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Abstract: In this study, the research investigates the prediction of fatigue life for Functionally Graded
Materials (FGM) specimens comprising Polylactic acid (PLA) and Thermoplastic Polyurethane (TPU).
For this, Machine learning (ML) techniques, including Random Forest (RF), Support Vector Machine
(SVM), and Artificial Neural Network (ANN) are utilized. A predictive in-house code is developed for
each technique, thereby facilitating the fatigue performance of layered deposited specimens subjected
to varying cyclic loadings. In order to verify the effectiveness of the ML technique, a comparative
analysis among all is reported based on empirically determined fatigue life obtained values. RF is
proven to be the most suitable technique with minimal error percentage in obtained results with
optimally synchronized data sets in a minimum time frame. Subsequently, the application of ML in
those predictions is reported for future aspects in augmenting the operational efficiency associated
with fatigue life prediction.
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1. Introduction

Functionally Graded Materials (FGMs) are a material scheme where multi-material
properties gradually change within its structure, enabling tailored performance and adapt-
ability to diverse engineering demands in today’s manufacturing [1]. This technology
captured considerable attention in various industrial sectors, driven by its unique ability to
enhance material performance. The inherent potential of FGMs is not only for advancing
material science but also for optimizing the mechanical characteristics of manufactured
structures [2]. The development of FGM represents a paradigm shift in materials design, as
it allows for precise tailoring of material properties, such as mechanical strength, thermal
conductivity, and electrical conductivity, across gradients [3]. This innovative approach
offers a remarkable advantage over conventional homogeneous materials, enabling en-
gineers and researchers to design materials with tailored properties that can withstand
challenging environments and serve a multitude of applications [4]. FGMs find extensive
use in aerospace, automotive, and energy sectors, where the ability to fine-tune material
characteristics enables the creation of lightweight, durable, and high-performance com-
ponents. Additionally, in applications where thermal management is crucial, FGMs have
shown promise in efficiently dissipating heat, making them valuable in the development
of next-generation electronics and thermal barrier coatings [5]. FGM is found effective for
reducing stress concentration and is widely used in aerospace [6].

Polymeric FGMs encompass a category of substances characterized by unique com-
positions and properties that progressively transition throughout their volume. Notably,
the fabrication process involves the utilization of additive manufacturing (AM) techniques
recognized as Material Extrusion (MEX), alternatively referred to as multi-material addi-
tive manufacturing (MMAM) [7]. Unlike traditional homogeneous materials, FGMs offer
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tailored variations in characteristics such as mechanical strength, thermal conductivity, and
stiffness. This engineered gradient imparts FGMs with enhanced adaptability to diverse
engineering scenarios, making them particularly relevant in applications where material
performance demands are multifaceted [8]. In engineering, FGMs hold significant promise
due to their potential to address challenges that conventional materials might struggle to
overcome. By seamlessly blending different polymers or incorporating fillers with varying
properties, FGMs can be tailored to meet specific requirements within a single structure,
as shown in Figure 1. This strategic customization allows FGMs to optimize mechanical
responses, reduce stress concentrations [9], and enhance overall durability [10]. As a result,
FGMs find utility across a spectrum of fields, including aerospace, automotive, biomedical
devices, and more, where precise material adaptation can lead to superior performance
and extended product lifecycles [11]. MMAM has engrossed numerous researchers due to
its inherent advantages. MMAM facilitates the fabrication of parts encompassing diverse
materials in a single manufacturing process, wherein these materials can exhibit distinct
chemical, physical, mechanical, and electrical properties [12]. In the last twenty years, AM
has emerged as a pivotal technology within the manufacturing industry. AM technologies
have revolutionized traditional manufacturing methods by offering several significant
advantages. Compared to conventional approaches, AM eliminates the requirement for
extensive tooling [13], resulting in cost and time savings [10]. Additionally, AM provides
unparalleled flexibility in design and allows for easy modification of products during the
manufacturing process. These capabilities empower manufacturers to rapidly iterate and
customize designs, leading to improved efficiency and innovation in the production of
various components and products [14]. MMAM encompasses a comprehensive classifica-
tion comprising seven distinct technologies. These include MEX, vat photopolymerization,
powder bed fusion, material jetting, direct energy deposition, sheet lamination, binder
jetting, and hybrid additive manufacturing [15]. Each technology offers unique capabilities
and characteristics, contributing to the versatility and potential of MMAM in achieving
precise material combinations and complex part geometries. In the MEX process in MMAM,
a variety of materials are utilized, including thermoplastics, metal-filled thermoplastics,
composites, and more. Figure 1 provides a schematic view depicting the process description
of the MEX process in MMAM [16].
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The fatigue life prediction of polymers and composite materials has been characterized
by significant efforts to enhance accuracy and efficiency. Numerous studies have employed
traditional approaches such as stress-life (S-N) curves and strain-life (ε-N) curves [17],
adapting these methods to cater to the unique behaviors of polymeric and composite
materials. However, while these conventional methods provide valuable insights, they
often fall short when dealing with the intricate and heterogeneous nature of FGMs. This
limitation has spurred a growing interest in harnessing the power of ML techniques for
fatigue life prediction [18]. A similar study conducted by Hassanifard et al. [19] exam-
ined the fatigue life of 3D-printed PLA components through the application of various
ML techniques, including linear, polynomial, and RF models. The outcomes indicated
that, with the exception of linear regression, the proposed methodologies demonstrated
superior predictive capabilities at elevated load levels compared to traditional analytical
and numerical approaches. Additionally, Kishino et al. [20] have predicted that the fatigue
life of polymer film substrates was accomplished using both linear regression and RF
techniques. The outcomes emphasized the exceptional accuracy, efficiency, and resilience
of the RF model in foreseeing fatigue behavior across diverse loading scenarios. This study
contributes significantly to the domain by showcasing the feasibility of ML in forecasting
fatigue life for polymer films. These findings hold the potential to influence material design
and applications, particularly those necessitating heightened durability. Subsequently,
Boiko et al. [21] encompassed the analysis of empirical data obtained from 3D-printed
plastic components. Additionally, an ANN was employed to forecast fracture behavior in
the samples. Furthermore, the integration of a thermographic camera aimed to enhance
the material’s thermal properties. The results showcased the successful development of
fracture time prediction through the utilization of artificial intelligence techniques. Later
on, Bao et al. This study delved into the evaluation of fatigue life in Selective Laser Melting
(SLM) processed metallic components using the SVM methodology [22]. Essential geomet-
ric features associated with critical defects were acquired through advanced techniques
such as fractography and surface roughness assessment. The acquired data underwent a
rigorous training process and subsequent correlation with fatigue life cycles. The outcomes
of this investigation demonstrated the capability to predict fatigue life based on defect
characteristics, subsequently facilitating lifetime assessment and validation procedures. Fi-
nally, Nasiri et al. [23] have reviewed comprehensively and critically assessed a spectrum of
methodologies employed for fatigue life prediction in both metallic and non-metallic com-
ponents. Drawing insights from a meticulous examination of a diverse array of literature
sources from esteemed repositories like Scopus and other literature databases, the study
meticulously delineates empirical, data-driven, and statistical approaches. The outcomes,
meticulously documented, encompass a thorough exposition of limitations, applications,
and methodological rationales intrinsic to the utilization of data-driven techniques in the
assessment of fatigue properties across domains encompassing 3D printed parts of metallic,
non-metallic, and composite. Furthermore, the review expounds upon the fundamental
parameters that assume pivotal roles in determining the fatigue life of both metallic and
non-metallic constituents, thereby contributing to the scholarly discourse in this domain.

In the pursuit of accurately predicting the fatigue life of polymeric FGMs, a compre-
hensive implementation of ML techniques has been undertaken, as shown in Figure 2.
The model development process commenced with the meticulous formulation of the ML
model, tailored to handle the intricacies of FGM materials. Rigorous data preparation and
feature engineering were conducted to ensure the dataset’s readiness for the training and
testing phases. Subsequently, the software implementation of the ML model was carried
out, integrating cutting-edge technologies and frameworks to harness the full potential of
predictive analytics [24]. The model underwent extensive training using a diverse dataset
comprising known fatigue life values for polymeric FGM materials under varying con-
ditions. Through rigorous testing with the known dataset, the model’s performance and
efficacy were thoroughly evaluated, establishing its predictive capabilities. Upon successful
validation, the ML model was deployed to facilitate real-world fatigue life predictions
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for polymeric FGM materials. Using the same known dataset, the model’s predictions
were compared against the actual fatigue life values, demonstrating promising results. The
model’s accuracy, reliability, and efficiency were assessed to be satisfactory, prompting its
deployment for practical applications. Nonetheless, to ensure continuous enhancement,
fine-tuning the ML model is an ongoing process, where further adjustments and refine-
ments are made based on additional data and feedback, leading to a continual improvement
in fatigue life prediction for polymeric FGM materials. This multidimensional approach
to ML implementation stands as a testament to its potential to revolutionize the field of
material science and engineering, facilitating safer and more durable structural designs in
various industrial domains.
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Recent research has shown promising results in employing ML methods such as
RF, SVM, and ANN to predict fatigue life in various material systems. These techniques
offer the advantage of capturing intricate patterns, non-linear relationships, and complex
interactions within datasets, all of which are crucial in deciphering the nuanced fatigue
behavior of polymeric FGMs. While existing studies have demonstrated the efficacy of
ML in fatigue life prediction, a notable gap in the literature lies in the application of
these techniques, specifically to polymeric FGMs. The unique composition and behavior
of FGMs present a novel challenge that necessitates dedicated investigation. Thus, this
current study aims to bridge this gap by comprehensively exploring the potential of ML
methods for accurate fatigue life prediction in polymeric FGMs, thereby contributing to the
advancement of both material science and predictive modeling techniques.

2. Materials and Methods

In this study, a ZMorph™ 3D printer, characterized as a single-nozzle dual-material
printer, is employed to manufacture multi-material structures. The printer operates based
on the MEX technique, facilitating the concurrent extrusion of two distinct materials
through a solitary nozzle. This distinctive attribute empowers the fabrication of intricate
and utilitarian multi-material entities. An active visual depiction of the ongoing printing
process is shown in Figure 3.
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The experimental analysis involves the characterization of both tensile and fatigue test
samples. This examination aims to explore the response of FGM composites under diverse
structural loads. The parameters employed for fabricating the specimens are detailed
in Table 1.

Table 1. Fixed Processing parameters.

Parameters Values

Nozzle temperature (◦C) 210
Bed temperature (◦C) 60
Infill density (%) 100
Infill pattern Line (0/90)
Layer width (mm) 0.35
Layer height (mm) 0.2
Printing speed (mm/s) 15

2.1. Specimen Preparation and Fabrication

The specimen conforms to the ASTM standard E606M [25]. The specimen adheres to
the ASTM standard E606M [25], as delineated in Figure 4. Concerning the dimensional
attributes of the fatigue test specimen, namely length, width, thickness, and curvature
radius, these specifications are meticulously set at 135 mm, 20 mm, 5 mm, and 10 mm,
respectively. The comprehensive set of specimens investigated in this study is expertly
crafted utilizing two distinct filament types: TPU and PLA, each possessing a diameter
of 1.75 mm. Notably, the PLA filament exhibits a distinct black pigmentation, while the
TPU filament retains its transparency. It is of paramount significance to underscore that all
specimens are uniformly manufactured in a horizontal orientation, as clearly exemplified
in Figure 4. For a more intricate visual representation of the 3D-printed FGM specimen,
as shown in Figure 5. Within this context, Figure 5A provides a comprehensive top-view
illustration of the specimen, meticulously fabricated utilizing TPU, resulting in a pristine
white appearance. Conversely, Figure 5B offers an alternative perspective of the same
specimen, showcasing the utilization of PLA filament in an elegant black. Figure 5C offers
a perspicacious vertical view of the specimen, elucidating that one facet of the specimen is
composed entirely of 100% TPU in white, while the opposing side embodies 100% PLA in
black. Between these two sides, a distinctive FGM layer is deposited, as depicted in Figure 6.
Moreover, it aptly serves as an illustrative representation of the intricate multi-material
FGM fabrication technique. This visualization offers a lucid insight into the precise process
of material blending within the specified A + B zone. The implementation of the Voxlizer
slicer underpins this innovative approach, facilitating a highly customizable method for
the design of FGMs while adeptly enabling the seamless integration of material gradients.
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2.2. Experimental Setup

This investigation involves the assessment of uniaxial fatigue properties of plastics
through tensile and fatigue tests conducted using a Testresources 810E4 [26] load frame
equipped with 15 KN load cells in accordance with ASTM E606M standard test protocols.
Specifically, the experimental setup employed a closed-loop servo-hydraulic machine of the
aforementioned model, with control and guidance facilitated through the Newton Testware
interface [27]. This interface effectively managed crucial testing variables such as frequency
rate, load application, and amplitude. The apparatus incorporates two gripping heads,
where the upper head functions as a clamping mechanism, while the lower one acts as a
load applicator to the specimen. To maintain the desired stress level, a PID controller is
integrated. The experimental configuration is visually depicted in Figure 7.
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2.3. Fatigue Testing

An investigation into the mechanical behavior of FGMs polymeric composites under
diverse structural loads involved the experimental characterization of tensile and fatigue
test samples. The experimental setup encompassed the assessment of various parameters
utilized for the fabrication of the specimens. A tension-based fatigue test was executed to
ascertain the fatigue life of the FGM under specific operating conditions. The parameters
encompassed stress level, stress ratio, and frequency, set at 90% to 40% of the UTS, 0.1, and
3 Hz, respectively. This investigation aims to gain insights into the material’s response when
exposed to tension-tension loading scenarios. The recorded outcomes of the FGM speci-
mens, subjected to fixed processing parameters, are summarized in Table 1. Furthermore,
the fatigue cycle trend corresponding to the FGM parameters is shown in Figure 8.
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2.4. Machine Learning Algorithms

The implementation of ML algorithms in this research study involves the utilization
of the K-fold cross-validation technique, a robust validation strategy. In particular, three
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distinct methodologies, namely RF, SVM, and ANN, have been incorporated. These
methods are systematically employed to elucidate patterns and relationships within the
data, aiming to extract predictive insights with enhanced generalization capabilities. By
integrating these techniques, the study endeavors to discern the underlying complexities
of the analyzed dataset, thereby contributing to a comprehensive understanding of the
research domain.

2.4.1. K-Fold Cross Validation

K-fold cross-validation is implemented to evaluate the performance and generaliz-
ability of the ML models. K-fold cross-validation involves dividing the available dataset
into K equally sized folds. The models are trained on K-1 folds and evaluated on the
remaining fold. This process is repeated K times, with each fold serving as the test set
once. The performance metrics, such as accuracy or mean squared error, are computed for
each iteration, and the average performance across all folds is calculated. By employing
K-fold cross-validation, the aim is to assess the robustness of the ML models and deter-
mine their ability to generalize to unseen data. This technique helps to mitigate issues of
overfitting or underfitting by providing a more comprehensive evaluation of the models’
performance across different subsets of the dataset. It also aids in identifying any potential
biases or variability in the predictions. The complete dataset was divided into five identical
subsets, each accounting for 20% of the total data. Among these, 60% of the data were
allocated for training, 20% for testing, and an additional 20% for validation purposes. This
division resulted in the creation of five distinct “folds” of data. The arrangement of the
data into folds is visually depicted in Figure 9, illustrating the separation of the dataset
into five non-overlapping portions. This approach of dividing the data into folds allows
for the systematic evaluation of the models’ performance on different subsets, enabling
a comprehensive assessment of their generalization capabilities. One experiment was
conducted for each fold, allowing for a comprehensive evaluation of the predictive models’
performance. By performing a separate experiment for each fold, the variability in the
data were effectively captured, enabling a thorough assessment of the models’ robustness
across different subsets of the dataset. This rigorous experimental approach aimed to yield
reliable and unbiased results, providing accurate insights into the predictive capabilities of
the models.
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2.4.2. Random Forest (RF)

As a prominent ensemble learning technique applied in ML and data analysis, it is
comprised of multiple decision trees, where each tree is built using a random subset of
features and training samples [28]. It combines the predictions of these individual trees
to make a final prediction. This technique reduces overfitting and increases the model’s
accuracy and robustness [29]. It is also known for its versatility, as it can handle both
classification and regression tasks. It is widely used in various fields, including finance,
healthcare, and natural language processing, due to its ability to handle large and complex
datasets while providing reliable predictions [30]. The RF model was implemented using
an ensemble learning technique. Multiple decision trees were constructed, with each tree
using a random subset of the training data and a random subset of the input features. The
model incorporated a voting mechanism to aggregate the predictions from individual trees
and provide the final prediction. Each decision tree was trained using the training dataset,
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and the splitting criteria, such as Gini impurity or information gain, were employed to
determine the best splits at each node. It could capture complex non-linear relationships
between the input features and the fatigue life of the polymeric FGM components.

The practice of employing the bootstrap aggregating algorithm is a common and
effective approach in the training of RF models. Central to this technique is the process
of randomly collecting samples from the dataset, which is formally termed bootstrap
resampling [31].

Tn = {(A1, B1) . . . . . . (An, Bn)

where A is input vector with m variables A = { A1, A2 . . . ..Am} and B is output scalar. The
input data are operated to split at every node, and the function f (A Tn) is established at the
end of the training stage [32]. The bootstrap aggregating algorithm selects some samples
f
(
T1

n . . . .Tz
n ) and constructs Z prediction and thus, Z outputs

Bpre
1 = f

(
A, T1

n ) . . . . . . Bpre
z = f (A, Tz

n) are obtained

2.4.3. Support Vector Machines (SVM)

Harnessing robust capabilities for both classification and regression tasks, powerful
ML algorithms come into play known as SVM. They work by finding an optimal hyperplane
that maximally separates different classes or predicts continuous values. They are based on
the concept of support vectors, which are the data points closest to the decision boundary.
It can handle both linearly separable and non-linearly separable datasets using kernel
functions that map the data into higher-dimensional spaces [31]. These are effective in
dealing with high-dimensional data and can handle complex decision boundaries. They
have applications in various fields, including image recognition, text classification, and
bioinformatics [32]. The model was implemented as a binary classifier to predict the fatigue
life of the polymeric FGM components. The aim is to find an optimal hyperplane that
separates the data points representing different fatigue life classes. The hyperplane was
determined by maximizing the margin, which is the distance between the hyperplane
and the closest data points of each class. This model utilized a kernel function, such as
linear, polynomial, or radial basis function (RBF), to transform the input features into a
higher-dimensional space, enabling better separation of the data points. The SVM model
was trained using the training dataset, and the model parameters were optimized to achieve
the best classification performance.

In the linear SVM, the aim is to find a hyperplane that best separates two classes. The
optimization problem can be formulated as follows: given a labeled training dataset with
a feature vector xi and corresponding labels yi where yi ∈ {−1,1}, the goal is to find the
weight vector ω and bias term b that define the hyperplane with the maximum margin and
correctly classify as many points as possible [33].

The optimization problem can be formulated as:
Minimize: 1

2‖ω‖
2

Subject to: yi(ω ∗ xi + b) ≥ 1 for all training samples i.
Here, ‖ω‖ is the Euclidean norm (magnitude) of the weight vector ω The constraints

ensure that data points are correctly classified and lie outside a margin of width 1
‖ω‖ .

2.4.4. Artificial Neural Network (ANN)

Emulating the structure and functioning of the human brain, computational models
known as ANNs have been developed. They consist of interconnected artificial neurons
that process and transmit information. They are widely used in various fields, including
ML and pattern recognition, due to their ability to learn from data and make predictions
or classifications [34]. These are composed of input, hidden, and output layers, with
each neuron receiving inputs, applying weights and activation functions, and passing the
output to the next layer [35]. Through a process called training, it adjusts their internal
parameters to optimize their performance on a specific task. The model’s ability to handle
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complex patterns and relationships in data makes it a powerful tool for solving complex
problems and making accurate predictions. It was implemented using a deep learning
framework, such as TensorFlow or PyTorch. The ANN architecture consisted of multiple
layers, including input, hidden, and output layers, with varying numbers of neurons. The
input layer was designed to accommodate the relevant features and parameters related to
the fatigue behavior of the polymeric FGM components. The hidden layers incorporated
activation functions, such as ReLU or sigmoid, to introduce non-linearities and enhance
the model’s capacity to capture complex relationships. The output layer represented the
predicted fatigue life of the components. The model was trained using a backpropagation
algorithm, optimizing the weights and biases to minimize the prediction error between the
estimated fatigue life and the actual fatigue life obtained from testing.

3. Results and Discussions

In light of the results obtained from the ML techniques, it becomes evident that
their application holds substantial promise for enhancing the fatigue life prediction of
polymeric FGMs. The comparison of RF, SVM, and ANN reveals distinct insights into
their performance and potential utility. Collectively, these ML methods, coupled with their
interpretability, hold significant potential for refining design strategies and advancing the
durability assessment of polymeric FGMs in diverse engineering applications. The RF
model 1 presented here is used to predict fatigue cycles in a dataset. The data are divided
into five folds using the K-fold cross-validation technique, with k = 5. In this approach, the
dataset is split into five subsets. This process is repeated three times, ensuring that each
subset is used as a validation set exactly once. The first three folds represent the training
data (actual data), and the fourth fold is utilized as the testing data for the model. Finally,
the fifth fold is used for validation purposes, providing a comprehensive assessment of the
model’s performance, as shown in Figure 10. Comparing the training RMSE (Root mean
squared error) to the testing RMSE provides insights into the model’s generalization ability.
In this case, the testing RMSE of 2696.13 is lower than the training RMSE of 3580.32, which
indicates that the model is performing better on unseen data than on the data it was trained
on. This suggests that the model is capable of generalizing well to new instances, avoiding
overfitting, and making accurate predictions on data it has not encountered during training.
The model shows promising predictive capabilities and reasonable accuracy in estimating
fatigue cycles.
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By comparing the results between the training data and test data, the predicted
fatigue cycles closely match the actual fatigue cycles for both datasets. In all instances, the
predicted values are very similar to the actual values, with minimal discrepancies, as shown
in Figure 11. However, this suggests that the model is performing well and generalizing
effectively to new, unseen data. Additionally, the predicted fatigue cycles for the test data
are almost identical to the actual fatigue cycles, indicating that the model has successfully
learned the underlying patterns from the training data and can make accurate predictions
for new instances. The testing RMSE of 676.59 represents the average magnitude of the
prediction errors made by the model when tested on unseen data (validation data). A lower
testing RMSE signifies that the model can generalize effectively to new, unseen instances.
The testing RMSE value of 676.59 indicates that, on average, the model’s predictions
on the testing data have an error of approximately 676.58 units of the target variable
(fatigue cycles).
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The RF model 2 presented here is used to predict fatigue cycles in a dataset. For several
test data instances, both models provide identical predictions, precisely matching the actual
fatigue cycles. These instances include instances 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 as shown in
Figure 12. This alignment indicates a consistent predictive performance by both models for
these instances. The comparison between Model 1 and Model 2 reveals that both models
demonstrate the ability to accurately predict fatigue cycles for some test data instances.
However, there are notable discrepancies in their predictions for several instances.
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These differences may arise due to variations in the model architectures, hyperparam-
eters, or the size and composition of their respective training datasets. Model 1 and Model
2 might also incorporate different feature representations, which can impact their predic-
tive capabilities. Moreover, the random nature of the RF algorithm can lead to different
outcomes when the models are trained on the same data. It is essential to evaluate both
models’ performances on larger datasets and conduct further analysis to determine which
model performs better in real-world scenarios and which model’s predictions are more
consistent and reliable. Actual data and validation data are shown in Figure 13.
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In conclusion, both Model 1 and Model 2 exhibit promising predictive capabilities,
showcasing their ability to accurately predict fatigue cycles for the given data. While the
models perform admirably, there are some minor variations in their predictions. However,
it is important to note that these discrepancies are relatively small, and both models display
reliable and consistent performance overall. Further fine-tuning and validation on larger
datasets can be undertaken to identify potential areas for improvement and select the most
suitable model for specific applications.

RF model 3 has made predictions on the testing data, and the comparison shows
how well the model aligns with the actual fatigue cycle values: For instances 1, 4, 5, and
6, the predicted fatigue cycles are very close to the actual values, indicating accurate
predictions for these instances. Instances 2, 9, and 11 show minor variations between the
predicted and actual fatigue cycles, suggesting acceptable performance with relatively
small prediction errors. Whereas Instances 3, 7, and 12 exhibit more significant differences
between the predicted and actual fatigue cycles, indicating potential challenges for the
model in accurately capturing the underlying patterns in these cases. Instances 8 and
10 demonstrate moderate discrepancies, indicating a mixed performance where some
predictions are close to the actual values while others deviate to a greater extent, as shown
in Figure 14. The training RMSE of 1824.17 is lower than the testing RMSE of 2697.38, which
is expected and suggests that the model is performing better on the data it was trained on
compared to new, unseen data. This indicates that the model has learned from the training
data and can make reasonably accurate predictions on that data.
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By examining the predicted values from RF model 3 on the validation data, Figure 15
displays how closely the model aligns with the actual fatigue cycle values: Instances 1 and
3 show relatively accurate predictions, with the model closely matching the actual fatigue
cycle values similarly Instances 2, 4, 9, 10, 11, and 12 demonstrate accurate predictions as
well, indicating good performance by the model on these instances. Whereas instances 5
and 6 reveal minor variations between the predicted and actual fatigue cycles, suggesting
acceptable performance with relatively small prediction errors. Eventually, instances 7 and
8 exhibit larger discrepancies between the predicted and actual fatigue cycles. Although
the predictions are not far off, there is room for improvement in these cases.
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The training RMSE of 760.07 is higher than the testing RMSE of 569.95, which is
expected and indicates that the model is performing better on the training data compared
to new, unseen testing data. This discrepancy suggests that the model may be experiencing
some degree of overfitting. The difference between the training and testing RMSE values
suggests that the model’s predictions are more accurate on the testing data compared to
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the training data. This can be considered a positive sign, as it indicates that the model is
able to generalize well to new data.

Models 1, 2, and 3 each demonstrate promising predictive capabilities for fatigue
cycle prediction tasks, but they exhibit distinct strengths and weaknesses. Model 1 stands
out for its remarkable accuracy and consistency in predicting fatigue cycles, as evidenced
by its relatively low RMSE values on both training and testing data. However, it may
be limited by potential overfitting, as indicated by a larger difference between training
and testing RMSE values. Model 2, on the other hand, showcases comparable predictive
performance to Model 1, with slightly higher RMSE values. It appears to generalize
well to unseen data, suggesting robustness. Model 3 demonstrates a reasonable ability
to predict fatigue cycles with a balance between accuracy and generalization. Its RMSE
values for training and testing data are closer compared to the other models, indicating
fewer issues with overfitting. To select the most appropriate model, further investigation
is required, considering factors such as computational efficiency, interpretability, and the
specific requirements of the fatigue cycle prediction application. Overall, each model
shows promise, and the choice depends on the specific trade-offs and priorities for the
given application.

After examining the predicted values from SVC model 1 on the testing data, the
model aligns with the actual fatigue cycle values: Instances 1, 4, and 12 demonstrate
accurate predictions, with the model closely matching the actual fatigue cycle values. These
instances highlight the model’s capability to predict fatigue cycles with high accuracy.
Instances 2, 9, and 10 reveal minor variations between the predicted and actual fatigue
cycles, suggesting acceptable performance with relatively small prediction errors. The
model still manages to capture the underlying patterns effectively. Instances 3, 5, 6, 8, and
11 exhibit larger discrepancies between the predicted and actual fatigue cycles. While the
predictions are not far off, there is room for improvement in these cases, as the model
may struggle with certain patterns. Instance 7 showcases the largest discrepancy, where
the model significantly deviates from the actual fatigue cycles. This instance highlights a
potential area of improvement for the model to better predict high-stress cycles, as shown in
Figure 16. The training RMSE of 873.87 represents the average magnitude of the prediction
errors made by the SVC model on the training data. A lower training RMSE suggests that
the model has learned to fit the training data relatively well. In this case, the training RMSE
indicates that, on average, the model’s predictions on the training data have an error of
approximately 873.87 units of the target variable.
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The testing RMSE of 1163.45 represents the average magnitude of the prediction errors
made by the SVC model when tested on unseen data (testing data). A lower testing RMSE
signifies that the model can generalize effectively to new, unseen instances. The testing
RMSE value of 1163.45 indicates that, on average, the model’s predictions on the testing data
have an error of approximately 1163.45 units of the target variable. Instances 1 and 2 exhibit
predictions that closely align with the validation data. This indicates that the model has
learned to capture the underlying patterns present in both the training and validation
datasets effectively. Instances 3, 8, and 9 showcase predictions that differ slightly between
the training and validation data. While the model’s performance is relatively accurate
in these cases, it may benefit from further fine-tuning to better account for variations in
the validation data. Instances 4, 6, and 7 demonstrate significant discrepancies between
the training and validation predictions. These instances highlight potential areas where
the model could improve its generalization ability and avoid overfitting the training data.
Instances 5, 10, 11, and 12 reveal some challenges in predicting the validation data accurately.
The model might need additional optimization to better handle instances with varying
patterns or stress cycles, as shown in Figure 17.

The comparison between actual data with the testing data predicted by SVC Model
2 provides valuable insights into the model’s performance and its ability to generalize to
unseen instances: Instances 1, 2, 4, and 9 showcase predictions that are relatively close to
the actual fatigue cycles. This suggests that the model has learned the underlying patterns
well and is capable of making accurate predictions on new, unseen instances. Instances 3, 8,
and 12 demonstrate predictions with minor discrepancies from the actual fatigue cycles.
Although the model’s performance is relatively good in these cases, further fine-tuning
may help to improve the accuracy of these predictions. Instances 5, 11, and 10 exhibit
precise predictions where the model successfully captures the correct fatigue cycles. These
instances highlight the model’s ability to generalize well, even in instances with relatively
low-stress cycles. Instance 6 demonstrates a perfect prediction where the model correctly
identifies the actual fatigue cycles. This instance indicates that the model has effectively
learned the patterns present in the testing data. Instance 7 showcases a prediction that is
slightly lower than the actual fatigue cycles. While it is relatively close, there might be
room for improvement in capturing patterns for higher stress cycles, as shown in Figure 18.
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This RMSE value of approximately 278.84 indicates that, on average, the model’s
predictions on the training data have an error of approximately 278.84 units of the target
variable. A lower training RMSE suggests that the model’s predictions are closer to the
actual values in the training data. The testing RMSE of approximately 718.06 indicates that,
on average, the model’s predictions on the testing data have an error of approximately
718.06 units of the target variable. By comparing the model’s predictions on the validation
data, we can assess how well it generalizes to unseen instances: Instances 1, 3, 5, 6, 7, 8,
and 10 exhibit predictions that closely align with the validation data. This indicates that
the model has learned to capture the underlying patterns present in the validation data
effectively. Whereas instances 2, 4, and 11 demonstrate predictions that differ significantly
from the validation data. These instances suggest that the model may not generalize as
well to certain unseen patterns or stress cycles. Additionally, instances 9 and 12 showcase
predictions that are relatively close to the validation data but still have minor discrepan-
cies. These instances may benefit from further fine-tuning to improve accuracy, as shown
in Figure 19.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 17 of 23 
 

 

predictions that are relatively close to the validation data but still have minor discrepan-
cies. These instances may benefit from further fine-tuning to improve accuracy, as shown 
in Figure 19. 

 
Figure 19. SVC Actual data vs. Validation data (Model 2). 

SVC Model 2 shows mixed performance on the validation data, with accurate predic-
tions in several instances and minor discrepancies in others. The model’s ability to gener-
alize effectively to unseen validation data are evident in instances where predictions align 
closely with actual fatigue cycles. Moreover, SVC Model 3 demonstrates promising pre-
dictive capabilities on the testing data, with accurate predictions in several instances and 
minor discrepancies in others. The model’s ability to generalize effectively to unseen test-
ing data are evident in instances where predictions align closely with actual fatigue cycles, 
as shown in Figure 20. 

 
Figure 20. SVC Actual data vs. Test data (Model 3). 

Figure 19. SVC Actual data vs. Validation data (Model 2).



J. Compos. Sci. 2023, 7, 420 17 of 22

SVC Model 2 shows mixed performance on the validation data, with accurate pre-
dictions in several instances and minor discrepancies in others. The model’s ability to
generalize effectively to unseen validation data are evident in instances where predictions
align closely with actual fatigue cycles. Moreover, SVC Model 3 demonstrates promising
predictive capabilities on the testing data, with accurate predictions in several instances
and minor discrepancies in others. The model’s ability to generalize effectively to unseen
testing data are evident in instances where predictions align closely with actual fatigue
cycles, as shown in Figure 20.
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Instances 1, 7, and 11 demonstrate predictions that closely align with the testing data.
This indicates that the model has learned to capture the underlying patterns present in the
testing data effectively. Whereas instances 2, 4, and 10 exhibit predictions that closely match
the actual fatigue cycles, showcasing the model’s ability to generalize well to these stress
cycles. Additionally, instances 3, 5, 6, 8, and 9 showcase predictions that differ slightly from
the actual fatigue cycles. While they are not perfect predictions, the model’s performance is
relatively good in these cases, as shown in Figure 21. Eventually, by comparing the model’s
predictions on the validation data, it demonstrates how well it generalizes to unseen data:
Instances 1, 2, 4, 6, and 9 display predictions that closely align with the validation data.
This indicates that the model has learned to capture the underlying patterns present in the
validation data effectively. However, instances 5, 8, 10, 11, and 12 exhibit predictions that
exactly match the actual fatigue cycles, showcasing the model’s excellent performance in
these cases. Eventually, instances 3 and 7 showcase predictions that are close to the actual
fatigue cycles but have minor discrepancies. While they are not perfect predictions, the
model’s performance is relatively good in these instances, as shown in Figure 21.

SVC Model 3 demonstrates promising predictive capabilities on the validation data,
with accurate predictions in several instances and minor discrepancies in others. The
model’s ability to generalize effectively to unseen validation data are evident in instances
where predictions align closely with actual fatigue cycles. Among the three models, Model
3 demonstrates the best overall performance. It has the lowest RMSE values for both
training and testing data, indicating that it generalizes well to unseen instances while
accurately capturing patterns in the training data. Model 1 and Model 2 show weaknesses
in their respective areas, with Model 1 possibly underfitting and Model 2 potentially
overfitting. For practical applications, Model 3 would likely be the preferred choice due
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to its better generalization and prediction accuracy. However, further evaluation and
refinement might be needed to achieve even better predictive capabilities. It’s important to
note that model performance may vary based on the specific dataset and problem domain,
and conducting additional experiments and analyses would provide more robust insights
into the model’s performance.
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The ANN model architecture consists of a single hidden layer with ten neurons,
utilizing the ‘RELU’ (Rectified Linear Unit) activation function to introduce non-linearity.
The output layer contains one neuron. The model is then compiled using the mean squared
error (MSE) loss function and the Adamax optimizer with a learning rate of 0.001. The
training data are then used to train the model for 200 epochs with a batch size of 50. During
the training process, the model updates its parameters to minimize the mean squared error
between the predicted outputs and the actual target values. Once training is complete,
the model is capable of making predictions on new, unseen data. By feeding the testing
data (test) into the trained model, it will generate predicted values for the corresponding
instances. These predicted values can be compared with the actual target values to assess
the model’s performance on unseen data. If the model has learned meaningful patterns
during training, it should provide accurate predictions on the testing data.

The comparison of actual data and testing data instances from the ANN Model demon-
strates that the model is making accurate predictions on the unseen data, as shown in
Figure 22. The small differences between the actual and predicted fatigue cycles indicate
the model’s effectiveness in generalizing to new instances beyond the training data. This
suggests that the ANN Model is a promising tool for fatigue cycle prediction tasks, show-
casing its potential to be applied to real-world scenarios with confidence in its accuracy.
However, it’s essential to continue evaluating the model’s performance on diverse datasets
and further fine-tuning the model to enhance its robustness and reliability.

Figure 23 displays the results of the ANN Model, depicting the true labels (actual
fatigue cycle values) against the predicted labels (model-generated fatigue cycle values).
The close alignment between the true and predicted labels signifies the model’s accuracy
and effectiveness in predicting fatigue cycles.
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4. Limitations and Future Work

This study significantly advances the prediction of fatigue life for FGM through ML. It
is essential to acknowledge certain limitations. These include the relatively limited variabil-
ity in our dataset, potentially hindering the models’ ability to address the full spectrum
of FGM compositions and environmental conditions. Additionally, the interpretability of
ML models, particularly ANN, poses challenges, making it imperative to explore model
interpretability techniques. The computational demands of complex ML models also merit
consideration, and the study predominantly focuses on FGMs produced via MEX.

In terms of future research, several promising directions merit exploration. Firstly,
expanding the dataset to encompass a broader range of FGM compositions, loading condi-
tions, and environmental factors could enhance the robustness and generalizability of our
ML models. Additionally, the development of model interpretability techniques specific to
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FGM fatigue prediction would enhance the practical utility of these models. Investigating
the application of ML in predicting fatigue life for FGM components produced through
diverse manufacturing techniques and considering multiscale modeling to capture the
hierarchical structure of FGMs could provide more accurate representations of material
behavior. Integrating environmental factors and exploring hybrid models that combine ML
with physics-based models like Finite Element Analysis (FEA) represent further avenues
for refining and extending fatigue life prediction methodologies for FGM.

5. Conclusions

The present study provides valuable insights into the prediction of fatigue cycles in
polymeric FGMs through the utilization of ML techniques. The analysis of RF, SVC, and
ANN models reveals distinct trends and performance disparities, leading to significant
implications for engineering design and material assessment. By examining the perfor-
mance metrics and characteristics of each model, a comprehensive understanding emerges
regarding their suitability and limitations in the context of predicting fatigue cycles in
polymeric FGMs. The results of this investigation have been summarized as follows.

• RF model exhibits superior performance in predicting fatigue cycles of polymeric
FGMs compared to SVC and ANN models.

• RF model demonstrates the lowest testing RMSE and showcases strong generalization
capabilities to unseen data.

• The lower testing RMSE signifies the RF model’s capacity for accurate fatigue cycle
predictions in polymeric FGMs.

• RF model’s ability to minimize overfitting while maintaining excellent prediction
accuracy underscores its robustness and reliability.

• RF model’s suitability as a valuable tool for engineers and researchers seeking precise
and efficient fatigue cycle predictions in polymeric FGMs.

• There is a need for further research and experimentation to validate these results across
diverse datasets and establish the RF model’s superiority in various practical scenarios.

This study effectively addresses the gap by comprehensively exploring ML techniques
for accurate fatigue life prediction of FGMs. Its future direction includes microscopic
component analysis for failure identification enhancing material behavior understanding.
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