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Abstract: Active packaging films based on chitosan/gelatin were prepared using a solution casting
method by adding various essential oils (lime, tea tree, rosemary, and thyme essential oils), and their
effects were compared. The fabricated films were characterized and various physical properties as
well as the antioxidant performance of the films were studied. Adding essential oils to the polysac-
charide/protein biopolymer mixtures resulted in compatible films with high transparency (>90%
transparency). The mechanical strength and stiffness of the chitosan/gelatin films were improved
by about 30% in the presence of essential oil, but the flexibility slightly decreased, and the stiffness
improved. On the other hand, the water vapor barrier properties, thermal stability, and hydrophobic-
ity of the essential oil-containing films were not significantly changed. Adding various essential oils
significantly enhanced the antioxidant activity of chitosan/gelatin-based films. Therefore, bio-based
functional films with added essential oils can be applied in active packaging applications.

Keywords: essential oils; chitosan; gelatin; functional film; antioxidant activity; active packaging

1. Introduction

Food packaging is an integral part of the food sector to maintain food safety and
quality during storage and transportation. As consumer demand for safe and fresh food
increases, the use of various natural bioactive compounds as preservatives for food and of
functional materials for packaging materials is increasing daily [1,2]. Among the various
bioactive natural compounds available, essential oils have recently received much attention
from researchers in food packaging systems due to their superior functional properties
and potential to improve the shelf life of food products [3–5]. The strong antioxidant
activity, UV-light barrier properties, and antimicrobial action of essential oils has been
reported to improve the shelf life of oxidation-sensitive foods such as meat [3,6]. Numerous
essential oils are available, of which tea tree, thyme, rosemary, and lime essential oils
are well known and have been used in manufacturing various type of food packaging
films [7–9]. Bioactive compounds commonly present in essential oils, such as polyphenols,
flavonoids, terpenes, terpenoids, aldehydes, fatty acids, phenols, ketones, esters, alcohols,
nitrogen, sulfur compounds, limonene, etc., have many functional properties [5,10]. Many
reports on essential oils containing biopolymer-based packaging films have recently been
published [8,11–16]. Insights into these results are promising regarding applications to
active packaging materials.

Various combinations have recently been studied to manufacture biopolymer-based
food packaging films [17–20]. According to recent reports, combining polysaccharides and
proteins is one of the good options for making films [21–29]. For this purpose, chitosan, a
polysaccharide, and gelatin, a protein, may be appropriate choices. Chitosan and gelatin are
biopolymers that have been extensively studied to develop active and intelligent packaging
films [30,31]. Recently, some literature on chitosan and gelatin blended packaging films has
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been published, and there are reports that chitosan and gelatin are compatible, suitable,
and produce excellent films [17,32–36]. Adding essential oils to the chitosan/gelatin matrix
is expected to improve the physical and functional properties of the films. Although many
reports have already been published, comparative studies on the effects of various essential
oils on biopolymer-based packaging films are limited. Comparing essential oil-added film
could be useful to obtain more insights into the potential of the various essential oils in the
packaging matrix. Even though essential oils are promising functional materials for active
food packaging applications, the stability of the essential oils is a key factor that needs
more attention for further improvement in this research field.

Therefore, this work aims to provide comparative insight into the influence of different
essential oils (lime, tea tree, rosemary, and thyme) on the physical and functional properties
of chitosan/gelatin films.

2. Materials and Methods
2.1. Materials

Food-grade gelatin (Type A, 200 Bloom) was procured from Gel-Tec Co. Ltd. (Seoul,
Republic of Korea). Glycerol was obtained from Daejung Chemicals & Metals Co., Ltd. (Si-
heung, Gyeonggi-do, Republic of Korea). Lime, tea tree, rosemary, and thyme essential oil
(100% natural oil) were procured from JK Group Co., Ltd. (Bucheon, Gyeonggi-do, Republic
of Korea). Chitosan (viscosity: 200–800 cP at 1% acetic acid, MW: 190,000–310,000, 75–85%
deacetylated), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS), and potassium persulfate were acquired from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Fabrication of Films

Various essential oil (lime, tea tree, rosemary, and thyme)-added chitosan/gelatin-
based functional film was prepared using a solution casting method [17]. For the prepa-
ration of the film solution, 2 g of chitosan was first dissolved in 100 mL of 1% acetic acid
solution at room temperature with continuous stirring overnight. Next, 2 g of gelatin
was dissolved in 100 mL of distilled water at 80 ◦C with slight agitation. After mixing
the completely dissolved biopolymer solution, glycerol (30 wt% based on polymer) was
added as a plasticizer and stirred at room temperature for 1 h. Then, 2 wt% (based on
polymer) of each essential oil was individually dispersed in an aqueous solution, and
added to the biopolymer mixture with vigorous stirring using Tween 80 as an emulsifier.
The film solution was then cast on a flat Teflon film-coated glass plate, dried at room
temperature for 48 h, and stored in a humidity chamber controlled at 25 ◦C and 50% RH. In
addition, a control chitosan/gelatin film without essential oil was prepared following the
same procedure. The fabricated films were named ChsG, ChsG/Lim, ChsG/TT, ChsG/RO,
and ChsG/Thy according to the essential oil used. The schematic representation of the
fabrication of essential oil-added film is shown in Scheme 1.

2.3. Experimental
2.3.1. Characterization and Properties of the Film
Surface Color and Light Transmittance

The surface color of the films was measured using a Chroma meter (Konica Minolta,
CR-400, Tokyo, Japan) with a white color plate (L = 97.75, a = −0.49, and b = 1.96) as a stan-
dard background for color measurement. The total color difference (∆E) was determined
using the following equation:

∆E =

√
(∆L)2 + (∆a)2 + (∆b)2 (1)

where ∆L, ∆a, and ∆b are the difference between each color value of the standard color plate
and film sample.



J. Compos. Sci. 2023, 7, 126 3 of 13

The UV-vis transmission spectra of the films were recorded using a spectrophotometer
(Mecasys Optizen POP Series UV-vis spectrophotometer, Seoul, Republic of Korea) in the
wavelength range of 200–800 nm. The UV-barrier and transparency properties of the film
were assessed by determining the percent light transmittance of the film at 280 nm (T280)
and 660 nm (T660), correspondingly [23].
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Scheme 1. The preparation procedure diagram of essential oil-added chitosan/gelatin-based active
packaging film.

Surface Morphology and FTIR

The film’s surface morphology was detected using field emission scanning electron
microscopy (FE-SEM, SU 8010, Hitachi Co., Ltd., Matsuda, Japan) at an accelerating voltage
of 2 kV. Before measurement, all the film specimens were sputter coated with platinum for
120 s. FTIR spectra of the film samples were noted at a wavenumber of 4000–500 cm−1 with
the resolution of 32 scans at 4 cm−1 using a TENSOR 37 Spectrophotometer with OPUS 6.0
software (Billerica, MA, USA).

The Mechanical Properties

The film sample’s thickness was measured using a hand-held digital micrometer
(Digimatic Micrometer, QuantuMike IP 65, Mitutoyo, Japan) with an accuracy of 1 µm. The
film thickness was measured at five random locations of each film sample, and their average
was used. The film’s mechanical properties, such as tensile strength (TS), elongation at break
(EB), and elastic modulus (EM), were determined following the standard method of ASTM
D 882-88 using an Instron Universal Testing Machine (Model 5565, Instron Engineering
Corporation, Canton, MA, USA). The Instron machine was operated with an initial grip
separation of 50 mm and a crosshead speed of 50 mm/min [26].

Water Vapor Permeability (WVP) and Water Contact Angle (WCA)

The WVP of the composite films was determined gravimetrically using a WVP cup
following the ASTM E96-95 standard method. At first, the WVP cup was filled with a
prescribed amount of water, then covered by the films, sealed, and kept in the controlled
environmental chamber at 25 ◦C and 50% RH. After equilibration, the WVP cup’s weight
was measured at every one-hour interval, and weight loss was calculated. The WVTR
(g/m2.s) was determined from the slope (linear) of the steady-state portion of weight loss
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of the cup versus the time curve. Then, the WVP of the films was calculated in g.m/m2.Pa.s
as follows [29]:

WVP = (WVTR × L)/∆p (2)

L was the film’s thickness (m), and ∆p was the partial water vapor pressure difference (Pa)
across the film.

The film’s surface wettability was determined by computing the water contact angle
of the film surface using a WCA analyzer (Phoneix 150, Surface Electro Optics Co., Ltd.,
Kunpo, Republic of Korea). The film sample was cut (3 cm × 10 cm) and then fixed on the
holder. A drop of water (~10 µL) was added to the film’s surface using a micro syringe and
the WCA was read.

Thermal Stability

The films’ thermal stability was determined using a thermogravimetric analyzer (Hi-
Res TGA 2950, TA Instrument, New Castle, DE, USA). For the measurement, ~10 mg of film
sample was taken in a standard aluminum pan and scanned at a heating rate of 10 ◦C/min
in a temperature range of 30–600 ◦C under a nitrogen flow of 50 cm3/min with an empty
pan as a reference.

Antioxidant Activity

Antioxidant activities of the films were measured by assessing the free radical scaveng-
ing activity [29]. Both DPPH and ABTS assay were used to check the antioxidant potential
of the chiotosan/gelatin-based packaging film. For DPPH analysis, a prescribed amount
of methanolic solution of DPPH was freshly made, and ~50 mg of tested film sample was
added in a 10 mL DPPH solution and incubated at room temperature for 30 min, then the
absorbance was measured at 517 nm. For the ABTS assay, a prescribed amount of potassium
sulfate was added to the ABTS solution, followed by overnight incubation in the dark to
make the ABTS assay solution. Then, ~50 mg of tested film samples was added to 10 mL
of ABTS assay solution, incubated at room temperature for 30 min, and the absorbance
was measured at 734 nm. The antioxidative activity of all the tested films was calculated
as follows:

Free radical scavenging activity(%) =
Ac − At

Ac
× 100 (3)

where Ac and At were the absorbance of DPPH/ABTS of the control and test film. All the
tests were performed in triplicate, and the average value was reported.

Statistical Analysis

The film properties were measured in triplicate with individually prepared films.
One-way analysis of variance (ANOVA) was performed to compare the differences among
the samples, and the significance of each mean property value was determined (p < 0.05)
by Duncan’s multiple range test using the SPSS statistical analysis computer program for
Windows (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Microstructure

The surface morphology of the essential oil-doped films was confirmed using field
emission scanning electron microscopy, and the results are shown in Figure 1. The control
film was observed to be smooth and free of voids or cracks, which was consistent with
chitosan and gelatin. Previous reports on chitosan/gelatin-based films also support good
compatibility [36]. Adding essential oils to a biopolymer mixture results in only minor
changes to its full form. Most importantly, the essential oils were well dispersed in the
polymer mixture, and the film surface’s roughness seemed to increase. Overall, including
various essential oils suggests a film compatible with chitosan/gelatin has been developed.
Similar results have recently been reported for essential oils with various biopolymer-based
films [12,37,38].
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3.2. FTIR

The FTIR spectra were used to evaluate the chemical interaction between the biopoly-
mers and the essential oils, and the results are shown in Figure 2. The peak observed at
3294 cm−1 was due to the O-H stretching and N-H vibration of the chitosan and gelatin [39].
The peak at 2932 cm−1 appeared owing to the C-H stretching vibrations of alkane groups
of the chitosan [40]. The peak at 1641 and 1544 cm−1 was attributed to the carbonyl group
(amide I) and N-H stretching vibration, respectively [41]. The peaks observed at 1452, 1399,
and 1230 cm−1 were attributed to C-N and N-H stretching, O-H bending, and amide-III of
the gelatin, respectively [42]. The peak at 1158 cm−1 was due to the stretching vibration of
the saccharide structure, while that at 1025 cm−1 denoted the C=O stretching bond vibration
of chitosan [43]. The peaks for chitosan and gelatin were spotted in the control and all other
essential oil-added films, indicating good miscibility and compatibility among the two
biopolymers. The FTIR spectra were similar to the previously reported chitosan/gelatin-
based films [44]. Mixing various essential oils only showed variation in peak intensity or
slight shifting in peak position. Apart from that, no new peak was observed that suggested
the interaction among the fillers and polymers is based on physical forces such as van der
Walls forces, electrostatic interaction, and hydrogen bonds [45,46]. Similar results have
recently been reported for biopolymer-based packaging films with essential oils [17,47].
The effect of essential oils on the chemical interaction with biopolymers can be varied de-
pending on many factors such as polymer type, essential oils type, and fabrication method.
In some cases, the addition of essential oils in biopolymer films showed some alteration in
chemical characteristics which could be due to adding an emulsifier or added materials to
produce a Pickering emulsion. The FTIR results showed that the addition of essential oils
to biopolymers did not significantly affect their chemical properties.

3.3. Thermal Stability

The thermal stability of all chitosan/gelatin-based films was verified using thermo-
gravimetry, and the results are presented in Figure 3. In the thermogravimetric analysis
(TGA) and derivative thermogravimetric (DTG) thermograms, it can be detected that all
films show two major decomposition peaks. The degradation pattern of the film was similar
to previously reported chitosan/gelatin-based films. The first degradation maxima found
at around 60–100 ◦C were due to the evaporation of moisture in the film [17]. A second and
main thermal decomposition peak occurred around 300 ◦C due to biopolymers and glycerol
degradation [36]. Slight changes in peak patterns and maximum peaks were observed in
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the presence of different essential oils. In addition, except for the increase in residual char
content in the case of the film with rosemary essential oil added, the residual char content of
the other films remained similar to that of the control film. The higher char content (~40%)
may be due to non-combustible materials such as minerals and impurities present in the
polymers [48]. It can be inferred that the thermal stability of the chitosan/gelatin-based
films did not change significantly in the presence of essential oils. Similar results have been
reported for essential oils in other biopolymer-based packaging films [36,49].
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Figure 2. FTIR spectra of various essential oil-added chitosan/gelatin films.

3.4. Optical Properties of the Film

The surface color of chitosan/gelatin-based films was studied, and the results are
presented in Table 1. The brightness of the control film was ~90%, and although adding
essential oil slightly increased the brightness, the change was not statistically significant. On
the other hand, the a and b values of the film increased only slightly, and the changes were
again not very expressive. Since adding essential oils did not result in significant surface
color changes, the film’s overall color difference also did not change. The essential oils used
were all close to colorless and did not significantly affect the color of the chitosan/gelatin-
based films (Figure 4). Similar results have been reported for biopolymer-based packaging
films with added essential oils [36,49].

Table 1. Surface color and light transmittance of the chitosan/gelatin-based functional films.

Films L a b ∆E T280 (%) T660 (%)

ChsG 89.7 ± 1.1 b −1.3 ± 0.3 a 9.3 ± 1.55 a 5.5 ± 1.5 a 24.5 ± 4.0 b 91.1 ± 0.2 c

ChsG/Lim 90.6 ± 0.1 b −1.5 ± 0.1 a 9.6 ± 0.3 a 5.4 ± 0.3 a 17.2 ± 2.3 b 90.9 ± 0.1 b

ChsG/TT 90.3 ± 0.1 a −1.6 ± 0.1 b 10.4 ± 0.2 b 6.3 ± 0.2 b 16.8 ± 2.5 a 90.5 ± 0.4 a

ChsG/RO 90.6 ± 0.1 a −1.6 ± 0.1 b 10.1 ± 0.5 b 5.9 ± 0.5 b 24.8 ± 1.7 a 91.0 ± 0.1 a

ChsG/Thy 90.5 ± 0.1 a −1.6 ± 0.1 b 9.9 ± 0.4 c 5.8 ± 0.4 b 18.6 ± 2.5 a 90.9 ± 1.0 a

Any two means in the same column followed by the same letter are not significantly (p > 0.05) different from
Duncan’s multiple range tests.
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For more insight into the optical properties of essential oils with chitosan/gelatin-
based films, we checked the UV-vis transmission spectrum, and the results are shown in
Figure 4. The neat films showed high light transmittance and incorporation of essential
oils. The transmittance was not sharply reduced. The film’s UV-barrier (Transmittance at
280 nm, T280) and transparency (Transmittance at 660 nm, T660) properties were deter-
mined, and the results are shown in Table 1. The control film showed some UV-barrier
properties that may be due to UV light absorption by the aromatic amino acid moieties
in the gelatin [50]. The sunscreen properties of essential oils with films are somewhat
improved due to bioactive compounds such as polyphenols in essential oils [22]. The light
protection properties were highest for tea tree oil, followed by lime, thyme, and rosemary
oils. The optical transmittance is similar to previously reported chitosan/gelatin-based
packaging films. On the other hand, the transparency of the film was very high (>90%),
very similar to previously reported data [39,51]. The high transparency of the film was
maintained by adding essential oils. Similar results have been reported in the case of
biopolymer-based packaging films with essential oils [51,52].



J. Compos. Sci. 2023, 7, 126 8 of 13

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 8 of 14 
 

 

properties that may be due to UV light absorption by the aromatic amino acid moieties in 
the gelatin [50]. The sunscreen properties of essential oils with films are somewhat im-
proved due to bioactive compounds such as polyphenols in essential oils [22]. The light 
protection properties were highest for tea tree oil, followed by lime, thyme, and rosemary 
oils. The optical transmittance is similar to previously reported chitosan/gelatin-based 
packaging films. On the other hand, the transparency of the film was very high (>90%), 
very similar to previously reported data [39,51]. The high transparency of the film was 
maintained by adding essential oils. Similar results have been reported in the case of bi-
opolymer-based packaging films with essential oils [51,52]. 

Table 1. Surface color and light transmittance of the chitosan/gelatin-based functional films. 

Films L a b ΔE T280 (%) T660 (%) 
ChsG 89.7 ± 1.1 b −1.3 ± 0.3 a 9.3 ± 1.55 a 5.5 ± 1.5 a 24.5 ± 4.0 b 91.1 ± 0.2 c 
ChsG/Lim 90.6 ± 0.1 b −1.5 ± 0.1 a 9.6 ± 0.3 a 5.4 ± 0.3 a 17.2 ± 2.3 b 90.9 ± 0.1 b 
ChsG/TT 90.3 ± 0.1 a −1.6 ± 0.1 b 10.4 ± 0.2 b 6.3 ± 0.2 b 16.8 ± 2.5 a 90.5 ± 0.4 a 
ChsG/RO 90.6 ± 0.1 a −1.6 ± 0.1 b 10.1 ± 0.5 b 5.9 ± 0.5 b 24.8 ± 1.7 a 91.0 ± 0.1 a 
ChsG/Thy 90.5 ± 0.1 a −1.6 ± 0.1 b 9.9 ± 0.4 c 5.8 ± 0.4 b 18.6 ± 2.5 a 90.9 ± 1.0 a 
Any two means in the same column followed by the same letter are not significantly (p > 0.05) dif-
ferent from Duncan’s multiple range tests. 
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Figure 4. Apparent image and UV-vis light transmission spectra of essential oil-added
chitosan/gelatin-based films.

3.5. Mechanical and Water Vapor Barrier Properties

The thickness and mechanical properties of the chitosan/gelatin-based film were
studied, and the results are shown in Table 2. The thicknesses of the control and essential
oil-added films were almost similar. In mechanical properties, three parameters were
studied: mechanical strength, flexibility, and stiffness. The mechanical strength of the
control chitosan/gelatin film was ~80 MPa, which is considered high for a biopolymer-
based film. The results are consistent with previously reported data [17]. The mechanical
strength increased significantly in all the essential oil-added films. An increase in the
mechanical strength of chitosan/gelatin films of about 30% was observed. The film’s
highest mechanical strength was observed with thyme oil added, followed by rosemary,
lime, and tea tree [53,54]. At the same time, the elongation at break (EB) and the stiffness
of the films with added essential oil decreased and increased, respectively. Insights from
testing mechanical properties implying the inclusion of essential oils in chitosan/gelatin
films formed a mechanically strong but less flexible type of film. Similar results were also
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reported for packaging films based on biopolymers containing films containing essential
oils [17,39].

Table 2. Mechanical properties, water vapor permeability (WVP), and water contact angle (WCA) of
the chitosan/gelatin-based composite films.

Films Thickness (µm) TS (MPa) EB (%) EM (GPa) WVP (×10−9 g.m/m2.Pa.) WCA (deg.)

ChsG 54.2 ± 3.0 a 79.3 ± 2.6 a 6.5 ± 1.3 a 3.2 ± 0.3 a 0.67 ± 0.1 a 52.2 ± 1.7 a

ChsG/Lim 54.6 ± 4.2 a 100.5 ± 7.1 b 5.7 ± 0.7 a 3.9 ± 0.4 b 0.77 ± 0.1 a 51.6 ± 3.3 a

ChsG/TT 52.3 ± 4.6 a 101.4 ± 7.0 b 5.4 ± 0.7 a 3.8 ± 0.2 b 0.77 ± 0.1 a 53.4 ± 3.7 a

ChsG/RO 52.3 ± 3.7 a 104.1 ± 6.4 b 5.6 ± 0.7 a 3.9 ± 0.3 b 0.69 ± 0.1 a 55.5 ± 5.6 a

ChsG/Thy 51.2 ± 1.5 a 104.1 ± 4.3 b 5.9 ± 0.8 a 4.1 ± 0.5 b 0.59 ± 0.2 a 55.1 ± 3.8 a

Any two means in the same column followed by the same letter are not significantly (p > 0.05) different from
Duncan’s multiple range tests.

The water vapor transmission rate of any biopolymer-made composite film is an
imperative parameter and is primarily reliant on the kind of matrix polymer used for the
fabrication of the film as well as on the filler and matrix interactions. The water vapor
barrier properties are reciprocally related to the water vapor permeability of the film. The
water vapor permeability of chitosan/gelatin films is also shown in Table 2. The water
vapor permeability of the films was observed to decrease or increase only slightly in the
presence of essential oils, but the changes were insignificant. The vapor barrier properties
lead to insights indicating that the vapor barrier properties of chitosan/gelatin-based films
are slightly changed or unchanged in the presence of essential oils. The WVP was largely
reliant on three parameters—water vapor absorption on the film surface, dissemination of
water from the film, and water evaporation from the external surface of the film. Similar
results were recently reported for essential oil-blended gelatin/chitosan-based packaging
films [17,39].

3.6. Hydrophobicity

The WCA was calculated to check the hydrophilicity of the packaging film. The water
contact angle of essential oils containing chitosan/gelatin films was studied to confirm the
hydrophobicity of the films, and the results are presented in Table 2. The control film has a
WCA of ~52◦, indicating a hydrophilic surface. The addition of lime essential oil slightly
decreased the WCA, while the addition of rosemary, thyme, and tea tree essential oils
slightly increased the WCA of the film, but the difference was not statistically significant
(p > 0.05). Since the film is hydrophilic and the essential oil is hydrophobic, it was expected
that mixing them would increase the WCA of the film. The WCA of the composite film did
not increase significantly because the essential oil’s hydrophobic effect was attenuated by
adding an emulsifier (Tween 80) [55]. Similar results have been reported for biopolymer-
based packaging films incorporated with essential oils [17,49,56].

3.7. Antioxidant Activity

The antioxidant activity of chitosan/gelatin films was studied using DPPH and ABTS
tests, and the results are shown in Figure 5. The control chitosan/gelatin film showed
significant antioxidant activity, probably due to the presence of bioactive functional groups
such as hydroxyl and amino groups. Antioxidant activity of the films was higher in the
ABTS assay than in DPPH because the dissolution of the polymer is faster in an aqueous
solution of the ABTS analysis than in an alcoholic solution of DPPH analysis, facilitating
the release of active ingredients [57]. The antioxidant activity of the chitosan/gelatin films
was tremendously enhanced in the presence of all essential oils, as expected due to the
antioxidant potential of the added essential oils. Lime, thyme, tea tree, and rosemary essen-
tial oils contain many bioactive components, such as phenols, flavonoids, and terpenoids,
which are well-known free radical scavengers [9,58]. The highest antioxidant activity was
observed for thyme oil (100% increase), rosemary (60% increase), tea tree (55% increase),
and lime (25% increase) essential oils for this variant versus the control chitosan/gelatin
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film. The different antioxidant activity of the composite films may be due to the differ-
ent compositions of essential oils and the varying release of bioactive components from
polymer matrices. It has often been observed that the bioactive ingredient functionlized
packaging films’ antioxidant activity varied greatly when different polymers were used.
Similar antioxidant activity results were previously reported for packaging films infused
with essential oils [12,59].

Biopolymer-based packaging is a promising alternative to synthetic plastics, however,
focusing on mass production and making it available to the masses at lower production
costs is essential. The cost of biopolymer-based films is an important parameter, and it is
known that the cost of biopolymer-based films is around USD 3–3.5/kg [1]. Meanwhile,
according to a report from China’s Jining Mingsheng New Material Co., Ltd., the estimated
cost of making a bioplastic-based film is USD 3.6 per kg [60,61]. Although the packaging
cost will increase slightly due to the addition of essential oils, the cost of adding essential
oils can be offset by the advantages of securing safety, maintaining quality, and extending
the shelf life of packaged foods.
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4. Conclusions

Active packaging films were prepared by adding essential oils to a chitosan/gelatin
polymer matrix. The essential oils (lime, tea tree, rosemary, and thyme essential oils)
are compatible with biopolymers, as shown in electron microscopy images. The neat
chitosan/gelatin film was transparent (more than 90% transparency) and maintained
the same level of transparency even when essential oil was added. Blending essential
oils significantly improved the mechanical strength (~30%) of the chitosan/gelatin-based
composite film. The film’s stiffness also improved similarly to the mechanical strength,
but the flexibility decreased. The antioxidant activity of the chitosan/gelatin films was
highest for thyme oil (100% increase) and lowest for lime oil (25% increase) compared to the
control film. The films’ thermal, water vapor barrier properties, and hydrophobicity did not
change significantly in the presence of essential oils. The chitosan/gelatin-based functional
films with added essential oils have a high potential for active food packaging applications.
Even though packaging film with included essential oils has many advantages, they also
suffer certain restrictions. The key constraint of applications of essential oils as bioactive
functional compounds in packaging material is their high volatility, low solubility, and
their strong flavor. Further research work is needed to improve the stability of essential oils
and their solubility in packaging matrix.
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