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Abstract: Hybrid dysprosium-doped borate glassy samples [B-Gly/Dy]HDG (Borate Glass/
Dysprosium)Hybrid Doped Glass were prepared in this study via the melt-quenching method. Its lin-
ear/nonlinear optical, photoluminescence, hardness indentation, and micro-creep properties were
analyzed. The amorphous structure for all the prepared samples was confirmed from the XRD
patterns. In addition, density functional theory (DFT), optimized by TD-DFT and Crystal Sleuth,
was used to study the structure and crystallinity of the [B-Gly/Dy]HDG as isolated molecules and
agreed with the peaks of experimental XRD patterns. Additionally, theoretical lattice types were
studied using Polymorph, a content studio software, and orthorhombic Pc21b (29) and triclinic P-1
(2) structures were provided. Both mechanical and optical properties were responses to different
concentrations of Dy2O3 in the glassy borate system. It was found that the length of indentation
increases by increasing the load time, and the hardness decreases by increasing the load time. The
stress exponent value also increased from 4.1 to 6.3. The indentation strain increases by increasing the
load time. The direct optical band gap was evaluated using the Davis–Mott relation. Urbach energy
and its connection to the disorder degree in materials were studied depending on the Dy2O3 concen-
tration. The acquired optical parameters were also analyzed to determine the nonlinear refractive
index as well as the linear and third-order nonlinear optical susceptibility of the investigated glass
samples. The photoluminescence emission spectra were recorded, and their attributed transitions
were studied. The mechanical studies showed that the hardness values increased by increasing
Dy2O3 concentrations from 4160.54 to 5631.58 Mpa. The stress exponent value also increased from
4.1 to 6.3. Therefore, the higher value of stress exponent (S) is more resistant to indentation creep.

Keywords: borate glass; rare earth; linear optical; micro-hardness; indentation creep

1. Introduction

With the diversity of glass compositions and improved analysis methods, glass struc-
tures suitable for every technological need have been created. Recently, a glass system
based on borate reinforced with several oxides has been widely scrutinized due to its
outstanding properties [1]. Boric oxide is used to make glass using BO3 units alone, and
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the BO3 units are converted to BO4 units by adding various cations. Due to the rupturing
of B-O-B and the splitting of bridged oxygen [2–6]. Zinc oxide is often employed as a glass
matrix modifier, causing defects by breaking the B-O-B link, forming non-bridged oxygen
atoms, and creating dangling bonds [7–12]. Because of their unique properties, such as
effective radiation shielding, a broad glass formation zone, and low melting temperatures,
lead borate glasses are highly favored in technical applications [13,14]. Essentially, borate
glass frameworks containing lead oxide are notable for their increased visual transmit-
tance [15]. Over glass systems, the essential and optimum utilization of zinc and lead
oxide as network exchangers decreases phonon energy [16,17]. Because of their ornamental
qualities, rare earth elements are employed in glass production [18,19]. Because of the
qualities of glass doped with rare earth elements, it may be used in various applications,
including laser materials, plasma screens, optical waveguides, fiber amplifiers, and efficient
amplifiers [20–23].

All oxide glasses based on (B2O3, SiO2, TeO2, and P4O6) have been proven to be
the most suitable host materials for the progress of optoelectronic components [24,25].
It is possible to assume that glass based on borate is the most frequent variety because
of its excellent transparency, chemical resistance, and thermal stability [26]. The low
phonon energy host glass extends lower non-radiative relaxation rates and strong quantum
efficiencies [27–29]. The optical homogeneity of the glassy matrix causes RE ions to display
a variety of latent laser transitions. The spectroscopic analysis of RE ions in glasses yields
information on the excited states’ transition probabilities, lifetimes, and branching ratios,
all of which are important in the design and growth of different electro-optic and optical
systems [30–33].

Neoteric TDDFT applications (DMol3 and Crystal Sleuth) for researching the structure
of glass matrix, stability phase, and nanocomposite compounds [34–36] are reviewed.
The use of this complete energy-based method for the estimation and investigation of
spectroscopic properties has received little attention. This article discusses the structural
study using a limited programming language [37]. The objective is to demonstrate that
the same atomistic modeling techniques may be consistently employed throughout the
experimental inquiry to achieve high levels of precision [38]. In order of crystallinity
investigations, Polymorph used content studio software to study the possible crystal sites
for the compounds and predict the final crystal structure of the system [39].

In the present work, the impact of Dy2O3 additive on the optical and mechanical
characteristics of a novel glass system with chemical composition; (50 − x)B2O3 + 40Pb3O4
+ 10CaO + xDy2O3 with the different substitution ratio of Dy2O3 (x = 0, 1, 2, 3, 4 and 5) was
prepared. To explore and describe the modification of the bandgap structure, the UV–Vis
absorbance spectra of the studied glass samples were investigated. The effect of adding
different ratios of Dy2O3 on indentation creep behavior and micro-hardness values has
been analyzed.

2. Materials and Methods
2.1. Materials and Reagents

All the oxides (raw materials) used in the study (B2O3, Pb3O4, CaO, and Dy2O3) were
purchased from Oxford Laboratory. In contrast, dysprosium oxide was obtained from
(Sigma-Aldrich, St. Louis, MO, USA) at a purity of 99.9%.

2.2. Experimental Procedure

The nominal compositions for the six studied glass samples (50 − x)B2O3 + 40Pb3O4
+ 10CaO + xDy2O3 with varied Dy2O3 content (x = 0, 1, 2, 3, 4, and 5 wt%) were pro-
duced using the traditional solid-state approach. Dy0 (x = 0), Dy1 (x = 1), Dy2 (x = 2),
Dy3 (x = 3), Dy4 (x = 4), and Dy5 (x = 5) were used to code the glass samples. Boron oxide
(B2O3), lead oxide (Pb3O4), calcium oxide, and dysprosium oxide (Dy2O3) were well mixed
before being pre-heated for 120 min at 300 degrees Celsius. The resulting formulations
were thermally heated in a porcelain crucible at 1100 ◦C for 30 min before being cast onto a
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stainless-steel mold to originate glass samples in a disc form. The melting temperature of
Dy2O3 increased from 1100 ◦C to 1300 ◦C when the substitution ratio of Dy2O3 increased.
Following quenching, the produced samples were directly annealed in a muffle furnace
set to 300 ◦C [34]. The structure of the samples has been studied at room temperature by
powder X-ray diffraction analysis using a Bruker, AXS D8 Advance, Germany (Cu-Kα

radiation). UV-visible absorption was recorded using the Shimadzu UV-2450 spectropho-
tometer at a range of (190–900 nm); all the measurements were taken at room temperature.
Photoluminescence emission spectra were measured by HoRiBA (IHR 320) using a He-Cd
laser with a wavelength of 442 nm as an excitation source.

A digital Vickers microhardness tester was used to accurately measure the hardness of
glass specimens (Model FM-7 Future-Tech. Corp. Tokyo Japan). Micro indentation creep
methods have substantial benefits in terms of speed, non-destructiveness, accuracy, and
accessibility. For all types of glasses and surface treatments, only one indenter type may be
utilized [35,36]. Although testing the softest and hardest materials under varying loads is
more adaptive and accurate, the surface is subjected to standard stress for a record period
using a pyramid-shaped diamond. An indentation is a pyramid with opposite sides that
meet at a 136-degree angle. It applies 10 gf of diamond pressure to the material’s surface,
and the impression size (typically no more than 0.5 mm) is assessed using a microscope. The
Vickers indenter leaves an impression of a black square on a light background, swinging
the microscope over a specimen to measure a ±1/1000 mm square depression. The area is
calculated by averaging 10 measurements made across the diagonals for each sample.

The following formula is used to compute the number of Vickers (HV) [40,41]:

HV = 2F Sin(136o/2)/2/d2 (1)

meaning that HV = 1.854F/d2 approximately, where (F) and (d) are the applied load force
and average diagonal length.

3. Results
3.1. Structural, Optical, and Mechanical Properties
3.1.1. X-ray Diffraction Analysis

The XRD spectral characteristics of the manufactured [B-Gly] and [B-Gly/Dy]HDG

were compared with the characteristics of the system-isolated matrix (by TD-DFT simula-
tion). The X-ray diffraction patterns of the manufactured glasses with various quantities of
Dy2O3 additions are shown in Figure 1. This distinctive proved a completely amorphous
nature for all samples under study. By changing the concentration of Dy2O3, the position
and the intensity of the broad prominent peak at 2θ ≈ (29◦) are changed.

The XRD patterns in Figure 2a,b demonstrate that [B-Gly] and [B-Gly/Dy5]HHG

are nearly identical. The XRD analysis in Figure 2a,b indicates that [B-Gly] and [B-
Gly/Dy5]HNC are almost similar at 2θ = 25.77◦. For the different doped concentrations of
dysprosium (lanthanides of inert transition elements), two peaks appeared at 2θ = 6.81◦

and 2θ = 13.62◦. Table 1 demonstrates the relationship between the miller index (hkl) and
the estimated average crystallite size (D), and the full width at half maximum (FWHM)
absolute values. A good agreement between the interplanar distances (d) and the data in
database code amcsd 96-411-7035 [42,43] and 0019483 [44] were observed. Diffraction peaks
that were quite close to the [B-Gly] and [B-Gly/Dy]HDG measured data were generated by
TDDFT and Crystal Sleuth Microsoft applications [45].
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Figure 1. XRD diffractogram for [B-Gly] with different concentrations of Dy2O3 glass system. 
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Figure 2. (a) PXRD patterns (combined experimental and simulated) for [B-Gly] and [B-Gly]Iso isolate
molecule. Insert is a 3D orthorhombic Pc21b (29) lattice-type computed using the Polymorph method.
(b) [B-Gly/Dy]HDG and [B-Gly/Dy]Iso isolate molecule. Inset is a 3D Monoclinic P-1(2) lattice type.

Table 1. The experimental and calculated XRD data using the Refine Version 3.0 (Carnegie Mellon
University, Pennsylvania) Software Program (Kurt Barthelme’s & Bob Downs) for experimental [B-Gly]
and [B-Gly/Dy]HDG and simulated parts [B-Gly]Iso and [B-Gly/Dy]Iso.

Symmetry
Observed Computed

2θ (◦) d (Å) hkl FWHM Int. (a) 2θ (◦) d (Å) DAv δ (d)

[B-Gly] Orthorhombic Pc21b (29)

a = 7.74; b = 9.06 and c = 14.82Å 25.77 3.454 020 5.1945 1316.87 26.16 3.456 9.159 109.2

α = γ = β = 90◦ ; V = 1153(4); 35.63 2.554 421 0.5971 192.571 35.55 2.561 79.68 12.55

rmse (b)= 0.00002625, Average 2.8958 44.42 60.87

[B-Gly/Dy]HDG Monoclinic2 C1c1(9) 6.771 14.153 101 2.4289 690.493 6.808 14.069 195.88 51.05

a = 6.88; b = 6.89; c = 6.93 12.343 7.4859 201 4.0595 1067.41 12.69 7.2745 117.20 85.32

α = 90.0; β = 110(1)◦ , γ = 90.0◦ 25.071 3.6246 020 5.8625 4650.11 24.98 3.6373 81.160 123.2

Machine error = 0.531 31.180 2.9146 514 4.4735 2020.23 31.35 2.8985 106.35 94.03

V = 1600(37); 34.101 2.6674 605 0.5971 92.0390 33.93 2.6810 79.680 125.5

rmse (b) = 0.00123 35.632 2.5545 421 0.2228 40.7130 35.55 2.5605 213.54 46.83

38.417 2.3728 424 5.229 193.835 38.58 2.3632 90.990 109.9

45.798 2.0016 132 2.7222 140.681 45.70 2.0057 174.78 57.22

58.329 1.5939 731 1.7931 89.2510 58.37 1.5928 265.34 37.69

62.204 1.5027 111 2.2945 116.484 62.19 1.5029 207.36 48.23

Average 150.32 77.90

Intensity: (b) root-mean-square error; (b) nm and (c) = 10−3. (a)—lattice parameters, and (d)—Crystallite size.

The X-ray diffraction pattern of [B-Gly] and [B-Gly/Dy]HDG was evaluated by apply-
ing the Debye–Scherrer relation, along with the Pesedo–Voigt function; the polarization
nearly equal to 0.5 and 1/dhkl = 0.0566Å−1 − 0.7446Å−1, λ = 1.540562 Å, I2/I1 = 0.5 in
the range of 5 ≤ 2θ ≤ 80◦. Using the formula of Scherer D = 0.9λ/(FWHM.cos θ), where
λ = 1.541838 Å, which is the wavelength of the X-ray [46,47]. As presented in Table 1,
features such as peak intensity, d-spacing (d), Miller indices (hkl), the average crystallite
size (D), and FWHM were studied using the X-ray diffraction data from [B-Gly] and [B-
Gly/Dy]HDG. The average crystalline size is (Dav) = 44.42 nm and 150.32 nm for [B-Gly]
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and [B-Gly/Dy]HDG, respectively [48–50]. Additionally, theoretical X-ray diffraction mod-
els were determined by content studio software computations used in Polymorph [see
(Figure 2 Inset)]. The integrals performed on the Brillouin zone are shown in the inset of
Figure 2 with 2x2x1 (Polymorph [B-Gly] and [B-Gly/Dy]HDG. Estimated PXRD patterns
were compared with the experimental XRD structures for the relevant experiment. There is
only a slight difference in the position and strength of the specific peaks between the simu-
lated and experimental XRD models; therefore, the general similarity has attracted much
attention. Many factors influence the experimental XRD pattern, of which instrumentation
and data collection techniques are only two [33].

The simulated XRD for [B-Gly]Iso and [B-Gly/Dy]Iso as isolated molecules provides
orthorhombic Pc21b (29) and triclinic P-1 (2) structures, respectively. For the experimental
patterns of [B-Gly] and [B-Gly/Dy]HDG, at 2θ equal to 25.77◦, prominent peaks at hkl
(020) appeared. Using the above assessment, the PXRD pattern accuracy of the fabricated
material was validated. The atomic scale of [B-Gly]Iso and [B-Gly/Dy]Iso was estimated
depending on the experimental and calculated PXRD patterns combination [51]. Addition-
ally, the density of the defect was calculated by [52] δ = 1

D , specified as the dislocation
line length per unit volume. The difference between average crystallite size calculation of
borate glassy sample [B-Gly] and dysprosium doped borate glassy samples [B-Gly/Dy]HBG

(∆DAv) by the equation of Scherrer and based on the highest peak of diffraction related
to (020)1 crystal plane gives the value of ∼= (∆DAv = 150.32 − 44.42 = 105.90 nm). It can
be conculcated that the high-value difference in crystallite size is an attribute to the high
atomic mass of dysprosium (Mol. WtDy = 162.50), which is doped in the borate glassy
samples [53].

3.1.2. UV–Vis Spectrum Analysis

The glass samples’ UV–Vis absorbance spectra were recorded at room temperature to
define and describe the changes in the bandgap structure. The UV–Vis absorption spectra
of all produced glass samples are shown in Figure 3.
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Figure 3. UV–Vis absorption spectrum of the prepared glass samples; the inset figure shows the
optical band gap as a function of Dy2O3 content.

The UV–Vis absorption spectra of the samples investigated demonstrate that the
sample at x = 0 has a prominent UV absorption peak at around 432 nm. The glasses’
absorption band was expanded. Due to the amorphous nature of glass samples, there is no
robust increase in absorption at energies near the band gap, which appears as an absorption
edge in the UV–Vis absorption spectra. The broad band of near-visible light concentrated
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at around 425 nm shifted to a wider wavelength (redshift) of 435 nm, originating from
band gap transitions with increasing Dy2O3 concentration levels. The absorbance spectrum
shows an absorption band peak at 800 nm as Dy2O3 content was added to the glass: this
peak is attributable to the spin-allowed transitions of Dy3+ at the ground state (6H15/2) into
different exciting H states [49].

The Davis–Mott relation (2) has been utilized to generate optical energy gaps for the
examined substances [54,55]:

α(hv) = x
(
hv − Eg

)1/n/hv (2)

where (Eg) denotes the optical energy band gap of the glass samples, (A) denotes a constant,
(α) denotes the absorption coefficient, and hν denotes the incident spectrum photon energy.
For direct transitions and plots of (αhν)2 vs. hν, calculated band gap energies for glass
samples were studied using n = 2 and plots of (αhν)2 vs. hν, as shown in Figure 4. In the
straight transition from 2.95 eV to 2.90 eV indicated in Table 2, the computed band gap
energies were slightly adjusted from 3.07 eV for the sample at x = 0 to 3.09 eV at x = 5. As
illustrated in Figure 3, the optical band gap reduces as the redshift in the absorption edge
increases, resulting in a reduction in non-bridging oxygen (NBO). As a result, the glass
structure is compressed [56,57].
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Figure 4. The dependence of (αhν)2 on the photon energy (hν) for the prepared glass samples.

Table 2. Concentration (C), Urbach energy (Eu), energy gap indirect (EOIn), energy gap direct (EOD),
linear refractive index (n), (χ1, χ3) linear and third-order nonlinear optical susceptibility for the
prepared glass samples.

Samples C (wt%) Eu (eV) EOD (eV) λcut-off (nm) n(a) χ1 χ3 (b) n2
(c)

1 X = 0 0.43 3.07 432 1.35 0.066 3.19 0.89
2 X = 1 0.52 3.14 426 1.38 0.072 4.63 1.26
3 X = 2 0.56 3.11 429 1.39 0.073 4.88 1.32
4 X = 3 0.57 3.05 438 1.55 0.112 0.26 6.5
5 X = 4 0.55 3.07 433 1.37 0.071 4.31 1.18
6 X = 5 0.67 3.09 435 1.49 0.099 0.16 4.13

(a) = (linear refractive index); (b) = 10−15, (c) = (non-linear refractive index) 10−15 at (λ = 700 nm).
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In addition to the refractive index of glass samples, direct and indirect transitions were
investigated using Equation (3) [58–61]:

n =

(
1 + R
1 − R

)
+

[
4R

(1 − R)2 − K2

]
1/2 (3)

where K (=αλ/4π) is the extinction coefficient, λ is the incident photons wavelength, and α

is the absorption coefficient [62,63].
Table 2 shows the refractive index values in reverse order from the optical energy band

gaps data. The refractive indices results show that the proposed glass system is a good
candidate for photo-electronic and optical filter devices. The following formula describing
the width of band tails was used to compute the Urbach energy (Eu), defined by [8,64,65].

Ln(α) = Ln(α0) + hν/Eu (4)

where (α) is the absorption coefficient, which is constant, and (Eu) is the Urbach energy.
(Eu) values have been extracted by plotting against and calculating the inverse of

the slope for the curves that appear in Figure 5, giving Eu values. The values of the
synthesized glass samples increased by increasing the Dy2O3 content, as shown in Table 2.
The observed increase in Urbach’s energy in the range of 0.43–0.67 eV specifies the increase
in the structural disorder of the glass samples [66].
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The linear/nonlinear optical parameters were calculated; Figure 6a exhibits the studied
glass samples’ refractive index variation versus the photon wavelength λ (nm). With the
increasing wavelength, the refractive index decreases for all glass samples. The high
refractive index below 380 nm is attributed to the effect of the main absorption. The
refractive index is enhanced by increasing the Dy2O3 substitution in the glass system
and reaches a minimum value at Dy2O3 content = 4 wt%. In general, this increase in the
refractive index can be attributed to an increase in absorbance in the investigated samples,
as given in Table 2 (1.5–1.49) and (0.89–4.13) for linear/nonlinear, respectively. The reflection
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increases for the fabricated glass samples due to the photons’ interaction on the samples
with the filler compound ions and causing the photon to slow, and the refractive index
also increases [67]. The value of the refractive index also increased with increases in the
Dy2O3 content, owing to an increase in the atomic packing density by replacing the Dy
element, which has a high relative atomic radius (162.5 pm), with a B element, which
has a low relative atomic radius (84 pm). By adding the Dy2O3 to the glass lattice, the
initial increase in the refractive is related to a change in the structural arrangements of the
atoms in the glass matrix, which produces more non-bridging oxygen (NBO). NBOs are
more polarizable than bridging oxygen (BO), which means increased polarizability of the
glass through the increase in the NBOs produced due to Dy2O3 formation. Therefore, the
invented samples are candidates used in photovoltaic and optical devices [6].
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The extinction coefficient is distinctive and determines how strongly a form absorbs
and reflects radiation or light at a certain wavelength [58]. Figure 6b shows the extinction
coefficient spectra of all the glasses samples. When compared to the original glass, it can be
seen that Dy2O3 incorporation caused increased absorption. This behavior is most likely
related to the absorption spectra [68].
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The nonlinear optical properties of glasses are significant and of enormous interest
for photonic devices to be utilized in various technological applications with a wide
spectrum of phenomena, such as optical solitons, optical frequency conversion, Raman
dispersion, and phase conjugation. To understand the interaction of high-intensity light
with matter, the nonlinear optical parameters, i.e., optical susceptibility χ(1), third-order
optical susceptibility χ(3), and nonlinear refractive index n2, are very important. These
parameters are estimated through a linear refractive index [69,70]. The increase or decrease
in the nonlinear parameter and the optical band gap Eg may refer to the formation of BO
bonds and ions of higher polarizability. It is enjoyable to note that n and n2 are usually
immediately linked, such that high index (n and n2). Therefore, materials with a lower
band gap seam exhibit an increased nonlinear optical behavior (sample x = 3). In general, in
multi-component oxides, BO and NBO oxygens are in the glass matrix, which affected the
value of χ3. These glass materials are promising for application as components of nonlinear
optical devices.

3.2. Structural, Optical, and Mechanical Properties

Photoluminescence emission spectra of the investigated glass system at the excitation
wavelength (425 nm = 2.92 eV) are shown in Figure 7a, and the values of λemission were
shown. The value of Epl

g (energy gap of photoluminescence) is between 2.15 and 2.23 since
the emission peak is at an approximately constant wavelength value. It can show from the
emission spectra of Dy0 that the prominent peak appears around (2.23 eV), and as doping
by Dy2O3 appears, six emission bands peak at (1.46, 1.65, 1.86, 2.15, 2.40, and 2.54 eV)
attributed to the transition from the (4F9/2 − 6H5/2, 4F9/2 − 6H9/2, 4F9/2 − 6H11/2, 4F9/2
− 6H13/2, 4F9/2 − 6H15/2 and 4I13/2 − 6H13/2), respectively [71,72]. A procedure for the
deconvolution of the experimental spectra was required for more information and analysis
of PL emission due to overlapping emission bands. All experimental curves were fitted by
a superposition of several Gaussian components (R2 ≥ 0.998) using the standard numeric
procedure, as shown in Figure 7b–f.
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Figure 7. Photoluminescence and deconvolution of photoluminescence spectra for different concen-
trations of Dy2O3 on the wavelength λ (530 nm).

Hardness Indentation and Micro-Creep Dependence of Dy2O3 Composition

The resistance of a material ordered to indentation by a much harder body is known
as the hardness of this material. It represents a measure of the resistance against lattice
destruction or the resistance to permanent deformation or damage. Information about
the strength, molecular bindings, yield strength, and elastic constants of the material is
impeded by the hardness of the crystal. The plasticity of the crystal could be understood
by a microhardness study of the crystal. In the hardness technique, the crystal is subjected
to relatively high pressure on a limited area.

Figure 8 shows the creep behavior of six glass samples containing 0, 1, 2, 3, 4, and
5 wt% Dy2O3 concentrations, respectively, using the Vickers hardness test. The length
of indentation increases by increasing the time for each sample [73]. Figure 9 shows the
relationship between Vickers hardness and indentation time [74]. The irreversible plastic
deformation of the material is represented by Vickers hardness, calculated from the residual
projected area. The hardness decreases with increases in time in the interval from 5 s to
100 s, which is inverse relation to the length of indentation. The average hardness numbers
of Dy0, Dy1, Dy2, Dy3, Dy4, and Dy5 are listed in Table 3. It is noted that average hardness
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values at t = 5 s rise by increasing Dy2O3 concentrations from 4160.54 to 5631.58 MPa. The
stress exponent is computed from Equation (5) and listed in Table 2 according to [75,76]:

S =
⌊

∂ln
.
d/∂lnHv

⌋
d

(5)
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Table 3. Hardness and stress exponent value at 5 sec and load 100 gf.

Sample C (wt%) HV (MPa) S

1 x = 0 4160.54 4.2
2 x = 1 3835.40 4.1
3 x = 2 4616.06 5.5
4 x = 3 5103.68 5.9
5 x = 4 5223.20 5.6
6 x = 5 5631.58 6.3

The stress exponent studied using Equation (5) is used to define deformation mecha-
nisms, where HV is the number of Vickers hardness, d is the length of indentation diagonal,
and

.
d is a variable rate of diagonal indentation length. The slope of a straight line obtained

by plotting
.
d against HV on the double logarithm scale is equal to the stress exponent (S),

as shown in Figure 10 [77–79]. The stress exponent is an indication of the deformation
mechanism at room temperature. The stress exponent (S) values range from 4.1 to 6.3, as
shown in Table 2. Grain boundary sliding is related to n ≈ 2, and the dislocation movement,
such as a creep, is related to n ≈ (5–7).
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The indentation creep behavior is shown in Figure 11 by plotting strain against in-
dentation time (indentation creep curve) of all glass samples [80]. The first stage shows
a faster increase in strain with indentation time, starting from the beginning to 10 sec of
indentation time [81–83]. The second stage indicates a slow-increasing region for all glass
samples where the strain has a slow increase. No specimen breakage occurs because the
hardness test is a compression test [84–86]. Therefore, the third stage cannot be recorded as
it did in an ordinary creep test. Thus, the higher stress exponent (S) value is more resistant
to the indentation creep [87–89].
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4. Conclusions

The effects of dysprosium oxide being added to the glass system with the chemical
composition (50 − x)B2O3 + 40Pb3O4 + 10CaO + xDy2O3, along with different substitution
ratios on the structure, optical and mechanical properties, were investigated. All studied
glasses were prepared using the melt-quenching technique. XRD analysis confirms the
amorphous phase of the samples. Theoretical structural studies agreed with the XRD
experimental data and predicted the formation of orthorhombic Pc21b (29) and triclinic P-1 (2)
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structures for the isolated molecules. The UV–VIS spectra were also recorded to evaluate
important optical properties such as direct and indirect optical band gap, Urbach energy,
and refractive index. It was observed that it varied between 2.93 and 4.06 at a wavelength
of 700 nm. The indirect energy gap fluctuated around 2.95 eV, and the direct value of the
energy gap was decreased by increasing Dy2O3 to reach a maximum (3.14 eV) at x = 1.

In contrast, other essential properties such as χ3, χ1, and n2 enhanced with an increase
in Dy2O3 concentration, which could be useful for optoelectronics and solar cell application.
The mechanical studies showed that the hardness values increased by increasing Dy2O3
concentrations from 4160.54 to 5631.58 Mpa. The stress exponent value also increased
from 4.1 to 6.3. Therefore, the higher value of stress exponent (S) is more resistant to the
indentation creep.
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