregnated SBCF tows at RT is derived from the
interfacial interactions of the filaments and the sizing treatment applied to the fiber [3]. The
mechanical properties of continuous Hexcel IM7 CF bundled in a 12,000 fiber (12K) tow are
shown in Table 1.

Table 1. Mechanical properties of Hexcel 12K IM7 [7].

IM7-12K

Tensile Strength (GPa) 5.7
Tensile Modulus (GPa) 275.8

Elongation at failure 1.8%
Density (g/cm3) 1.8

2.2. Properties of RDM2019-053 Resin

Huntsman RDM2019-053 (Huntsman, Corp. The Woodlands, TX, USA) is a proprietary
resin system, and chemical and mechanical properties are not publicly available. For
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formability testing, resin viscosity is an important factor as it affects the shear strength of
the resin and the yield strength of the sample during stretch forming. The resin viscosity
values of RDM 2019-053 at relevant temperatures [8] are listed in Table 2.

Table 2. Huntsman RDM 2019-053 resin viscosity at selected temperatures.

Temperature (◦C) Viscosity (Pa·s) [9]

1 21 (70 ◦F) >3500
2 57 (135 ◦F) 791
3 82 (180 ◦F) 168
4 107 (225 ◦F) 25
5 121 (250 ◦F) 11

Testing was conducted between 21 ◦C (70 ◦F) and 82 ◦C (180 ◦F). Manufacturer’s
published data show that as the temperature changes from 21 ◦C (70 ◦F) to 82 ◦C (180 ◦F)
the viscosity decreases almost 20 times. This reduction in viscosity implies that temperature
will potentially influence the stretch bending strength of the CFRP tows.

2.3. Sizing Treatment on Carbon Fibers

A surface treatment termed “sizing” is commonly applied on CF to improve adhesion
and surface wettability of the CF tow [10]. As shown in Figure 1, sizing is known to
increase the adhesion between the matrix and the CF as well as improve the handleability
of the CF [11]. Handleability refers to the fiber protection during processing, alignment
of the fiber filaments in the tow, and wettability of the fiber when it comes in contact
with the resin system [12]. Hexcel employed two sizing applications for the fibers used
in this study. G and GP sizing applications are closely held proprietary formulations, but
both are comprised of an uncured epoxy oligomer, phenolic, polyurethane, and vinyl ester
compounds with specifically chosen additives that improve adhesion and handleability [13].
GP is known to have comparable properties to G-sized fiber but was produced to have less
deleterious effects on the environment.
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Figure 1. FE-SEM microscopy image of sizing bridge between carbon fiber filaments.

2.4. CF Sample Preparation

Three types of CF were used in the design of experiment (DOE). All raw carbon fibers
were produced by Hexcel Corporation (Stamford, CT, USA) [14]. Fibers and their makeup
are displayed in Table 3.
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Table 3. Carbon Fiber Types Used in DOE.

Fiber Name Manufacturer Fiber Precursor Sizing Type

12K Hexcel IM7-GP Cont. Hexcel NA GP
Hexcel SBCF Hexcel 12K Hexcel IM7 GP
MSU SBCF MSU 12K Hexcel IM7 G

The specified break length of Hexcel SBCF was 50.8 mm (2 in), which was indepen-
dently verified by MSU laboratory in a fiber pull-out test [15]. From fiber pullout testing, it
has been observed that long corollary fibers up to ~228 mm (9 in) can be found, suggesting
higher loads are possible and more variation could be seen throughout Hexcel SBCF. MSU
SBCF was manufactured on a modified Hexcel SB2 machine using Hexcel IM7-G continu-
ous fiber as feed stock. G-sized fiber was used because the MSU processing team found
that the stretch-breaking process was more effective with G-sizing than GP. The specified
break-length of MSU SBCF was 35 mm (1.375 in) which was set from the break distance
between the nip rollers on the stretch breaking machine. Each fiber tow was laminated
with proprietary Huntsman (The Woodland, TX, USA) RDM2019-053 resin film using the
Pro-Lam (Hamilton, MO, USA) in the MSU composites laboratory.

2.5. Fiber Volume Content of Impregnated Tow Samples

During the CFRPs manufacturing process, the “dry” CF tow is processed through a
lamination machine where resin film is compacted at elevated temperature and pressure
to impregnate the CF with the desired resin matrix. Using MSU lamination techniques
(see sample preparation), three different fiber types pre-pregs were manufactured using
RDM2019-053 resin. An essential factor in the commercial production of pre-impregnated
CFRPs is the fiber to resin ratio, or simply fiber volume ratio, which was calculated
using Equation (1).

Vf =
vf
vc

(1)

where Vf is the fiber volume ratio, vf is the volume of fiber, and vc is the volume of the
composite. For commercial pre-pregs, the industry standard for fiber volume is typically
between 50% to 65% depending on the application [16]. The solvent wash process was
utilized by MSU to determine the fiber volume. It consisted of washing the uncured pre-
preg tow in a 50–50 bath of n-methyl-pyrrolidone (NMP) and acetone solution. The solvent
can strip the resin away from the fiber after repeated cycles, leaving only the fiber, which
can be weighed to determine the final fiber volume [17].

2.6. Test Specimen Fabrication

The fiber reinforced polymer composite tow samples were prepared using Hexcel
continuous IM7-G, Hexcel SBCF, and MSU SBCF carbon fiber impregnated with Huntsman
RDM 2019-053 resin. Before resin impregnation, precautions were taken to ensure all
fibers were aligned correctly, free of twists or misalignment. The average carbon fiber
volume fraction for a tow sample was estimated to be 50% ± 2%. After the tow was
impregnated with the resin, it was prepared for placement on CNC-routed cardstock
tabs (32 mm × 19 mm). The detailed procedure for manufacturing test samples has been
published in a previous study [18]. If the specimens were not tested immediately, they
were stored in a freezer at −18 ◦C to prevent the resin from cross-linking [9]. Test samples
measured 203 mm between the inside of the tabs, and 7.6 mm wide and 0.25 mm thick.
Figure 2 is an illustration of tow sample fabrication.

2.7. Experimental Design

The technique for testing the formability characteristics of CF in the DOE was based
on using the MSU designed forming fixture. A general schematic of the forming fixture is
shown in Figure 3. More details can be found in a previously published article [18].
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Figure 3. Schematic of the MSU designed forming fixture construction [18].

It was hypothesized from the data collected in a previous study that the combination
of forming tool diameter (plunger) and gap width could have an interacting relationship
that affects the dependent variables [3]. Non-linear models have been reported to correlate
numerical and experimental results of CFRP laminated [19]. Therefore, it was essential
to study the combination of those factors. A design of experiment (DOE) approach was
used to understand the impact of forming tool diameter, gap width, and its interaction on
the tensile properties of resinated tows. A Mark-10 (Mark-10 Corp. Copiague, NY, USA)
universal test stand and a companion software MESURGauge Plus were used to record
the response variables load and displacement. The test data were compiled into MiniTab
(Minitab LLC, State College, PA, USA) software for statistical analysis of independent
and dependent variables and to develop an ANOVA model for determining the effects
of conditional variables on the outputs. This allowed for the identification of factors that
influence formability in the stretch-forming test. The statistical significance of these factors
provides information on which factors are most significant for formability. ANOVA was
conducted at a 95% confidence level for each reaction according to the respective fiber type.
A general linear model was employed for the ANOVA with a Box-Cox transformation of
λ = 0 [20].

Radii of the corners of the forming blocks were kept constant at 6.35 mm (0.25 in).
Temperature, forming tool diameter, and gap width were identified as important factors
that may influence the formability of the CFRP tow samples. For each independent factor,
the different levels are shown in Table 4 and Figure 4.

2.8. Design of Experiment

A detailed DOE is described in Table 4; it shows the full scope of samples tested
and the factors that influence the outputs force (Fmax) and maximum yield displacement
(∆max). Fmax was calculated based on the average of five replicates. Yield displacement
refers to the maximum displacement the samples undergo before the force output on the
test gauge diminishes. To evaluate formability, the two dependent reaction variables (Fmax
and ∆max) and visual observations of the sample’s failure mode were recorded. For all tests
at RT, except for MSU SBCF, samples failed catastrophically, indicating adverse formability.
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Table 4. List of Independent and Dependent Variables in DOE.

Independent Variables Dependent Variables

Variables Levels

Forming tool diameter (mm) 12.7, 19, 25

Maximum yield displacement
(∆max)

Maximum Load (Fmax)

Gap Width (mm) 16, 28.6, 54

Forming tool diameter and
Gap width Combined (mm)

[12.7, 16], [12.7, 28.6],
[12.7, 54], [19, 28.6], [19, 54],

[25, 28.6], [25, 54]

Temperature (◦C) 24 ± 1 [Room temperature],
82 ± 1 (Elevated temperature)

Replications N = 6

3. Results and Discussion
3.1. Solvent Wash Results

The results from the solvent wash procedure are shown below. Figure 5 shows CFRP
samples that have been stripped of the resin matrix, dried, and ready for determinations of
its fiber volume.
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Figure 5. Solvent washed CFRP samples.

Ten replicates were tested for each fiber type. Table 5 displays the solvent wash results
of the MSU produced pre-preg tows.

The prepreg IM7-GP had the closest fiber volume ratio to what is found in commercial
settings. The first generation MSU SBCF showed a fiber volume about 17% lower than
IM7-GP. Lower fiber volume could adversely affect the load bearing of the samples because
the fiber carries most of the load when CFRPs are stressed.

Response values for Fmax and ∆max for all fiber types; IM7-GP continuous, Hexcel
SBCF, and MSU SBCF are displayed in Table 6. Results of analysis of variance (ANOVA)
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for average maximum force and maximum yield for three carbon fiber types are displayed
in Table 7. Main effect plots are shown in Figures 6 and 7 to illustrate the relative adequate
strength of each factor [21].

Table 5. Fiber volume ratio of various uncured pre-preg tows.

Fiber Type Resin Type Resin Volume
(n = 10)

Fiber Volume
(n = 10)

IM7-GP RDM2019-053 50.1% 49.9%
Hexcel SBCF RDM2019-053 53.6% 46.4%
MSU SBCF RDM2019-053 67.2% 32.8%

Table 6. Average max force (Fmax), max yield displacement (∆max), for various CFRP tows.

IM7-GP Continuous Hexcel SBCF MSU SBCF

Fmax (N) ∆max (mm) Fmax (N)
(mm) ∆max (mm) Fmax (N)

(N) ∆max (mm)

Average 442.23 12.71 424.74 10.64 198.33 14.31
Stdev. 135.06 1.56 105.14 3.58 49.23 2.15

Table 7. Results of analysis of variance (ANOVA) for average maximum force and maximum yield
for three carbon fiber types.

Source F Value Contribution (%) p-Value

Average maximum
force (Fmax) for

IM7-GP continuous

Gap Width (mm) 27.78 38.35% 0.00
Forming tool Ø (mm) 1.19 36.36% 0.31

Temperature (◦C) 49.59 1.26% 0.00

Average maximum
yield disp. (∆max) for

IM7-GP continuous

Gap Width (mm) 52.85 58.46% 0.00
Forming tool Ø (mm) 1.27 1.13% 0.29

Temperature (◦C) 26.84 11.94% 0.00

Average maximum
force (Fmax) for

Hexcel SBCF

Gap Width (mm) 41.7 3.23% 0.00
Forming tool Ø (mm) 0.02 0.00% 0.99

Temperature (◦C) 2709.85 94.54% 0.00

Average maximum
yield disp. (∆max) for

Hexcel SBCF

Gap Width (mm) 35.73 30.22% 0.00
Forming tool Ø (mm) 22.6 10.36% 0.00

Temperature (◦C) 195.14 44.74% 0.00

Average maximum
force (Fmax) for

MSU SBCF

Gap Width (mm) 19.87 0.57% 0.00
Forming tool Ø (mm) 3.23 0.10% 0.05

Temperature (◦C) 6511.04 98.37% 0.00

Average maximum
yield disp. (∆max) for

MSU SBCF

Gap Width (mm) 72.05 19.20% 0.00
Forming tool Ø (mm) 0.93 0.23% 0.40

Temperature (◦C) 579.09 72.55% 0.00
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It is clear from the contribution percentage that temperature has a dominant effect on
the Fmax of both the Hexcel SBCF and MSU SBCF, showing 98.37% and 94.54%, respec-
tively. Contribution dependency is the percentage that each factor contributes to the total
sequential sums of squares. A higher percentage shows the factor accounts for more of
the variation in the response variable. For the ∆max, this effect of temperature is reduced,
though still a significant factor in the response. IM7-GP indicates that it is less dependent
on temperature, showing a Fmax and ∆max contribution percentage of 1.26% and 11.94%
for Fmax and ∆max, respectively. This response is expected since the IM7-GP fibers are
continuous throughout the length of the sample despite temperature fluctuations, while
the surrounding matrix continues to soften. On the contrary, SBCF are permitted to move
freely when subjected to elevated temperatures. The forming tool and gap width effects on
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Fmax values of SBCF are not statistically valid enough to show dependency, while the yield
displacement values do demonstrate a small contribution. Investigation into the combined
contribution of the forming tool and gap widths is required to determine any further effects.
The gap width effect on IM7-GP indicates relative high dependency on Fmax of 38.35%.
The gap width effect on ∆max for IM7-GP shows a contribution dependency of 58.45%.
Mechanically, the fiber is experiencing higher stress from the two directions as the gap
width increases, (σx and σz). When the gap width increases, the force gauge registers lower
forces because it records force only in the z-axis. Interaction plots in Figure 6 illustrate the
effect of temperature on the SBCF materials while displaying the generally insignificant
effect of temperature on IM7-GP fibers.

p-values for forming tool diameter in IM7-GP are greater than 0.05, indicating its
low significance, while gap width and temperature both show p-values less than 0.05,
demonstrating that both sources are statistically significant. The average maximum force
for Hexcel SBCF has low p-values (<0.05) for gap width and temperature, suggesting that
both are significant. However, gap width has a minority contribution of 3.23%, while
forming tool diameter has a p-value of 0.99, pointing toward low significance. All sources
of average maximum yield displacement for Hexcel SBCF indicate statistical significance. In
addition, MSU SBCF has low p-values (<0.05) for temperature and gap width, while forming
tool’s nose diameter has p-values ≤ 0.5, though the contribution is hardly significant. From
the ANOVA model it can be concluded that in general temperature has a significant effect
on the Fmax of SBCF materials while it has lower influence on IM7-GP. Alternatively, gap
width and forming tool’s nose diameter affect Fmax for IM7-GP, where the SBCF materials
see little significance from the factors mentioned above.

Similar to Fmax, the ANOVA model indicates that temperature has little effect on the
∆max of IM7-GP but has a larger contribution to the ∆max for both Hexcel SBCF and MSU
SBCF. Unlike Fmax though, there is gap width influence on the ∆max of IM7-GP but minor
influence from the forming tool nose diameter. For SBCF materials, the contribution of
forming tool diameter and gap width is moderately significant, yet still slightly lower than
that of the temperature effect.

Lastly, with the individual factors considered, the combination of forming tool’s
diameter and gap width (interaction) should be considered to determine if they affect the
independent variables. Table 8 displays the ANOVA results for all fiber types.

Table 8. Results of analysis of variance (ANOVA) for combined forming tool’s diameter and gap
width (interaction).

Source F Value Contribution (%) p-Value

Average maximum
force (Fmax) for

IM7-GP continuous

Forming tool_gap
combined (mm) 15.21 43.85% 0.00

Temperature (◦C) 54.87 26.36% 0.00

Maximum yield
displacement

(∆max) for IM7-GP
continuous

Forming tool_gap
combined (mm) 24.6 62.01% 0.00

Temperature (◦C) 28.43 11.94% 0.00

Average maximum
force (Fmax) for

Hexcel SBCF
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Table 8. Cont.

Source F Value Contribution (%) p-Value

Forming tool_gap
combined (mm) 15.3 3.26% 0.00

Temperature (◦C) 2660.97 94.54% 0.00

Maximum yield
displacement

(∆max) for
Hexcel SBCF

Forming tool_gap
combined (mm) 29.04 40.75% 0.00

Temperature (◦C) 191.29 44.74% 0.00

Average maximum
force (Fmax) for

MSU SBCF

Forming tool_gap
combined (mm) 7.7 0.70% 0.00

Temperature (◦C) 6516.37 98.37% 0.00

Maximum yield
displacement

(∆max) for
MSU SBCF

Forming tool_gap
combined (mm) 28.69 20.18% 0.00

Temperature (◦C) 618.72 72.55% 0.00

The results from Table 8 demonstrate that the forming tool’s nose diameter and gap
combinations do change the results of the ANOVA output. A return of near zero p-values
for all sources indicates that no individual factor can be completely dismissed. For IM7-GP
continuous fiber, the ANOVA trend is similar, as shown in Table 7, in which there is a
greater contribution from the geometry as opposed to the temperature. This effect is even
greater when considering ∆max, contributing of 62% from the forming tool diameter and
gap width combined. The SBCF materials have large contribution percentages from the
temperature effects on Fmax of 94.54% for Hexcel SBCF and 98.37% for MSU SBCF. The
contribution of the forming tool gap combination on ∆max was much closer, leading to a
conclusion that the geometry does affect the ∆max of the SBCF during testing. Figure 8
displays the interaction plots for the ANOVA analysis of forming tool diameter and gap
width combined for Fmax and ∆max, respectively. It follows that in general, for continuous
fiber, the geometry has a dominant effect on the Fmax while for SBCF the temperature is
the most significant contributing factor.
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3.2. Recommendations for Complex Part Design

The general linear ANOVA models can help to determine how CFRPs will form into
complex geometries. These models can aid aerospace part designers in understanding the
manufacturing limitations that impede the ability for achieving optimized shapes. Data
analysis shows in general that SBCF requires less force to form into deep troughs and
tight curvatures. In general, for long in-plane structures, traditional continuous CFRPs
would still be an acceptable choice, but when bridging, resin pooling and other defects
are of concern whereby the superior formability of SBCFs could potentially overcome the
production of these flaws [22]. If a fixture with similar geometry as described in this study
is used, the force to form the CFRP in the tooling could be estimated, and this would give
manufacturing engineers the ability to determine if the production conditions are sufficient
for curing the laminate. For example, the force required to form a flat panel with a rib
stiffened section running down the middle with a 19 mm wide and 38.1 mm deep trough
could be estimated to select the best fiber type for formability. Table 9 shows the regression
equations built in MiniTab software and results for IM7-GP continuous CF, Hexcel SBCF,
and MSU SBCF to predict the maximum forming load at elevated temperatures based on
the geometry described above. It is assumed that the fiber direction is perpendicular to the
trough direction, and the forming tool diameter and width are modeled at the same width
as the trough to imitate the distributed forces from a vacuum bag.

Table 9. Regression equations predicting maximum forming load at elevated temperature.

IM7-GP Max Load[lb f ] = 123.5− 9.1 ∗ {Forming tool ∅[in]} − 34.09 ∗ {Gap Width[in]}
Hexcel SBCF Max Load[lb f ] = 33.26− 1.57 ∗ { f orming tool ∅[in]} − 19.17 ∗ {Gap Width [in]}

4. Conclusions

This study investigated the formability aspects of Hexcel continuous IM7-GP, Hexcel
SBCF, and MSU SBCF CFRP tows in a stretch-forming fixture using statistical techniques.
A general linear ANOVA model was constructed to explore the effect of temperature and
fixture geometry (gap width and forming tool diameter) on the response variables Fmax
and ∆max. For the IM7-GP continuous CFRP, the ANOVA model gives a strong correlation
between Fmax and the geometry of the test fixture. Interaction plots illustrate that as the
gap width increases, Fmax decreases, and as the forming tool’s nose diameter decreases,
Fmax increases. For ∆max, as the gap width increases, ∆max increases, and when the
forming tool’s nose diameter decreases, ∆max decreases. Overall, with smaller forming
tool’s nose diameter and small gap width, Fmax should be expected to be higher and ∆max
lower. For SBCF materials, temperature was the dominant factor. When considering the
geometry of the combined forming tool’s nose diameter and gap width there was a slight
correlation to the response variable ∆max.

It can be concluded that for continuous fiber CFRP tows forming, Fmax and ∆max
are highly dependent on the forming tool’s nose diameter and gap width. For continuous
fiber CFRP tows forming, Fmax and ∆max do not show statistical significance based on
temperature fluctuations from 24 ◦C to 82 ◦C. In SBCF CFRP tows forming, Fmax and
∆max are dominated by the temperature during testing in the range of 24 ◦C to 82 ◦C, and
geometry has a low statistical influence on the Fmax of SBCF CFRP tows. This indicates
good formability in shapes consisting of tight radii and deep troughs. Moreover, MSU SBCF
CFRP tows show less dependency than Hexcel SBCF on the geometry of the testing fixture
for forming force, and contributions of geometry for Hexcel SBCF show 3.26% and MSU
SBCF show 0.70%. Finally, lower dependence on tool geometry at higher temperatures
indicates possibly superior formability of MSU SBCF.

The results of this study give credence to the difference in formability between the
traditional continuous CFRPs and newly developed SBCF CFRPs. Overall, it is shown
that SBCF CFRPs have better formability by both measures of Fmax and ∆max, and SBCF
fibers developed at MSU demonstrated the highest formability. The higher formability
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of the MSU SBCF may result from a better break length distribution when compared to
Hexcel SBCF.
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