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Abstract: For over a century, enzyme immobilisation has been proven to be a superior strategy to
improve catalytic activity and reusability and ensure easy separation, easy operation, and reduced
cost. Enzyme immobilisation allows for an easier separation of the enzyme from the reaction mixture,
thus simplifying downstream processing. This technology protects the enzyme from degradation
or inactivation by harsh reaction conditions, making it more robust and suitable to be used in
various applications. Recent strategies of immobilisation methods, such as adsorption, cross-linking,
entrapment or encapsulation, and covalent bonding, were critically reviewed. These strategies
have shown promising results in improving enzyme stability, activity, and reusability in various
applications. A recent development in enzyme immobilisation in nanomaterials and agrowaste
renewable carriers is underlined in the current review. Furthermore, the use of nanomaterials and
agrowaste carriers in enzyme immobilisation has gained significant attention due to their unique
properties, such as high surface area, high mass transfer, biocompatibility, and sustainability. These
materials offer promising outcomes for developing more efficient and sustainable immobilised
enzymes. This state-of-the-art strategy allows for better control over enzyme reactions and enhances
their reusability, leading to more cost-effective and environmentally friendly processes. The use of
renewable materials also helps to reduce waste generation and promote the utilisation of renewable
resources, further contributing to the development of a circular economy.

Keywords: enzyme immobilisation; stability; catalytic activity; nanocarrier; renewable carrier; agrowaste

1. Introduction

The effective use of soluble enzymes as green catalysts may be hampered by their
drawbacks, such as their non-reusability, high sensitivity to several denaturating agents,
high cost, non-stable for large-scale processing, conformation change, not able to reuse and
non-applicable in fixed-bed reactors [1,2]. Over a hundred years, numerous immobilisation
strategies have been developed to enhance the catalytic activity, stability, storage stability,
and reusability and reduce the downstream processing cost. The extensive innovative
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approaches of enzyme immobilisation have been investigated. Many of these undesirable
constraints may be resolved using enzyme immobilisation [3,4]. Until now, enzyme im-
mobilisation has been a remarkable strategy for large-scale applications due to the ease in
catalyst recycling, reusability, continuous operation, easy enzyme separation, wide choice
of reactors, easy product purification, and lower cost of downstream processing [5,6]. This
outstanding approach has proven to be more stable for catalysis than the use of a soluble
counterpart. The concepts of reusability, stabilisation, and lower downstream processing
cost have been persistent key factors for the application of immobilised enzymes, thus
remaining popular in industrial applications.

Numerous strategies of enzyme immobilisation have been investigated by researchers
ranging from methods of affinity adsorption [7], covalent binding [8], cross-linking [9,10],
entrapment/encapsulation [11] in reverse micelles and emulsions [12]; organic polymers
such as polyallylamine [13], activated carbon [14,15] and chitosan [16]; and inorganic poly-
mers such as nanographene oxide [17], nanosilica [18,19], iron oxide [20], and nanogold [21].
Regardless of the techniques used, enzyme immobilisation still faces obstacles such as lower
catalytic performance compared to soluble enzymes, substrate inhibition, mass transfer
restrictions, expensive, enzyme leaching, carrier compatibility, and scale-up challenges.
Thus, more studies on enzyme immobilisation are required to synthesise an immobilised
enzyme that is stable, reusable, high catalytic activity, cost-effective, and suitable for large-
scale manufacturing.

Currently, enzyme immobilisation using nanocarriers has emerged as a promising
solution for enzyme immobilisation due to its unique properties and versatility. These
nanoscale carriers can efficiently encapsulate enzymes, protecting them from harsh envi-
ronments and enhancing their stability. Additionally, nanocarriers offer controlled release
capabilities, allowing for precise dosage and prolonged enzymatic activity [22]. Addition-
ally, agrowaste materials have recently gained attention as potential carriers for enzyme
immobilisation. These materials, derived from agricultural by-products, are abundant,
renewable, and cost-effective. They provide a sustainable alternative to traditional carriers
and can effectively immobilise enzymes, allowing for their reuse and reducing waste gener-
ation. Furthermore, agrowaste materials offer biocompatibility and can enhance enzyme
stability and activity in various applications [23]. This review discusses recent enzyme
immobilisation methods and their carriers, emphasising state-of-the-art nanosized and
agrowaste carriers. This review contributes to illustrating how enzyme immobilisation
may improve enzyme stability, reusability, and catalytic activity while lowering costs and
simplifying the operational process. Adsorption, cross-linking, entrapment/encapsulation,
and covalent bonding are among the methods discussed in this review. The present re-
view emphasises the utilisation of state-of-the-art nanomaterials and renewable agro-waste
carriers, which have advantages such as large surface area, biocompatibility, and sustain-
ability. These developments in enzyme immobilisation make it easier to control enzyme
reactions and lead to more cost-effective and environmentally friendly operations. This
review spotlights the importance of selecting the best immobilisation technique for the
enzyme, carriers, substrate, and application, as well as offering insights into the recent
advancements and challenges in enzyme immobilisation.

2. Overview of Enzyme Immobilisation Techniques

Enzyme immobilisation is defined as the restriction of enzyme mobility in a fixed space
in order to increase the catalytic activity, stability, and reusability of soluble enzymes [24–28].
They are physically confined or localised to a certain defined region of space with retention
or to enhance their catalytic activities, can be used repeatedly, and are easily recovered [28].
Immobilised enzymes are an insoluble form [29]. It is essentially a specialised form of
heterogeneous biocatalysis. As a consequence of enzyme immobilisation, some properties,
such as catalytic activity, thermal stability, and storage stability, became altered [30,31].

Among the benefits of enzyme immobilisation mentioned above, the primary disad-
vantages of using immobilised enzymes include a decrease in enzyme activity during the
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immobilisation process, particularly when the enzymes are coupled to macromolecular
substrates [12]. Diffusion limitations, enzyme leaching, high cost, and scalability are other
major drawbacks related to this technology [32]. Therefore, continuous effort is required
to enhance the catalytic activity, stability, reusability, and easy recovery of immobilised
enzymes so that they can be applicable in a wide sector such as catalysis, adsorption,
pharmaceuticals, food processing, and biofuel production. Figure 1 depicts the benefits and
drawbacks of enzyme immobilisation.
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Three different methods can be used to immobilise enzymes on a support material:
adsorption, cross-linking or covalent bonding, entrapment, and/or encapsulation [33]. The
main elements of an immobilised enzyme system are the enzyme, the carrier, and the mode
of attachment [34]. The process of immobilisation significantly impacts the biocatalyst’s
characteristics; hence, the immobilisation strategy chosen will ultimately influence the
biocatalyst’s stability and catalytic activity [35].

2.1. Adsorption

Adsorption can be defined as the process by which an enzyme accumulates on a solid
surface support due to intermolecular interactions [36,37]. There is no need for surface
modification or linkers such as glutaraldehyde and cysteine in cross-linking and 1-ethyl-3-
(3-dimethylaminopropyl) carbodiimide in covalent bonding [38,39]. Surface adsorption
interaction with enzymes involves hydrogen bonds and electrostatic interactions [40]. The
interaction of enzymes with support surfaces is vital to the adsorption process. Thus, the
polarity and charge of the enzyme are crucial characteristics for ensuring high and repeat-
able enzyme coverage on the support. This produces generally mild, simple, economic, fast,
good performance, and reusability [41]. However, enzyme immobilisation via adsorption
encounters disadvantages such as enzyme leaching and enzyme binding to the support
often weaker compared to covalent bonding [42].

2.2. Cross-Linking

Cross-linking is the chemical process of uniting two or more molecules via a covalent
bonding [43–45]. Cross-linked enzyme aggregates are a versatile approach for enzyme
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immobilisation. The approach is frequently preceded by a surface modification or activa-
tion process [46–48]. Silanisation, or coating the surface with organic functional groups
using an organofunctional silane reagent, is a frequently used technique for the initial
surface modification of inorganic supports. Using p-nitrobenzoyl chloride, such as coating
or natural surface amino groups, can be derivatized to arylamine groups or aldehyde
groups [49]. The procedure is easy, comprising precipitation from an aqueous buffer, fol-
lowed by the cross-linking of the resultant physical aggregates of enzyme molecules, which
can be quickly optimised [50]. The resultant immobilised enzyme via cross-linking is stable
and functional as a biocatalyst. The disadvantages, however, include often limited activity
retention, poor reusability, low mechanical stability, and challenges in handling the gel-like
cross-linked enzymes [51].

2.3. Entrapment or Encapsulation

Enzyme immobilisation via entrapment refers to the caging of enzymes with covalent
or non-covalent bonds. These matrices minimise conformation change and retain the
properties of the biocatalyst [52–54]. The enzyme captured inside a network of polymers
permits the passage of substrates and products but retains the enzyme [55]. Enzymes
are not tied to the polymeric matrix after entrapment, but their diffusion is restricted.
An entrapped enzyme is more stable than a physically adsorbed enzyme. Entrapment
immobilisation is less difficult to produce than covalent bonding, although enzyme activity
is increased or preserved [56–58].

The immobilisation of enzymes via physical entrapment has a broad range of applica-
tions and may have less interference with the natural enzyme’s properties [59]. However,
the encapsulation strategies must take into account the chemical conditions of the polymeri-
sation matrices, the pore diameter and volume, and the compatibility of enzymes with the
pore matrices, to ensure that the substrate and product can diffuse in and out of the polymer
matrices. Catalytic activity retention is fairly prevalent since many enzyme encapsulations
do not result in a significant loss in enzyme activity after immobilisation [60].

Encapsulation is similar to entrapment because the enzyme is confined in a polymer
matrix, but the difference is that the polymer support matrix has “pockets” or “pores”
to immobilise enzymes [61]. Encapsulated enzymes improve enzymatic performance
by modifying hydrophobic interactions, improving reaction surface area, and improving
intermediate concentration. They are more stable under a variety of circumstances. They are
widely utilised in sectors such as biocatalysis, biosensing, enzyme treatment, biomedicine,
and bioremediation [62].

A wide range of enzymes has been encapsulated or entrapped in sol–gel glasses. They
maintain their catalytic activity and are accessible to external substances, but diffusion
occurs within the silica matrices. Sol–gel glasses are formed into particular forms and
are optically transparent, allowing optics and catalytic activity to be combined to create
biosensors. The high specificity and sensitivity of enzymes make it possible to detect
chemical components. Caresani et al. [63] investigated the encapsulation of Bacillus subtilis,
Aspergillus oryzae, and barley α-amylases in a silica-based matrix using an acid-catalysed
sol–gel process. Biocatalytic activity has been compared between immobilised and free
systems, with high surface area xerogels and granular morphological structures.

Enzymes enhanced their bioactivity in the sol–gel silica matrices because of the dif-
fusion or mass transfer through the pores. Entrapped or encapsulated enzymes can be
protected from the denaturation effect via the porous sol–gel matrices. The restricted
diffusion of external chemicals via the pores of the matrix may considerably diminish
environmental impacts that would otherwise degrade the catalytic activity of enzymes.
Free enzymes might lose their catalytic activity, but enzymes that have been immobilised
might be stable for weeks or even months.
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2.4. Covalent Bonding

The establishment of covalent bonds within each molecule of an immobilised enzyme
and the support results in a region of the enzyme in which the residues attached to the
support remain in their position during any dislocation or movement of the enzyme
molecule that occurs due to harmful conditions such as heat, extremely low or high
pH, and organic solvents [64]. If the structure of the support is sufficiently compatible
with the surface of the enzyme (e.g., a flat support structure and a moderately flexible
globular protein), the highly rigidised region can be relatively large, establishing the vital
stabilisation of the enzyme molecule as protection against any harm condition such as
extremely high acidic or alkaline conditions, and temperature [65].

Parmegiani Marcucci et al. [66] investigated the immobilisation of Burkholderia cepa-
cia lipase using the SBA-15 by covalent bonding, which was made with different pore sizes
(S8 with 9.1 nm and S23 with 23 nm) and modified with tin (SnS8 and SnS23). The support
with the greatest pore size (25 nm) resulted in the highest specific activity of the immobilised
enzyme. No lipase was found in the buffer solution used for lipase desorption during the
leaching experiments, thus demonstrating a strong bonding between lipases and modified
silicas. Zhang et al. [67] disclose the effective synthesis of PNGase F with a glutamine tag in
Escherichia coli and the site-specific covalent immobilisation of PNGase F with this peculiar
tag via microbial transglutaminase (MTG). PNGase F was immobilised from the glutamine
tag being covalently and site-specifically converted to primary amine-containing magnetic
particles with the use of MTG. With comparable enzymatic efficiency to that of its soluble
counterpart, immobilised PNGase F may deglycosylate substrates and demonstrate strong
thermal and reusability capacity. Tvorynska et al. [68] examined four covalent methods for
laccase attachment: NH2 can be supported in the following ways: (i) via glutaraldehyde;
(ii) via disuccinimidyl suberate; (iii) using EDC/NHS for Lac coupling with its COOH
groups to support NH2; and (iv) using EDC/NHS to support COOH. Additionally, five
supports (cellulose, carbon-based (glassy carbon, graphite) powders, mesoporous silica
(SBA-15, MCM-41) were studied. Various immobilisation techniques and supports had
a considerable impact on the quantity of the immobilised laccase and, consequently, the
analytical properties of the resulting biosensors. Table 1 shows the summary of the methods
and materials used in enzyme immobilisation, as well as its benefits and drawbacks.

Table 1. Summary of the methods and materials used in enzyme immobilisation together with its
advantages and disadvantages.

Method Materials Advantages Disadvantages References

Synthesising
magnetic-cross-linked

enzyme aggregates
(CLEAs) or trapping the
CLEAs in particles with

superior mechanical
qualities.

Glutaraldehyde as a linker;
Ammonium sulfate as a

precipitating agent; Bovine
serum albumin (BSA) and

3-aminopropyltriethoxysilane
(APTES) as additive.

It is suggested to tackle
substrate diffusion issues by

generating more porous CLEAs,
among other things.

Diffusion limitation. [33]

Immobilisation of protease
via covalent bonding on

chitosan.

Chitosan as a carrier;
glutaraldehyde and

ethylenediamine as modification
agents and cross-linkers.

The catalytic activity of
immobilised enzymes is

equivalent to that of free enzyme
(pH 9 and 60 ◦C); however, the

immobilisation procedure
broadened the optimum

temperature range of enzyme
activity (50–70 ◦C).

After three cycles of
use, the immobilised

enzyme only
maintained 47.08% of

its initial activity.

[36]
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Table 1. Cont.

Method Materials Advantages Disadvantages References

Laccase was immobilised
on a low-cost, nanosized

magnetic biochar (L-MBC)
via adsorption,

precipitation, and
cross-linking.

Bagasse biochar as a carrier;
ammonium sulfate as a

precipitation agent;
glutaraldehyde as a cross-linker.

The magnetic biochar could
immobilise a substantial

quantity of enzymes with
increased catalytic activity

(2.251 U per mg MBC), better
stability, improved storage
stability, pH tolerance, and
thermal stability over free

laccase.

The catalytic activity
of immobilised

laccase decreased
more than 50% of its

initial activity at
pH 5.5 and 6.

[69]

Encapsulation of laccase
using alginate,

alginate–silica and silica
sol–gel.

Tetraethyl orthosilicate (TEOS)
and alginate as carriers.

The experimental results
showed that incorporating silica
into alginate resulted in a better
(70%) encapsulation efficiency

(EE) for the laccase extract than
for the alginate alone (59%).

Furthermore, encapsulating the
laccase extract in sol–gel

resulted in an increase in its
catalytic activity, as well as a

90% rise in the EE. The alginate
and sol–gel matrices also

improved laccase catalytic
efficiency compared to free

laccase, with kcat values of 89.9
(alginate), 63.7 (alginate-silica),
and 56.9 min−1 (silica sol-gel),

respectively.

After three reaction
cycles, the catalytic

activity of
immobilised laccase
with alginate-silica
was decreased by

50%.

[61]

New enzyme
immobilisation ideas via

multipoint covalent
attachment on support

surfaces.

Conventional supports such as
cyanates, tosyl chloride and

N-hydroxy-succinimide esters as
carriers. Polyethylene glycol as

modification agent.

The formation of several bonds
between each molecule of an
immobilised enzyme and the

support creates a region of the
enzyme in which the residues
attached to the support cannot

change their position during any
distortion of the enzyme

molecule caused by heat and
organic cosolvents.

Difficult to achieve
desired results. [65]

3. Overview of the Enzyme Carriers Materials

Numerous literature reviews have reported on a broad range of enzyme carriers [70].
The matrix for this enzyme immobilisation must have properties such as a high surface area,
high permeability, higher degree of strength, high porosity, high chemical and thermal sta-
bility, resistance and inertness towards microbial attack, insolubility in water, easy synthesis,
cost-effectiveness, and being green [71–75]. The matrices or supports for this novel technol-
ogy can be categorised into the following: organic and inorganic compounds. The most re-
ported enzyme supports of organic materials are organic membrane [76], chitosan [77,78], al-
ginate [54], resin [79], collagen [80], gelatine [81], dextran [82], starch [83], carrageenan [42],
agarose [84], protein [85], cellulose [86], activated carbon [87], agar [88], and chitin [89].
Synthetic organic materials are polyvinyl alcohol [90], polyurethane foam [91], poly-
acrylonitrile [92], polyethylene, polypropylene membrane, and polyacrylamide [93–95].
Figure 2 depicts the enzyme carriers classified as organic, inorganic, nanomaterials, and
hybrid materials.
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On the other hand, the most widely used inorganic materials are hydroxyapatite [96],
gold [97,98], iron oxide [99], zirconia [100], titania [101,102], silica [103–107], silver [108,109],
zinc oxide [110], alumina [111], celite [112], and inorganic clays [113]. The most re-
cently studied enzyme carriers include graphene-based nanomaterials [114–116], metal–
organirameworks (MOFs) [117–123], and covalent organic frameworks [124–129]. The
advantages of inorganic support compared with their organic counterparts are chemical,
mechanical, and thermal resistance, rigidity, porosity, more reusable, and stiffness, which
guarantee the stability of the novel immobilised enzyme. Organic-based support materials
are more sensitive towards pH and pressure and are not suitable for bacteria and fungi
growth [130].

3.1. Enzyme Immobilisation via Nanocarriers

Nanomaterials are referred to as materials with a minimum of one exterior dimension
that vary in size from 1 to 100 nm [131–134]. Nanoparticles have recently been employed in
several disciplines of biology, chemistry, physics, electronics, medicine, pharmacy, biotech-
nology, and chemical engineering [135–141]. Nanomaterials have distinct advantages and
improved properties due to their nanoscale characteristics. The use of nanomaterials as
carriers for enzyme immobilisation has shown promising results in terms of enhancing
catalytic activity and stability due to their unique physicochemical properties. For instance,
nanomaterials have a larger surface area, which allows for enhanced catalytic activity, mass
transfer, and performance.

The unique properties of nanomaterials have led to extensive research and exploration
in various fields, including enzyme immobilisation and stabilisation. Enzyme immobil-
isation using nanomaterials as a carrier has attracted recent attention because of good
biocompatibility, ability to control the microenvironment of the immobilised enzyme, large
surface area, high loading capacity, reusability, enhanced catalytic activity, good thermal sta-
bility, and easy dispersion in aqueous solution with minimal diffusion, which makes them
promising nanocarriers [142–151]. Enzyme immobilisation using nanoparticles has been
proven to minimise protein unfolding and enhance stability and catalytic activity [152–154].
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Reducing the size of the enzyme carrier to nanosized particles could increase the efficiency
and performance of the immobilised enzyme [155]. Smaller particles have a higher sur-
face area for binding, increasing the enzyme load per unit mass of particle. The support
material will allow more enzyme molecules to bind, which allows them to retain their
active conformation. When nanosized porous materials are immobilised, they generate
shorter routes for enzyme molecules to penetrate into the support material than bulk
porous materials, resulting in decreased mass transfer resistance. Enzymes immobilised in
porous nanomaterials such as nanosilica and nanographene can prevent conformational
changes or denaturation, hence stabilising the enzymes [155–159]. Jain et al. [160] devel-
oped an efficient nanosilica-based immobilised Candida rugosa lipase using both TEOS
and agrowaste rice husk ash. The adsorption and cross-linking techniques showed that an
adsorption technique leads to optimum catalytic activity. The enzyme loading adsorbed on
rice husk was 938 mg/g, whereas the enzyme loading adsorbed on TEOS was 925 mg/g.
However, the enzymatic activity adsorbed on a rice husk precursor was 56 units/mg and
707 units/mg for the TEOS precursor.

Peiman et al. [161] synthesised a nanocatalyst containing polyamidoamine dendrimer
and trypsin immobilised on magnetic nanosilica. It shows enhanced catalytic activity
in the production of propargylamines in a green environment. The strength properties
of silica provided a mechanically stable porous silica with an enhanced internal surface
area. Due to their exceptional characteristics such as improved biomolecule compatibility,
elasticity, enhanced chemical suitability, increased strength, and enhanced thermal and
electrical conductivity, graphene nanoparticles have drawn a lot of interest in recent years.
These qualities make them perfect for the application of nanocarriers for enzyme immo-
bilisation [162]. Noreen et al. [163] demonstrated that functionalised graphene oxide with
laccase resulted in enhanced biocatalytic capabilities and decolourisation efficiency. The
immobilised laccase showed better thermal stability compared to the free enzyme at 70 ◦C,
maintaining almost 40% of its relative activity, while the free enzyme preserved just 5.2%
under the same experimental conditions. Zhou et al. [164] investigated the immobilisation
of adenylate cyclase using graphene oxide. In order for the graphene oxide to match the
characteristics of the enzyme, it first needed to be altered using a surface heterogeneity ap-
proach. To increase the service life of the finished product, an enzyme stabilisation approach
must be employed during the immobilisation process. The interaction between the support
and the adenylate cyclase can be manipulated with the flexible chain of polyethylene glycol
amine and maleic anhydride that has been grafted onto the surface of the graphene oxide.
Adenylate cyclase, which has been immobilised and modified graphene oxide, enhances
catalytic activity by 117 times.

Zhang et al. [165] demonstrated the enzyme immobilisation of sucrose isomerase
(SIase) via adsorption using graphene oxide as a nanocarrier. Some 95.3% biodegradation
capability was reached using a substrate concentration of 600 g/L sucrose, 180 min at
40 ◦C, and pH 6.0. The temperature, pH, and storage stabilities of the immobilised ErSIase-
GO were enhanced, and its activity after 10 batches was maintained at about 80% under
optimum experimental conditions. Immobilised laccace had a Km value of 29.32 mM.

3.2. Future Strategy Using Agrowaste Resource as a Carrier

The Industrial Revolution 4.0 (IR 4.0) is an economically viable, sustainable, green,
and environmentally friendly manufacturing strategy that employs renewable resources
and recyclable agrowaste materials [166–173]. Renewable agrowaste materials such as rice
husk, corn cob, and eggshell are sustainable alternatives for an enzyme carrier [174–176].
Natural lignocellulosic wastes such as rice husk have gained popularity in recent years
as supports for enzyme immobilisation. This is mostly because they are readily available,
inexpensive, and have the potential to minimise the environmental pollution that might
result from improper management [177,178]. These carriers are cost-effective and pos-
sess physiochemical properties such as a large surface area, high stiffness, high tensile
strength, excellent adsorption capacity, high strength, zero deformation, and low density
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and porosity; reactive functional groups are excellent for supporting biocatalysts [179]. This
approach will drastically lower the cost of enzymes, which is one of the main limitations of
employing a biocatalyst in industrial applications [177].

Enzyme immobilisation using an agrowaste carrier and its application is still limited.
However, recent studies have shown promising results in utilising sustainable materials
such as agricultural residues, industrial waste, and waste biomass for enzyme immobilisa-
tion. These alternative materials not only provide a cost-effective and eco-friendly solution
but also offer potential advantages in terms of enzyme stability, catalytic activity, and
reusability. Spennato et al. [180] studied lipase immobilisation by covalent bonding with
agrowaste rice husk as a carrier. The resulting immobilised lipase was mechanically stable,
recyclable, and suitable for use in various hydrophobic mediums. Yassin and Gad [181]
investigated the covalent immobilisation of horseradish peroxidase using the packaging
waste of expanded polystyrene foam (EPS)–polydopamine as a carrier. The horseradish
peroxidase (HRP) was covalently immobilised using a Michael addition or Schiff base
reaction with the polydopamine layer as a reactive framework. The loading capacity was
approximately 46%. At a strong alkaline condition (pH 10), the immobilised peroxidase
retained 53% of its activity. The immobilised peroxidase observed a higher catalytic activity
of approximately 95% compared to 56% of free peroxidase at elevated temperature (60 ◦C).

Brown onion skins, egg shell membrane, nanosilica rice husk, guava seed biochar,
graphene oxide grape seed biochar, tamarin seed activated carbon, activated carbon derived
from Prosopis juliflora bark, and biochar derived from apple branches area are reported
to be used as enzyme agrowaste carriers. Kumar and Pundir [17] used glutaraldehyde
to covalently immobilise lipase on the onion membrane. Immobilised lipase remains at
63.6% of its catalytic activity. When kept at +4 ◦C, the immobilised lipase was utilised up to
100 times in two months without a substantial loss in activity. Kessi et al. [18] demonstrated
that the bound and free enzymes are comparable in their catalytic activity. Immobilised
β-galcatosidase is more stable and can also be utilised multiple times. In the presence of
skim milk serum, immobilised β-galcatosidase may hydrolyze lactose. Utomo et al. [19]
investigated that the contact time and agitation speeds have no effect on the percentage
of cellulase immobilisation on rice husk silica. Based on its activity, the optimal contact
duration and agitation speed for immobilised cellulase were 15 min and 100 rpm. When
compared to the first cycle, immobilised cellulase activity in cycles II and III reduced to
75.2% and 58.8%, respectively.

On the other hand, lipase immobilisation via adsorption on guava seed charcoal was
investigated by Almeida et al. [20]. The optimal lipase loading was 0.15 g enzyme/g
support, with a hydrolytic activity of 260 U/g and a 54% immobilisation yield. Under
diverse reaction conditions, the products of a transesterification process catalysed using
immobilised lipase yielded the highest yield at 40 ◦C. Thiyagarajan et al. [21] investigated
laccase immobilisation on activated carbon nanotubes produced from Prosopis juliflora bark
to enhance its stability, reusability, and magenta dye adsorption efficiency. The experimental
condition was optimised using a response surface methodology (RSM)-based Box–Behnken
design (BBD), and the maximum MD adsorption was about 95% at 120 min. Zou et al. [27]
synthesised immobilised laccase using biochar derived from cellulase hydrolysis apple
branch powder. Immobilised laccase demonstrated enhanced stability against pH ranges,
thermal, storage duration, and operation. Figure 3 shows an illustration of the strategies of
enzyme immobilisation using agrowaste nanocarriers. Table 2 shows the recent methods
for immobilising enzymes using innovative agrowaste nanocarriers and their results.
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Table 2. Recent strategies for enzyme immobilisation using novel agrowaste nanocarriers and its
distinguished outcome.

Enzymes Immobilisation
Methods Agrowaste Carriers Merits References

Lipase Cross-linking Brown onion skins
The catalytic activity of immobilised lipase has
retained 63. 6%. It could be reused more than

100 times for 60 days.
[182]

β-
galcatosidase Adsorption Egg shell membrane

The results demonstrate a similarity between the
bound and free enzymes as well as the stability and

reusability of the immobilised β-galcatosidase
[183]

Cellulase Adsorption Nanosilica rice husk
The immobilised cellulase retained its catalytic activity.
It could be reused many times, with catalytic activity

decreasing from 75.5 to 58.8% in the third cycle.
[184]

Lipase Adsorption Guava seed biochar

The optimal BCL loading was found to be 0.15 g
enzyme/g support with 260 U/g of hydrolytic activity

and 54% immobilisation yield. Under numerous
reaction conditions, the highest yield of

transesterification products was achieved at 40 ◦C.

[185]

Lipase Adsorption

Activated carbon
derived from

Prosopis juliflora
bark

The parameters were optimised using response surface
methods, and the maximum magenta dye adsorption
using immobilised lipase was about 95% at 120 min.

[186]

Pepsin
Adsorption and

Covalent
Bonding

Biochar derived from
pupunha palm waste

The immobilised enzyme retains its biological activity
up to seven times. [187]
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Table 2. Cont.

Enzymes Immobilisation
Methods Agrowaste Carriers Merits References

Lipase Adsorption
Activated carbon

derived from tamarin
seed

It can retain 86% of its catalytic activity after five times
reuse. [188]

Lipase Adsorption Graphene oxide
grape seed biochar

It can retain 60% of its catalytic activity for more than
five times reuse. [189]

Lipase Adsorption Nanosilica rice husk It can retain 85% to 90% of its initial activity after nine
cycles. [190]

Laccase
Adsorption,

Covalent
Bonding

Hydrocolloid
and fibre industry

waste

The adsorption capacity for removal of organic
pollutants was enhanced using immobilised laccase

compared to without laccase.
[191]

Laccase Adsorption
Microporous

biochar derived from
apple branches

The biodegradation rate of immobilised laccase for
norfloxacin, enrofloxacin and moxifloxaci after a 48-h

reaction were 93.7%, 65.4%, and 77.0% at pH 4 and
40 ◦C, respectively. These values were 1.2, 1.3, and
1.3 times higher than those of MBC under the same

experimental condition.

[192]

Laccase Adsorption Biochar derived from
agrowaste

The immobilised laccase demonstrated enhanced pH
tolerance, and thermal and storage stability compared

to free laccase.
[192]

Laccase Adsorption Biochar derived from
corn cob

The optimum catalytic activity of immobilised enzyme
was found at pH 4.0 and 25 ◦C. The immobilised

enzyme retained 50% of its initial activity after 30 days
of storage duration.

[193]

Lipase Adsorption Palm waste-activated
carbon

The catalytic activity of immobilised lipase was
enhanced compared to free lipase. The optimum
condition of immobilised lipase was 0.5 (NaOH
(g)/palm raceme (g)), 150 min, and 400 ◦C for

carbonisation.

[194]

Laccase Adsorption
Activated biochar

derived from
agrowaste

Immobilised laccase had significantly higher catalytic
activity than free laccase throughout a pH range of 3.5
to 6.5 and a temperature range of 30 to 60 ◦C. After 5 h
at 55 ◦C, the immobilised laccase retained 50% of its
catalytic activity. It could be reused 6 times with and
kept above 60% of its catalytic activity, compared to

free laccase at about 40%.

[195]

Laccase Covalent bonding
and adsorption Eggshell

The study found that immobilising periodate-oxidised
laccase on NiCl2-pretreated eggshell membrane was

the best method with an immobilised activity of
1300 U/Kg and a 30% residual activity after 6 reuses.

The covalent method with glutaraldehyde was the best
for the enzyme-dropping protocol, with an

immobilised activity of 3500 U/Kg and a 45% residual
activity after 6 reuses.

[196]

Peroxidase Covalent bonding Rice straw biochar

Peroxidase immobilisation on functionalised biochar
demonstrated three times higher catalytic activity and

improved stability against extreme pH and
temperature.

[197]

4. Future Recommendations and Challenges

There are several recommendations for the future direction of enzyme immobilisation:
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1. Nanotechnology

• Recent developments in nanotechnology are believed to have a considerable impact on
enzyme immobilisation. For instance, nanoparticles have unique features, including
a large surface area and improved catalytic activity. These materials can provide the
optimum environment for enzyme immobilisation, enhancing stability and efficiency.

2. Advance in bioinformatics

• Bioinformatics tools and enzyme engineering advancements, such as directed evo-
lution and rational design, could contribute to the development of enzymes with
improved characteristics, such as increased stability, substrate selectivity, and catalytic
efficiency for immobilisation. We can improve performance and stability by designing
enzymes, specifically for immobilisation and stabilisation.

3. Multienzymatic systems

• Methods for immobilising numerous enzymes or multienzymatic systems should
be investigated, and effective multienzyme systems for complex processes should
be designed.

4. Three-dimensional printing technology in customise complexed immobilised enzyme

• The use of 3D printing technology should be explored to precisely organise enzymes
within immobilisation matrices, allowing for complex and customised designs.

5. Environmentally friendly and renewable carriers

• We emphasise creating environmentally friendly and sustainable immobilisation pro-
cedures, taking into account factors such as the utilisation of renewable carriers and
the reusability of immobilised enzymes.

6. Bioelectrochemical systems

• Enzyme immobilisation in bioelectrochemical processes is relatively new, and it might
lead to the development of more sustainable and efficient technologies for energy, en-
vironmental, and healthcare purposes. These studies involve the interactions between
enzymes and electrode surfaces.

7. Scaling-up

• We should work on the industrial-level manufacturing of immobilised enzymes,
taking into account factors such as profitability, scaling, stability, and catalytic activity
efficiency under industrial settings.

Although enzyme immobilisation has many advantages, there are challenges that
need to be addressed. Several challenges remain still to be tackled, such as the following:

1. Mass transfer limitations:

• Internal and external mass transfer limitation will be improved by enhancing the
surface area and altering the geometry or shape of the carrier’s enzyme,

2. Enzyme denaturation and inactivation:

• Enzymes are delicate and easily denatured under harsh micro and macro conditions.

3. Complexity, cost, and scalability:

• We should focus on the synthesis and development of simple, low-cost, large-scale,
improved catalytic activity and stability for large-scale industrial applications.

4. Uniformity and reproducibility:

• Immobilised enzymes frequently suffer reproducibility issues. This is owing to the fact
that immobilised enzymes can undergo conformation changes alter and lose catalytic
activity over time. These difficulties can be caused by enzyme denaturation or changes
in the microenvironment around the immobilised enzyme.
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• Strengthen the consistency and repeatability of enzyme immobilisation methods to
ensure identical and consistent results for each batch.

5. Unstable in harsh environmental conditions:

• The stability of immobilised enzymes should be boosted, and their catalytic activity
should be retained under harsh environmental conditions, including extremely low
and high temperatures, pH, organic solvents, and inhibitors.

6. Regeneration and reusability issues:

• We should develop enzyme immobilisation methods that promote regeneration and
reusability of immobilised enzymes while retaining activity even after several cycles
of reaction.

7. Long-term storage stability issues:

• We should develop methods to improve the long-term storage stability of immobilised
enzymes, especially for applications such as biosensors, biofuel cells, and bioreactors.

5. Conclusions

Enzyme immobilisation is a key technology in catalysis, biosensing, and bioprocess-
ing, offering higher catalytic activity, improved thermal and storage stability, reduced
cost, and sustainability. Methods like physical adsorption, covalent binding, and entrap-
ment/encapsulation offer numerous advantages in terms of enzyme activity, operational
stability, reusability, and ease of chemical operation. The optimal method of immobili-
sation depends on the enzyme, the substrate, the carrier, the method of immobilisation,
and the whole desired process. It is crucial to take into account the characteristics of
each enzyme in order to determine the most effective immobilisation method. Factors
such as enzyme stability, activity, and desired reaction conditions should be taken into
account when selecting the appropriate immobilisation approach. The choice of carrier
material should be carefully considered to ensure compatibility with both the enzyme
and the desired process conditions. The commercialisation of immobilised enzymes using
nanomaterials and renewable carriers is still in its early stages, but their development holds
great promise for further advancements in catalysis and bioprocess. The commercialisation
of immobilised enzymes using agrowaste nanocarrier is expected to gain momentum in
the near future. This review provides a comprehensive overview of the different methods
used for enzyme immobilisation, including physical adsorption, covalent binding, and
entrapment/encapsulations. It highlights the recent advancements in novel carriers such
as nanoparticles and agrowaste materials, which offer improved enzyme catalytic activity,
stability and reusability.
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