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Abstract: Metals have been investigated as biomaterials for a wide range of medical applications.
At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated
researchers’ focus on biosensor development. At the device level, some metals, such as titanium,
exhibit good physical properties, which could allow them to act as biomedical implants for physical
support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor
tissue–device compatibility have greatly limited their performance. This review aims to illustrate
the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal
composite/nanocomposite healthcare materials in different biomedical applications. Here, we
revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples
and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal
therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–
interactive biomedical applications. At the device scale, the rational design of polymer–metallic
medical devices is of importance for dental and cardiovascular implantation to overcome the poor
physical load transfer between tissues and devices, as well as implant compatibility under a dynamic
fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal
biomedical composite designs and provide a future perspective on the aforementioned research areas.

Keywords: polymer–metal composites; healthcare materials; biomolecules detection; intracellular RNA
detection; photothermal therapy; neurodegenerative diseases; dental implants; cardiovascular stents

1. Introduction

A composite is defined as the combination of two or more materials with different
physical and chemical properties, thereby creating new materials with advanced structural
properties and functionalities [1]. Polymer–metal composites offer tunable properties of
materials in both the nanoscale and the bulk scale [2,3]. From the nanoscale to the device
level, the tunable properties of polymer–metal composite materials are crucial to the design
of healthcare materials for diagnostics, therapeutic, antibacterial, and bio-substitute applica-
tions. The selection of polymers and metallic materials render complementary effects upon
each other, and therefore the rational design of polymer–metal composites creates com-
bined materials with finely adjusted material properties. The advantages of polymer–metal
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composite materials are more than retain the advantages of both polymer and metallic
materials. There are various types of interactions that occur between polymers and metallic
materials, including electrostatic forces, metal–ligand interactions, gold–thiol bond, and
condensation reactions, which can be considered as synthetic strategies that change the
material hierarchy (two dimensions into three dimensions structures, layered structures,
highly-organized assemble) and thereby create new structures, such as nanoassemblies,
nanocomposite hydrogels, nanodisk composites. These structures are valuable platforms to
leverage the inherit properties of polymer–metal composites and serve different purposes
(Figure 1). For example, the surface of the polydimethylsiloxane (PDMS) substrate can be
modified with silver film via wavy patterning to give a transparent stretchable electronic
that is useful for human-health monitoring devices [4]. The surface modification of metallic
nanoparticles (e.g., gold nanoparticles, iron nanoparticles) with polyethylene glycol (PEG)
creates passivated surfaces that the reduce aggregation of nanoparticles, interactions with
non-targeted serum and tissue proteins, and further reduce uptake by the reticuloendothe-
lial system (RES), thereby collectively improving the biocompatibility of nanoparticles
and the circulation time of nanomedicine [5]. The incorporation of magnetic nanopar-
ticles/microstructures in hydrogels can give metal composite hydrogels with magnetic
stimulations that promote the healing of different tissues [6]. Polymers can be composited
with metal ion (iron ion) or metal oxide (e.g., titanium oxide) to improve adhesiveness [7],
or to enhance the mechanical performance and biointegration of healthcare implants [8].
Natural macromolecules such as DNA can be used to link gold nanoparticles with different
sizes and form highly organized chiral nanoassemblies by tailoring the design of DNA
chains. Such chiral nanoassemblies respond to circularly polarized light and stimulate the
differentiation of neural stem cells into neuronal phenotypes [9].

Plasmonic particles are characterized by localized surface plasmon resonance (LSPR).
Briefly, the electrons in nanoparticles vibrate under electromagnetic waves. The colloidal
materials thereby oscillate and scatter light [10,11]. For example, small gold nanoparticles
(<10 nm in diameter) exhibit the representative red color due to a high absorption band
across visible light spectrum, except wavelengths of 600–700 nm [12]. Therefore, the sizes
of gold nanoparticle dispersions can be analyzed from the absorption spectrum [13]. In-
deed, colloidal gold nanoparticles are a common carrier agent in lateral flow tests, where a
red line is observed in the test strip due to the immobilization and accumulation of gold
nanoparticles [14]. The aggregation of gold nanoparticles, such as salt induced aggregation
and biomolecule conjugate linkages, would cause the significant change in absorption
spectra [15,16]. Such size dependent optical properties are highly attractive in developing
biosensors for rapid diagnosis. In the context of cell interactive biomedical applications,
such as drug delivery and bio-imaging, the precise delivery of nanoparticles to target
cells is crucial. For example, plasmonic particles, which also feature high photothermal
conversion efficiency, could be delivered to tumor tissues for photothermal therapy [17].
Nonetheless, off-target delivery may harm healthy tissues during photothermal therapy.
Biomolecules, such as peptides and antibodies, are often decorated on the particle surface
to achieve precise delivery, or to avoid the leakage of nanomaterials to non-targeted tis-
sues [18]. Due to the excellent fluorescence quenching properties on plasmonic surfaces,
biomolecule–plasmonic particle conjugates often act as bio-imaging reporters upon dissoci-
ation from plasmonic particles [19]. The cellular uptake of such biomolecule–plasmonic
nanocomposites provides great potential in live cell imaging. Furthermore, nanoparticles,
such as superparamagnetic iron oxide nanoparticles (SPIONs), are excellent contrast agents
for magnetic resonance imaging (MRI) and are often modified with biomolecules and poly-
mers to achieve precise delivery. For example, SPIONs modified with cell surface receptor
targeting peptides and neurotoxin targeting peptides can serve as a theranostic agent that
penetrates the blood–brain barrier (BBB) and targets neurotoxins for the (1) alleviation of
neurodegenerative diseases symptoms as well as (2) MRI monitoring [20].
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Figure 1. Synthetic approaches, features, and functions of polymer-metal composite materials.
(A) Surface modification approach; (B) Built-in approach; (C) Intercalation approach; (D) Multi-
crosslinking approach.

At the tissue level, cells are harbored in an extracellular matrix (ECM) comprising
glycosaminoglycans, proteoglycans, and glycoproteins. Indeed, a cell adheres to such a
complex extracellular environment and acquires both biochemical and mechanical sig-
nals. Disrupting the interactions between cell and ECM, such as focal adhesion, would
severely affect cell motility [21,22]. Without proper tissue–implant integration, the implants
might be recognized as foreign materials and trigger undesired foreign body reaction,
including sustained fibrosis and the formation of scar tissues, which lead to chronic inflam-
mation. Therefore, cell-surface interactions become a critical concern in medical implants
design [23,24]. Herein, we focus on the polymer–metal composite dental implants, which
mediate physical load, to emphasize the importance of good tissue–device integration
(osseointegration) upon implant maintenance in vivo. Besides, biomedical devices might
be exposed to dynamic biofluids. For example, cardiovascular stents continuously interact
with both blood plasma and surrounding endothelial cells. Nonetheless, the vascular
narrowing due to neointima formation after percutaneous coronary intervention, also
known as in stent restenosis, remains a major challenge [25,26]. The first major break-
through in terms of cardiovascular stents was the invention of drug-eluting stents, a class
of polymer-metal cardiovascular stent. Such metallic-based stents are coated with poly-
mers for effective drug loading and drug release, which inhibit platelets activation and
vascular smooth muscle cells hyperproliferation, thus preventing in-stent restenosis [27].
The polymer metal cardiovascular stents have demonstrated better clinical performances
over bare metal implants and serve as one of the major devices for cardiovascular diseases
treatment. Based on the foundation of drug-eluting stents, in the subsequent discussion,
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we also include the recent development of polymer metal cardiovascular stents, which can
withstand complicated and dynamic fluidic environments.

The present review highlights the pivotal role of polymer–metal composite materials
in the field of healthcare materials from the nanoscale to device level. We first discuss the
recent advancements of biomolecule detection in cell free samples as benefited by plas-
monic biotechnology. We subsequently highlight updated polymer–metal nanocomposites
design covering intracellular RNA detection, photothermal therapy, and nanomedicine
for neurodegenerative diseases as selected significant live cell interactive biomedical ap-
plications. At the device level, the interactions between biomaterials and surrounding
tissues are critical to healthcare devices design. We revisit the current challenges on dental
implants and cardiovascular implants and further discuss the merits of polymer–metal
composites in respective areas. Finally, we provide the future perspective of polymer–metal
composites design in the mentioned research areas.

2. Plasmonic Biotechnology for Diverse Biomedical Applications

Plasmonic metallic nanoparticles can interact with electromagnetic radiation. The
absorption and scattering of the light of plasmonic particles are geometry and size de-
pendent. The surface modification of plasmonic particles by target specific biomolecules
(e.g., antibody, nucleic acid) confers biosensing applications. These features have moti-
vated researchers to develop new biomolecule detection platforms in recent years, with
the aim of improving sensitivity, automation, and throughput scale [28,29]. Conventional
research biomolecules analysis tools present time consumption issues. For example, the
conventional quantitative polymerase chain reaction (qPCR) requires multiple amplifi-
cation cycles of target sequences. Immunoblotting also requires lengthy procedures in
respect of electrophoresis and antibody detection. The inconvenient procedures are highly
undesired for scalable diagnosis in routine clinical settings. In this section, we review recent
plasmonic biotechnology examples advancing disease diagnosis and biomolecule detection
in cell free samples such as serum. Besides, cells could interact and internalize surrounding
nanomaterials [30,31]. Herein, we include three popular research areas in our discussion:
intracellular RNA detection, photothermal therapy, and nanomedicine for neurodegenera-
tive diseases, which together cover the diagnostic and therapeutic application examples of
live cell targeting polymer–metal composite nanoparticles.

2.1. Plasmonic Biosensor Platforms for Cost-Effective, Rapid, High Throughput Diagnosis
2.1.1. High Sensitivity Plasmonic Assisted Immunosorbent Assay

In the fluorescence-linked immunosorbent assay (FLISA), targets captured by immo-
bilized antibodies would be further recognized by fluorescently tagged antibodies. Com-
pared to a glass substrate, according to an early report by Tabakman et al. [32], gold/silver
plasmonic chips improved the signal-to-noise ratio and extended the detection range to
femtomolar range in near-infrared regime (Figure 2a). Plasmonic nano-surfaces can couple
with fluorophores (5–90 nm distance) to amplify fluorescence, known as plasmonic en-
hanced fluorescence [33,34]. The plasmonic gold chip also outperformed a glass substrate
due to fluorescence enhancement. However, continuous gold film instead quenched fluo-
rescence and was thereby not considered suitable for FLISA [35,36] (Figure 2b). Recently,
Luan et al. [37] designed an “add on plasmonic-fluor label” to replace a single fluorophore
tag on an antibody (Figure 2c) and it showed excellent sensitivity. The add-on construct
comprised multiple fluorophores (>200) and elicited the plasmon enhanced fluorescence
based on the gold nanorod core. According to the example provided, labeling human
IL-6 with a plasmonic fluorophore improved the limit of detection down to 20 fg/mL
(Figure 2d), in contrast to conventional FLISA with a limit of detection of 95 pg/mL. FLISA
with improved sensitivity provides a possibility to detect low abundance biomarkers, such
as IL-6 for early cancer diagnosis [38].
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Figure 2. Plasmonic assisted Fluorescence-linked immunosorbent assay. (a) Fluorescence intensity-
Carcinoembryonic antigen concentration calibration performed by gold/silver plasmonic chip and
glass (Figure reprinted with permission from Ref. [32] Copyright Springer Nature); (b) Fluorescence
map showing the performance of plasmonic gold chip (left), glass (middle) and sputtered gold chip
(right) in different concentration of cardiac troponin I (Figure reprinted with permission from Ref. [36]
Copyright Springer Nature); (c) Fluorescence map and (d) Fluorescence quantification of conventional
FLISA and plasmonic FLISA in detection of human IL-6 across serial dilution (6 fg/mL to 6 ng/mL)
respectively (Figure 2c,d are reprinted with permission from Ref. [37] Copyright Springer Nature).

2.1.2. Plasmonic Nanoparticles Mediated Timely Detection of Nucleic Acid

The polymer chain reaction assay is a common nucleic acid detection tool in labora-
tory settings. However, lengthy operations could hinder the research progress or medical
diagnosis. Improving the simplicity and efficiency of nucleic acid analysis assay would
benefit both research and clinical settings. For example, in the context of the current
coronavirus pandemic (COVID-19), the PCR test has been a globally common diagnostic
strategy. Timely report of test results is critical to COVID-19 monitoring. To elicit the optical
feature of plasmonic nanoparticles on nucleic acid detection, Moitra et al. [39] proposed
the use of antisense oligonucleotide modified gold nanoparticles for SARS-CoV-2 RNA
detection. Briefly, the SARS-CoV-2 RNA sequence binded to antisense oligonucleotide on
gold nanoparticles, and AuNPs subsequently aggregated in a few minutes. This change in
surface plasmon resonance was visible and immediate. Therefore, such a simple operation
might enable self-diagnostic potential by the layman, thereby reducing the cost of labor
resources in a scalable test centre. Although the limit of detection (0.18 ng/µL) is not
comparable to conventional qPCR (2.0 copies/µL), these naked eye observable results
bypass the necessity of conventional PCR computed detection machinery [39,40]. Recently,
Cheong et al. [41] developed a nanoPCR system, which adopted the high photothermal
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conversion efficiency and magnetic sensitivity of Zn0.4Fe2.6O4@Au nanoparticles to respec-
tively assist the thermocycling process (Figure 3a) and fluorescence detection (Figure 3b).
The system could complete a PCR process in less than 17 min with a limit of detection of
3.2 copies/µL. Conventional RT-qPCR procedures require around 2 h, which is lengthy.
These immediate, simplified diagnosis strategies are presently subject to massive demand
from society.

Figure 3. Plasmonic nanoparticles mediated detection of nucleic acid. (a) Thermal image of
Zn0.4Fe2.6O4@Au nanoparticle solution during 532 nm light source off (left) and on (right).
(b) Fluorescence reporter from target nucleic acid was quenched due to proximity to gold
nanoshell (left). Magnet field sedimented nanoparticles and recovered fluorescence in the fluo-
rescence reporter containing supernatant (right) Figure 3a,b are reprinted with permission from
Ref. [41] Copyright Springer Nature.

2.1.3. Gold Nanoparticle Assisted Multiplexed Exosome Profiling

Exosomes are nanoscale, lipid bilayer extracellular vesicles for biomolecule (e.g., nu-
cleic acid, protein) transportation between cells and they expresses multiple proteins on
their surface [42]. The altered exosome acts as a potential biomarker in disease diagnosis, in-
cluding in the case of kidney disorders (e.g., acute kidney injury, diabetic nephropathy) [43],
cardiovascular diseases (e.g., acute myocardial infarction, acute coronary syndromes), [44]
osteoarthritis [45], and cancers [46]. Jiang et al. [47] reported an aptamer/gold nanoparticle
(AuNP) biosensor colorimetric assay. Notably, AuNP was modified by a target protein
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specific aptamer, which prevented the aggregation of AuNP in salty solution. Upon recog-
nizing the target protein, the AuNP bound aptamer dissociates and binds to the exosome
surface. The immediate aggregation of AuNPs leads to an increased absorbance ratio
(A650/A520), which could quantify the target protein expressing exosome. Besides, Liang
et al. [48] developed a nanoplasmon-enhanced scattering (nPES) assay, which elicits the
light scattering using a gold nanosphere and gold nanorod (Figure 4a). Of importance,
the gold nanosphere and gold nanorod show distinct scattering spectrums, which allows
multiplexed immuno-labelling of the target under dark field microscopy. To distinguish
free protein and exosomes of different size, Wu et al. [49] reported templated plasmonics
for exosomes (TPES) platform, which highlighted the in situ growth of gold nanoshells
(Figure 4b). More importantly, the absorption spectrum of the resultant exosome-templated
gold nanostructure relies on the size of both exosome and gold nano-seed. Further addition
of the aptamer-fluorescent probe targeting exosomal protein would be quenched by a gold
nano-shell, which therefore enables the detection of target surface proteins.

Figure 4. Recent examples on advanced nano-plasmonic exosome sensors. (a) Nanoplasmon-
enhanced scattering (nPES) assay. Antibody bearing gold nanosphere and gold nanorod are used
to label different protein on the exosome surface under dark field microscopy (scale bar: 2 µm and
100 nm in main image and magnified image respectively) (Figure reprinted with permission from
Ref. [48] Copyright Springer Nature). (b) Transmission electron microscopy showing in situ growth of
gold nanoshell on exosome, leading to the formation of exosome@gold nano-structure (Figure reprinted
with permission from Ref. [49] Copyright American Association for the Advancement of Science).

2.2. Intracellular RNA Detection

Metallic nanoparticles, such as gold and silver, can quench fluorescence on their sur-
faces when the fluorophore is close enough to the plasmonic surface (<5 nm) [19,50,51].
This feature has attracted researchers to design fluorophore-plasmonic nano-complexes for
bioimaging applications. The nanoflare system (or commercially named SmartFlareTM) is a
derivative of spherical nucleic acid to detect intracellular RNA targets under fluorescence
microscopy [52,53]. A nanoflare is modified by hybridized ssDNA complexes containing
a (1) recognition sequence and (2) fluorescence tagged reporter sequence. Upon cellular
uptake, fluorescence recovers when target RNA replaces a reporter sequence. The release
of the fluorescence tagged reporter sequence contributes to fluorescence signal distribution
over the imaged cell. The nanoflare has covered popular biomedical research areas such as
human tumor cell isolation [54] and drug toxicity testing [55]. Besides, nanoflares could
be internalized by exosomes to detect microRNA targets, thus offering a convenient tool
for exosome-based diagnosis strategies [56]. Oligonucleotide modified gold nanoparticles
are less vulnerable to intracellular degradation [57], so the application of intracellular
RNA nanoprobe could be further expanded to gene delivery. Zhang et al. [58] conjugated
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siSOX9 (i.e., a small interfering RNA against SOX9) on a Tubb3 and Fox3 targeting mul-
tiplexed nanoprobe. Silencing SOX9 could induce neural stem cell differentiation while
the expression of related markers Tubb3 and Fox3 could be monitored by a nanoprobe.
Kyriazi et al. [59] designed a nano-dimer for both drug delivery and mRNA detection. The
nano-dimer links two DNA-gold nanoprobes. Each nanoprobe targets different intracellular
mRNA and respectively encapsulates drugs, doxorubicin (DOX) and mitoxantrone (MTX),
within the flare-recognizer DNA duplex. Upon the binding of a target sequence and release
of the flare-sequence, the respective intercalated drug would be released (Figure 5). In this
case, the drug acts as both chemotherapeutic agent and fluorescent reporter of the existence
of target mRNA.

Figure 5. Confocal microscopy showing release of fluorescent drug from DNA-gold nano-dimer
upon recognition of target intracellular mRNA sequence in vitro. DOX and MTX were intercalated in
keratin 8 mRNA targeting DNA duplex and vimentin mRNA targeting DNA duplex respectively.
(A) 16 HBE and A 549 cells expressed keratin 8. The release of DOX from gold nanoprobe recovered
the quenched fluorescence of DOX. (B) MRC 5 and (C) A549 cells expressed vimentin. The release
of MTX from gold nanoprobe recovered the quenched fluorescence of MTX. (D–F) No fluorescence
detected from non-targeting scramble nano-dimer, suggesting the release of drug was target specific
(Figure reprinted with permission from Ref. [59] Copyright American Chemical Society).
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The use of hairpin DNA could group recognition domain and reporter domain into
one oligonucleotide sequence, which could simplify the detection system. An early re-
port by Jayagopal et al. [60] developed a hairpin DNA-modified gold nanoparticle for
intracellular RNA detection. Upon recognition of the target sequence, unfolding of the
hairpin displaces the fluorophore from the gold nanoparticle surface, thus leading to the
recovery of detectable fluorescence. Besides, the hairpin sequence could be conjugated on
nanoparticles in a dissociable form, which would allow the distribution of the fluorophore
over the imaged cell [61–63]. Briefly, the fluorescent hairpin DNA probes were immobilized
on polydopamine shells through a π–π interaction. The quenched fluorescence recovers
upon recognition of the mRNA target and the release of DNA probe from the nanocomplex.
Furthermore, Choi et al. [62] showed that the single administration of hairpin DNA immo-
bilized polydopamine coated gold nanoparticles could achieve longer term intracellular
micro-RNA (detectable on day 5) imaging compared to SmartFlareTM.

2.3. Photothermal Therapy

Photothermal therapy (PTT) elicits the photothermal conversion of nanomaterials for
cancer cell killing. Briefly, near-infrared (NIR) light energy is converted to heat by PTT
responsive nanomaterials, and the tumor is then regressed through necrosis or apopto-
sis [17,64,65]. Several metallic nanomaterials have been frequently investigated for PTT
application such as: gold nanoparticles [66] and iron oxide nanoparticles [67]. Photothermal
nano-agents are often modified by ligands, such as arginine-glycine-aspartic acid (RGD)
peptide motif (targeting αVβ3 integrin) [68,69] and folic acid (targeting folate receptor) [70],
to maximize the cellular uptake and enhance the destructive effect. At the intracellular
level, mitochondria are well known to regulate cell function through mediating important
metabolic activities, such as generating ATP, coordinating redox and calcium level [71,72].
Mitochondrial activity is also critical to tumor growth and metastasis [71]. Thus, tar-
geting mitochondria might further enhance PTT antitumor outcomes via mitochondria
destruction [73].

The systemic distribution of colloidal nanomaterials could lead to the inefficient
uptake of PTT responsive nanomaterials by solid tumorigenic tissues. In recent years,
the delivery of PTT nanomaterials via tissue adhesive hydrogels is an emerging strategy
to restrict the loss of PTT responsive nanomaterials to neighboring healthy tissues or
circulation [74–77]. For example, Xing et al. [76] reported an injectable collagen hydrogel
for the delivery of the gold nanoparticle and photodynamic agent, meso-tetra (N-methyl-
4-pyridyl) porphine tetrachloride (TMPyP) to intratumoral region. The combinatorial
photothermal and photodynamic therapy benefited by multiple irradiation cycles over
time with one injection of hydrogel (Figure 6). A single or double irradiation treatment
did not inhibit tumor growth effectively, however multiple irradiation treatments achieved
significant tumor suppression. A successful therapeutic outcome would likely be attributed
to the precise delivery and retention of gold nanoparticles and TMPyP, which enable
subsequent future treatment. Furthermore, a biocompatible hydrogel could promote
tissue regeneration. Recently, Liao et al. [77] reported a gold nanorod and hydroxyapatite
nanoparticle laden gelatin/chondroitin hydrogel for both the postoperative photothermal
effect and bone regeneration. After surgical removal of bone cancerous tissue, photothermal
therapy at resection lesions could eradicate residual tumor cells, thereby preventing tumor
recurrence. The hydrogel also promoted bone repair after surgery. Therefore, hydrogels
might act as a tissue substitute and promote resected lesion regeneration besides the
retention of PTT nanomaterial. In comparison with solid tumors, nanomaterials could be
modified with the Sgc8 aptamer to target protein tyrosine kinase-7 (PTK7) expressed in
leukemia [78–80]. However, treating leukemia by PTT might be challenging in vivo due
to its circulating feature. More investigations are desired for exploring the possibility of
treating leukemia via PTT.
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Figure 6. Hydrogel delivered a photothermal agent gold nanoparticle, and photodynamic agent
TMPyP enabled multiple treatments. Group I to IV represented 1, 2, 4, 5 times of irradiation received
over different time points (12 h, 24 h, 48 h, 96 h, 120 h after intratumoral injection of hydrogel).
(a) Tumor size was monitored over time. (b) Tumor weight was recorded after 23 d of treatment
(Figure reprinted with permission from Ref. [76] Copyright John Wiley & Sons).

2.4. Polymer-Metal Nanocomposites for Detection and Treatment of Aging-Related
Neurodegenerative Disease

Aging is the main risk factor for various neurodegenerative diseases, such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD). One in ten individuals aged ≥65 years suf-
fers from AD and its prevalence increases with age [81]. There are also other factors
that can aggravate the pathogenesis of aging-related neurodegenerative diseases, such
as systemic inflammation [82], mental stress [83], environmental pollutants [84], and dis-
rupted circadian rhythms [85]. Currently, there are no effective treatments available for
curing aging-related neurodegenerative diseases, which tend to progress in an irreversible
manner and become an inevitable medical cost to society. Conventional therapies for
neurodegenerative disease treatments, such as cholinesterase inhibitors for AD or Lev-
odopa for PD, are inadequate to cure AD and PD, presumably due to two reasons, namely
(1) multiple pathological mechanisms of AD and PD and (2) multiple membrane barriers,
including the blood–brain barrier (BBB), that hinder drug delivery [86,87]. Polymer–metal
nanocomposites have been a powerful tool to deliver drugs or bioactive molecules to
specific tissues by tuning the surface properties and functionalities of the nano-cargo, such
as surface modification with different ligands (antibodies, aptamers, and polymers), the
introduction of surface chemistry (reactive groups, surface charge, and hydrophobicity),
and physical properties (cargo shape, rigidity, surface roughness, and porosity) [88–90].
With the advancement of pathological studies on aging-related neurodegenerative dis-
eases, polymer–metal nanocomposites-based nano-cargos serve an important role for the
detection and treatment of aging-related neurodegenerative diseases.

2.4.1. Polymer–Metal Nanocomposites for Treatment of Alzheimer’s Disease

The neuropathological hallmarks of AD are the formation of β-amyloid (Aβ)/neuritic
plaques and the formation of neurofibrillary tangles. Although the exact underlying mech-
anisms of such Alzheimer type neuropathologic changes remain elusive, there are several
risk factors and microscopic features that have been extensively studied [91], including
the accumulation of beta-amyloid peptide, intracellular accumulation of hyperphospho-
rylated tau protein, diminished level of acetylcholine, dysfunctional mitochondria, and
neuroinflammation. There are several FDA-approved drugs, e.g., Aducanumab, Donepezil,
Memantine, and Galantamine, that can treat only the symptoms of AD with limited ability
to cross the BBB [92]. Currently, polymer–metal nanocomposites are considered a promising
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class of drug-delivery nano-cargo that can improve BBB penetration and contain ligands
for target-specific drug delivery. Gold nanoparticle-based nanocomposites can easily
penetrate the BBB and have been extensively used as a nano-cargo. Giralt et al. [93] have re-
ported peptide conjugated AuNPs with the transferrin receptor-targeted peptide sequence
THRPPMWSPVWP and an Aβ-targeted peptide sequence, LPFFD. The THRPPMWSPVWP
sequence can interact with transferrin receptors that are present in the microvascular en-
dothelial cells of the BBB, and triggers transport across the BBB. The LPFFD sequence can
recognize Aβ toxic protein aggregates and destroy them via microwave irradiation both
in vitro and in vivo (Sprague–Dawley rats). AuNPs can also be coated with poly(ethylene
glycol) (PEG) to improve biocompatibility. The PEG-coated-AuNPs conjugated with an-
thocyanin have shown enhanced neuroprotection in an AD mice model [94]. In the last
decade, drug-delivery nanocomposite cargo for AD has overcome the limitation of bioinert
metallic nanoparticles, but also with the use of bioactive metallic nanoparticles. Selenium
is an essential micronutrient for the brain and also involved in neutralization of reactive
oxygen species (ROS) in the brain [95]. These properties render selenium nanoparticles
(SeNPs) a potent component of nano-cargo to treat AD. Liu et al. [96] have shown that
SeNPs conjugated with epigallocatechin-3-gallate and a neuron targeted Tet-1 peptide
can effectively inhibit Aβ fibrillation and elicit neuroprotection. Aβ-targeted peptide se-
quence LPFFD together with a BBB penetrating TGN peptide can also be conjugated to
the SeNPs and inhibit βA aggregation [97]. Zhang et al. [98] have reported SeNP encapsu-
lated poly(lactic-co-glycolic acid) (PLGA) nanospheres with curcumin molecules that can
achieve a sustained release of curcumin, thereby effectively eliciting neuroprotection to the
transgenic 5XFAD mice via its anti-oxidant, anti-inflammatory, anti-amyloid, and anti-Tau
hyperphosphorylation activities. Cerium nanoparticles (CeO2) are well known to function
as a recyclable ROS scavenger by shuttling between Ce3+ and Ce4+ forms. Mook-Jung
et al. [99] reported a triphenylphosphonium(TPP)-PEG conjugated CeO2 with small core
size (3 and 10 nm) that can be delivered into the mitochondria efficiently, thereby eliciting
neuroprotective effects by ROS consumption. Although TPP-PEG-CeO2 cannot penetrate the
BBB and can only be stereotactically injected into the 5XFAD mice, the mitochondria targeting
nanocomposite with ROS scavenging properties open up a new strategy to treat AD.

Currently, the clinical trials consider AD are mainly focused on amyloid plaques.
There is emerging evidence indicating the importance of β-Amyloid oligomers (AβOs), the
major component of amyloid plaque found in AD [100,101]. Recent studies have shown
that the AβOs are found in the early stage of pathogenesis and may serve as a potential
biomarker for early diagnosis and as a new target for therapy [102,103]. One way to
detect AβOs is to collect cerebrospinal fluid (CSF) from a patient and then perform an
enzyme-linked immunosorbent assay (ELISA) [103]. Lee et al. [104] reported a AuNPs
based electrochemical impedance sensor that can detect subfemtomolar levels of the AβOs.
The AuNPs were embedded with a thin layer of highly conductive poly (3,4-ethylene
dioxythiophene) (PEDOT), followed by an intermediate layer of poly(thiophene-3-acetic
acid) (PTAA), which can be used for the immobilization of cellular prion protein receptor
(PrPC), a AβOs specific receptor [105]. The binding between AβOs and PrPC creates an
extremely small change in the electrochemical signal which is transferred and amplified
by the electrical impedance. The AuNPs−PEDOT−PTAA/PrPC sensor exhibited a wide
detection range from 10−8 to 10−4 nM and were able to test with 5xFAD AD and WT
C57BL/6J mouse models. Magnetic resonance imaging (MRI) is the most widely used
imaging technique that can be utilized for brain disease diagnostics, presumably due to
its high spatial and temporal resolution with minimal invasiveness. However, MRI often
requires the aid of a targeted contrast agent to improve the sensitivity in the area of in-
terest [106]. Recently, there are several studies reporting polymer metal nanocomposite
to serve as an AD biomarker specific MRI contrast agent. Superparamagnetic iron oxide
nanoparticles (SPIONs) have been widely used as contrast agents because of their super-
paramagnetic properties. SPIONs-coated with AβOs specific scFv antibody W20 and class
A scavenger receptor activator XD4 peptide (W20/XD4-SPIONs) have demonstrated good
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BBB penetration, followed by the selective binding of the AβOs. The W20/XD4-SPIONs
provide a pronounced MR signal in the AD mice, while no MR signal in the PD mice,
the Huntington’s disease mice, and the WT mice [107]. The gadolinium-based contrast
agent is one of the paramagnetic agents used for MRI in clinical settings. Wong et al. [108]
have reported a core-shell NaGdF4:Yb3+,Tm3+@NaGdF4 nanoparticle that serves as both
an MRI contrast agent and a near-infrared (NIR) fluorescent probe, thereby achieving dual
modality imaging. Such core-shell nanoparticles were then coated with biocompatible
mesoporous silica and incorporated with a AβOs selective cyanine dye, F-SLOH, for BBB
penetration. The NP@SiO2@F-SLOH was administered via tail vein and has shown higher
upconversion fluorescence signal in APP/PS1 transgenic mice than in their WT counterpart
at 30 min postinjection. MR image of 2 h postinjection indicated a stronger MR signal in
the transgenic mice than that of WT mice. Moreover, the NP@SiO2@F-SLOH has shown
the suppression of various Aβ species, including AβOs and monomers, which may be due
to the ROS scavenging properties of the nanocomposite.

2.4.2. Polymer–Metal Nanocomposites for Treatment of Parkinson’s Disease

Similar to Alzheimer’s disease, Parkinson’s disease (PD) is a multifactorial neurode-
generative disease characterized by tremor, rigidity, and bradykinesia [109]. The neu-
ropathological hallmarks of PD are the formation of Lewy bodies and Lewy neurites, which
are closely associated with the accumulation of α-synuclein (α-Syn), TAR DNA-binding
protein 43 (TDP-43), and pathological tau aggregation [110–112]. Studies have shown that
α-synuclein correlated with the loss of dopaminergic neurons in both in vivo (e.g., A53T
transgenic mouse model) and PD patients [113–115], which leads to diminished levels of
dopamine (DA). Levodopa, a precursor of DA, is one of the major treatments for PD that
can effectively ameliorate PD symptoms. However, long-term administration of Levodopa
can lead to complications such as drug-induced dyskinesia and somnolence [116]. Ruiz-
Molina et al. [117] reported a neuromelanin (NM) inspired coordination metal–polymer
nanocomposite as a theranostic agent. A NM inspired nanocomposite was prepared via a
reversible self-assembly of Fe(AcO)2, dopamine, and the ditopic ligand 1,4-bis(imidazol-
1-ylmethyl)benzene BIX to give DA nanoscale coordination polymers (DA-NCPs). The
DA-NCPs have shown enhanced uptake by BE(2)-M17 cells in comparison with free DA,
as well as slower metabolism kinetics than that of the free DA. The biodistribution analysis
indicated that the intranasal administered DA-NCPs enter the dopaminergic neurons via
the nigrostriatal pathway, leading to an increase in striatal and substantia nigra pars com-
pacta (SNPC) DA levels. Moreover, the presence of iron ions in DA-NCPs facilitates the
track of nanoparticles by MRI imaging.

Studies have shown the involvement of ROS-mediated mitochondrial dysfunction
in the pathogenesis of Parkinson’s disease [118]. Thus, the delivery of ROS-scavenging
nanocargos to dysfunctional mitochondria is one way to ameliorate PD. Li et al. [119] re-
ported biomimetic ultrasmall nanoparticles that can elicit ROS scavenging and promote the
anti-inflammatory properties of microglia. Ultrasmall Cu2−xSe nanoparticles (~3 nm) were
selected and first modified with poly(vinylpyrrolidone) (PSP), followed by coordination
with a flavonoid derivative, quercetin (Qe), to give the CSPQ nanoparticles. Ultrasmall
size nanoparticles have been demonstrated with better ultrasound-aided BBB penetration
in comparison with their larger counterpart, while the Cu2+-Qe complex possessed better
enzymatic properties and stability [120]. The CSPQ nanoparticles were then modified with
the neuronal cell membrane (CE, i.e., MES23.5 cells) as a camouflage that could interact
with microglia via its surface α4β1 integrin and VCAM-1 expressed on the cell membrane,
as shown in the immunofluorescence staining. The CSPQ-CM nanoparticles elicit multien-
zyme properties for ROS scavenging in the PD mice model, and simultaneously promote
both the expression of anti-inflammatory cytokines interleukin-10 (IL-10) and biomarker
CD206 of microglia, as well as inhibit the expression of pro-inflammatory interleukin-6
(IL-6). Notably, such CSPQ-CM np can be traced by photoacoustic imaging and signifi-
cantly improve the PD symptoms, as evidenced by the recovery of the DA levels in CSF of
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mice. Zhang et al. [121] reported a self-oriented nanocarrier that can achieve effective drug
delivery by virtue of its exosomal structure. In this work, a mesenchymal stem cell-derived
exosome was modified with a neuroprotective miRNAs miR-133b and an acetylcholine
receptor-targeted peptide SA-RVG29 to give a PR-EXO. Such PR-EXO was then mixed
with PP@Cur, a micellar core constituted of a ROS-responsive polymer, SPIONs, and cur-
cumin. Unlike conventional nanocarriers that can be trapped by endosome/lysosome
after cell entry, the resulting PR-EXO/PP@Cur is an engineered exosome that avoids endo-
some/lysosome formation via membrane fusion with SH-SY5Y cells, thus leading to the
enhanced accumulation of drugs in the action site. The PR-EXO/PP@Cur nanocarriers can
be traced by T2 MRI images and a reduction of α-Syn aggregation, increased expression of
IL-10, and reduced expression of IL-6, IL-1β, and TNF-α in microglia have been shown. The
behavioral test indicated that the MPTP-induced PD model mice improved their movement
and coordination ability significantly after the treatment with PR-EXO/PP@Cur.

The emergence of microbiota–gut–brain-axis research has led to a potent therapy for
neurodegenerative diseases via the modulation of gut microbiota [122]. Wang et al. [123]
recently developed an upconversion optogenetic micro-nano-system encapsulated with
engineered Lactococcus lactis (L. lactis) that can achieve gut–brain axis regulation (Figure 7).
A sodium alginate microsphere was used and modified with chitosan and small-intestine
targeting antibody proton-dependent transporter 1 (PepT1) to achieve a small-intestine
targeting and pH responsive cargo that can effectively deliver and release L. lactis. The
sodium alginate microsphere was then encapsulated with three engineered L. lactis strains
that produce brain health-related probiotics, namely gamma-aminobutyric acid (GABA),
granulocyte-colony stimulating factor (GCSF), or glucagon-like peptide-1 (GLP1), upon
blue light exposure. On the other hand, a biocompatible upconversion microsphere (UCM)
was prepared from thulium (Tm)−coped−rod-shape and PEG prepolymer. MPTP induced
PD mice model that administered with L. lactis encapsulated sodium alginate microsphere
and UCM could relieve PD symptoms after NIR irradiation, as evidenced by reduced
expression of tyrosine hydroxylase (TH), αSyn, AIF1 protein, IL-2, IL-6, and TNF-α in
the mice brain. Interestingly, the electrophysiological recordings suggested that the GLP1
expressed by L. lactis in the gut together with the treatment of UCM and NIR irradiation
could excite the neurons in nucleus of the solitary tract (NTS), suggesting that the peripheral
nervous system can elicit short-term effects to the central nervous system.

Figure 7. Schematic diagram of gut-brain axis regulation via the upconversion optogenetic
micro−nano system. The upconversion induced blue light activates three plasmid engineered
L lactis to mitigate PD symptoms via the gut-brain axis. Figure reprinted with permission from
Ref. [123] Copyright American Chemical Society.
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3. Polymer–Metal Composites Materials for Healthcare Device

Medical and surgical approaches are regarded as two major branches in medical prac-
tice. There are diseases or injuries that require localized intervention, such as cardiovascular
disease, bone fracture, and tooth loss. Healthcare devices serve a crucial role in surgical
treatment by replacing or supporting damaged tissues. At the device level, bulk properties
of materials, such as elastic modulus, tensile strength, shear strength, radial strength, yield
strength, fatigue strength, ductility, corrosion resistance, and biocompatibility, are closely
related to the longevity and the performance of healthcare devices [124,125]. Especially, for
implants as their primitive function is designed to provide long lasting, good mechanical
support to tissues in realizing long-term tissue healing [126]. Furthermore, the material-cell
interactions in the implant-tissue interface modulate cell behaviors such as cell adhesion,
proliferation, and differentiation, therefore, the microscopic properties of implant such
as surface topology, surface roughness, surface wettability, and degradation kinetics are
pivotal to match in scale to regulate cell behaviors and improve tissue healing [127]. An
ideal medical implant requires optimized properties in both bulk and microscopic scale
that can hardly be accomplished by using a single material. Metallic implants such as
titanium-based implants possess excellent mechanical properties in general but suffer
from corrosion [128,129]; polymeric implants can be multifunctional and biodegradable,
however, difficult to provide some crucial mechanical properties like ductility [125]. With
the advance of polymer science and metallurgy, the polymer–metal composite materials
serve as an emerging class of healthcare device with optimized bulk and microscopic
properties, such polymer–metal composite devices provide good mechanical support, good
bio-integration, good hygiene and minimized bacterial infection, and reduced hypersensi-
tivity reactions (Figure 8).

Figure 8. Polymer–metal composite materials as cardiovascular stents, dental implants, and orthope-
dic implants.

3.1. Polymer–Metal Composite Materials for Dental Implant

Dental implant is one of the most common dental treatments to replace missing teeth.
The primarily function of a dental implant is restoring the patient to a normal profile
regardless of the status of the stomatognathic system [130,131]. Similar to the orthopedic
implants, conventional dental implant relies on titanium as implant materials to fulfill
several requirements: (1) good fatigue strength and wear resistance to withstand cyclic
occlusal load (axial bite force: 500 N–800 N) [132–134], (2) good corrosion resistance
to withstand different types of corrosions that take place in the oral cavity (galvanic,
pitting, stress, and microbial corrosion) [128,135], and (3) bioinert to body environment
and good biocompatibility [136]. In bulk scale, titanium alone is insufficient to fabricate
dental implant for osseointegration (i.e., bone ingrowth into implant), presumably due
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to huge difference of elastic modulus (i.e., stiffness) between metal/metal alloy-based
dental implant (titanium: 110 GPa, Zirconia: 210 GPa, Cobalt-Chromium: 180–210 GPa)
and surrounding bond tissues (cortical bone: 13.8 GPa, spongy bone: 1.38 GPa) [137–139],
such difference in elastic modulus creates risk of mechanical overloading of bone (namely
stress-shielding), leading to bone damage and bone resorption [140–142]. In nanoscale,
reported studies have shown that the immune reactions and bacterial infections may
be the underlying mechanism of marginal bone lost and peri-implantitis [23,143–149];
on the other hand, bone healing and bone remodeling after dental implant treatment is
determined by osseointegration, peri-implant osteogenesis (i.e., distant osteogenesis and
contact osteogenesis), and osteoclastogenesis [137,150–155]. Incorporation of polymers into
titanium dental implants via coating or polymer composite materials endow the dental
implants with proper load transfer and distribution, enhanced bone healing, minimized
immune reactions, and antimicrobial properties [156,157].

3.1.1. Polymer–Metal Composite Dental Implant with Improved Load Transfer,
Osseointegration, and Osteogenesis

Polyetheretherketone (PEEK) is FDA approved, a dominant member of Polyaryletherke-
tone (PAEK) family which has been extensively used in dental implant due to their compatible
elastic modulus (PEEK: 4 GPa, carbon-nanofibre-reinforced PEEK: 18 GPa) [158,159], high
flexural strength (140–170 MPa), radiolucent, highly biocompatible and bio-stable [160–162].
Lee et al. [163] has demonstrated that PEEK-coated titanium/zirconia dental implants exert
lower levels of von-Mises stress to the bone in comparison with metal-based implants. The
major limitations of PEEK-based dental implants are their limited osteoconductivity and
lack of bioactivity which may trigger implantitis and implant failure [164]. Inspired by the
good osseointegration properties of titanium, metallic materials (metallic complex, metallic
nanoparticles) may serve as a potential additives to endow PEEK bioactivity and make
PEEK-based dental implant possible. As such there are different metallic materials being
used to modify PEEK, such as titanium [165], titanium dioxide [166–169], and strontium
based materials [170,171], by either surface modification or melt-blending [172,173]. Stron-
tium based materials such as strontium ranelate coated PEEK can strengthen the osteoblast
adhesion, increase the alkaline phosphatase activity, increase collagen secretion and ECM
mineralization deposition [170]. Titanium-coated PEEK has shown improved prolifera-
tion of osteoblast and higher percentage of bone-to-implant contact [165]; while titanium
oxide coating has also shown beneficial effects on the osseointegration [166–169,174,175].
Bone remodeling comprise different levels of hierarchical structural changes at macro (e.g.,
cortical bone, spongy bone), micro (osteons, trabeculae), and nanoscale (collagen I and
hydroxyapatite composited ceramic-interspersed collagen fibril) [176,177]. However, the
surface properties of PEEK do not favor osseointegration due to its inherent hydrophobicity
and bioinert. It is well known that hydrophilic implants favor plasma proteins and cells
adhesion, and one way to increase surface wettability is to control the surface roughness
of materials [178]. Metallic materials are useful tools to introduce micro and nanofeatures
to implant surfaces, and endow new functionalities, such as rough surface (i.e., increase
surface roughness), thereby promoting osteogenesis and osseointegration.

Elawardly et al. [179] has demonstrated that both the ceramic-filled PEEK and the
carbon fiber-reinforced PEEK discs shown significantly improved wettability after sand-
blasted treated with 50/110 microns of aluminum oxide particles, in compared with un-
treated group; such PEEK-based materials show good wettability when the surface average
roughness (Ra) value was either <1.0 or >1.7 µm. Interestingly, in comparison with mi-
croscale surface roughness, implants with nanoscale surface roughness introduced have
better osseointegration [176]. Some reported studies have shown that introduction of
titanium-based nanofeatures on implant surface, such as TiO2 nanonodule [180], TiO2
nanotube [181], and TiO2 nanopores [169] can further improve the osseointegration via
several effects: (1) improved cell adhesion, cell spreading, and therefore, bone-implant in-
tegration, (2) improved ALP levels, and (3) promote the formation of hydroxyapatite (HA).
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The functions of nanoporous titanium implant surface has been recently shown that such
nanofeature can promote osteogenesis by inhibiting the differentiation of macrophages into
osteoclast (i.e., osteoclastogenesis) by blocking integrin mediated FAK phosphorylation
and downstream MAPK pathway, and elicit a prohealing cytokines secretion profile [168].
The titanium nanofeatures increase the hydrophilicity of PEEK dental implant, which has
shown to facilitate immobilization and delivery of bone morphogenetic protein-2 (BMP-2),
thereby significantly enhancing the osseoconductivity of PEEK implant [167]. With the
cytotoxicity concern on TiO2 nanoparticle leaching from TiO2 coating, Wu et al. [167] has
developed a titanium oxide nanoparticle/PEEK composite with rough surface that increase
the growth rate of osteoblast and higher bone volume/tissue volume (Figure 9). The
interplay between the titanium and PEEK as a polymer–metal composite material has
significantly improved the performance of dental implants in both nano scale and device
scale. In nano scale, the titanium–based nanofeatures improve the bioactivity of the implant
surface, thus improved osseointegration; in device scale, the PEEK-based implant becomes
compatible with the stiffness of surrounding bone, which ensures proper load transfer
upon occlusion force.

Figure 9. (A) Scanning electron microscopy images of PEEK and TiO2 nanoparticle/PEEK composite
(n-TiO2/PEEK) before and after blasted treatment (A1 smooth PEEK; A2 rough PEEK; B1 smooth
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n-TiO2/PEEK; B2 rough n-TiO2/PEEK; (B) Cell attachment testing indicates significantly improved
osteoblast cells adhesion in B2 rough n-TiO2/PEEK than the other groups (A1, A2, B1); (C) Flow
cytometric analysis indicates rough implant surface promote cell proliferation (both PEEK and n-
TiO2/PEEK); (D) Microcomputed tomography indicates significant increase in bone volume/tissue
volume in n-TiO2/PEEK than PEEK implant. Note: * p < 0.05 Figure reprinted with permission from
Ref. [167] Copyright Dovepress.

3.1.2. Antimicrobial Polymer-Metal Composite Dental Implant

Periodontal disease is the main cause of tooth loss which is considered as a huge threat
to oral health [182]. The onset of periodontal disease is well known to be the collective
outcome of bacterial infection and inflammatory responses [183]. It is noteworthy that the
periodontal tissue is continuously exposed to oral microbiota during mastication and respi-
ration [184]. In the healthy state, localized bacterial challenge and host immune response
is balanced. However, the colonization of “keystone” pathogens (change of microbiota
constituent and their total counts) increase the pathogenicity of local microbiota and over
activate immune response [185,186]. For example, the bacterial infection triggers the gener-
ation of specialized TH17 cells, namely “bone-damaging T cells”, to fight against bacteria
by concurrently initiating mucosal immune responses and inducing bone loss to inhibit
infection [187]. The dental implant confronts the same challenge after implantation when
bacterial infection takes place, from both the implant-associated infection, daily mastication,
and respiration which eventually lead to the peri-implantitis [188]. Therefore, developing
an antimicrobial dental implant can greatly reduce the major cause of periodontal disease
by inhibiting bacterial growth and bacterial biofilm formation, thereby improving the oral
health and the longevity of the dental implant.

Typical dental implant contaminations involve the polymicrobial biofilm formation,
which can be suppressed using antibiotics. Therefore, antibiotics coated/encapsulated
dental implants have been demonstrated as one of the major approaches to fight against
bacterial infection [189]. Polymer-based coatings are advantageous for antibiotics delivery
due to its high antibiotics upload capacity, controlled release of therapeutic concentra-
tion of antibiotics in proximity to infected area, biocompatible, and biodegradable; many
antibiotic-encapsulated polymer/biopolymer coatings have been developed in the last two
decades [189,190]. The early stage of polymer-coating development employed polymers
such as poly(D,L-lactide) [191,192], poly-L-lactide [193], due to their excellent biodegrad-
ability. Recently, several new coating strategies have been developed with mild processing
conditions (low temperature, organic solvent free, radiation free) used in titanium implants,
such as polydopamine coating, surface controlled free radical polymerization, azide-alkyne
click reaction, salinization, polyelectrolytes deposition, electrophoretic deposition (EPD),
and dynamic covalent chemistry, which allow more bioactive polymers employed as an
antibiotics cargo with improved antimicrobial outcomes [194–199]. Namely, chitosan can
improve drug residence time at mucosal surface [200]; polymethacrylate grafted with func-
tionalized poly(ethylene glycol) (PEG) improve conjugation of antibiotics thereby increase
antibiotics loading [194]; PEG dimethacrylate hydrogel functionalized with oligonucleotide
enhanced stability to human serum [195]; and PEG-poly(propylene sulfide) enable oxida-
tion responsive (i.e., hyperinflammatory environment) release of antibiotics [201,202]. Inter-
estingly, studies have shown that antibiotics-loaded with nanostructured titanium implants
(pillar-type and pocket-type nanostructure) have better anti-biofilm performance [203,204].
However, systematic study on the effect of nanofeatures on the polymeric coated titanium
dental implants has remained unexplored.

One of the major concerns of antibiotic release dental implants is the associated risks
of bacterial resistance [205], and therefore, various antimicrobial materials have developed
to serve as an alternative to antibiotics. Chitosan-based coating is a promising antimicro-
bial biopolymer for dental implants, as chitosan elicits excellent antimicrobial properties
towards both Gram-positive and Gram-negative bacteria via disruption of their mem-
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brane functions [206]. Other attributes of chitosan such as anti-inflammatory properties,
non-toxic, and biocompatible render chitosan-based dental implants worthy for clinical
studies [207]. Chitosan combined with other bioactive materials like hydroxyapatite and
graphene have been demonstrated in promoting osteoblast proliferation and inhibiting
microbial growth [208,209]. Antimicrobial polypeptides (AMPs) is another class of antimi-
crobial materials with amphipathic properties and notable anti-adhesive properties [210].
Such extra anti-adhesive properties render AMP-coated dental implants extra protection
against the formation of biofilm and subsequent implant contamination [211–214]. It is
noteworthy that different antimicrobial dental implants using antibiotics or AMPs gen-
erally suffered from gradual depletion of the antimicrobial properties, presumably due
to lack of renewable properties. Recently, Wu et al. [215] have developed a long-lasting
antibacterial porous polymeric coatings with self-renewal properties using N-halamine
polymer (Figure 10), which is prepared from surface pore-making of titanium implant,
followed by surface grafting of polyacrylic acid (PAA), and reacted with ethylenediamine
and sodium hypochlorite to give the chlorinated N-halamine surface (Ti-PAA-NCl). The
amide N-halamine group possesses moderate transfer rate of oxidative Cl+, which is able
to kill bacteria through both contact killing and release killing. Ti-PAA-NCl retains its
antibacterial properties (68% against P. gingivalis) after 20th cyclic antibacterial test and
after stored in PBS for 4 weeks (89%) and 12 weeks (79%), which is durable enough to
cover the period of osseointegration (at least 4 weeks after implantation, 3 months to
complete) [216]. Notably, Ti-PAA-NCl can replenish its antibacterial property by simply
peri-implant irrigation.

Figure 10. Preparation, mechanism of antibacterial property, and regeneration of antibacterial
property of the porous N-halamine polymeric coated titanium. Antibacterial property replenished by
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simply peri-implant irrigation using 5% NaOCl solution for 15 min. Figure reprinted with permission
from Ref. [215] Copyright 2021 Springer Nature.

3.1.3. Polymer–Metal Composite Dental Implant with Minimized Immune Reactions

One of the consequences of dental bacterial infection is the onset of immune responses
that eventually disrupt bone remodeling and cause bone loss [185,186]. However, induced
immune responses in the stomatognathic system cannot be completely prevented by simply
incorporating antimicrobial functions to the dental implant. Nano-micro size wear particles
can be generated during implant fabrication, implantoplasty, and cyclic occlusal force
(i.e., biting) [217,218]. The impacts of different types of wear debris generated by dental
implants have been discussed in detail: [99,100]. In brief, cells in the oral cavity generally
elicit adverse effects when in contact with, or upon the uptake of the nano-micro size wear
particles, including impaired osteoblast adhesion, proliferation, osteogenic differentiation
and mineralization, elevated RANKL/OPG ratio in osteoblast, and secretion of proinflam-
matory cytokines from both osteoblast and activated macrophage, and collectively lead to
osteolysis and peri-implantitis [219,220].

Dental implants mainly contain three compartments: the screw (insertion to the alveo-
lar bone), the abutment (connector between the dental crown and implanted screw), and
the dental crown (in contact with oral cavity and natural teeth). It is noteworthy that wear
debris can be generated upon the loading of the abutment to the screw [221], which can be
prevented using a protective film. Łępicka et al. [222] developed an anti-wear abutment
screw using polysiloxane-TiO2 nanoparticle composite film, which serves as a “locking coat-
ing” on the titanium abutment and screw. Compared to conventional protective films such
as pure GPTMS/TEOS matrix, the nanoindentation results indicated that the polysiloxane
film with TiO2 NP in the polymeric backbone significantly reduced the hardness and elastic
modulus, thereby rendering the film with anti-wear property [222]. Moreover, the wear
resistance of Ti-6Al-4V alloy has been shown to be improved with a simple coating of
PEEK due to its high wear resistance [223], which can be a generic approach to improve the
wear resistance of dental implants. In the case of the dental crown, conventional dental
crown materials include a resin-based composite, composed of organic fillers (e.g., zirco-
nia), and organic monomers (e.g., triethylene glycol dimethacrylate (TEGDMA), bisphenol
A-glycidyl methacrylate (Bis-GMA)). Early resin composites suffered from a high wear rate,
presumably due to the larger filler particles. Recently, micro/nano-hybrid composites have
been employed and the wear resistance significantly improved [224]. In contrast, the wear
behavior of composite resins using metallic nanofillers such as TiO2 NPs can be adjusted
by the type of polymers and contact conditions. TiO2 NPs can only be beneficial when
they can be blended with other wear debris to form a strengthened transfer film (generated
when sliding two materials together), thereby providing the adequate support required
for other dislodged TiO2 NPs to elicit a rolling effect, and thus anti-wear property [225].
Hence, it is important to firstly investigate the interactions between different tribo-fillers
with well-designed contact conditions to mimic real clinical settings (biotribology model
for oral cavity), and to design high wear resistant polymer metal composite materials for
dental crowns.

3.2. Polymer–Metal Composite Materials for Cardiovascular Stent

Myocardial infarction (MI) is regarded as one of the most lethal cardiovascular diseases
worldwide, presumably due to the narrowing of artery vessels, namely atherosclerosis [226,227].
Percutaneous coronary intervention (PCI) was first pioneered by Andreas Grüntzig in
1977 and became one of the most commonly used angioplasty surgeries used to treat
atherosclerosis, with the help of the stainless bare-metal stent (BMS) to prevent artery
contraction and therefore alleviate ischemia [228,229]. However, the PCI-related arterial
wall injury triggers neointimal hyperplasia, which leads to the lethal restenosis within
the first 12 months after the BA treatment (30~50%) [230]. The dual-antiplatelet therapy
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(DAPT) was developed to inhibit platelet activation and vascular smooth muscle cell
hyperproliferation, thereby preventing early stent-restenosis [231,232]. Nevertheless, a
considerable group of patients still suffered from early stent-restenosis (20–30%) [233,234].
The effective inhibition of restenosis require proximal drug delivery to the iatrogenic injured
vessel. A metallic drug eluting stent was developed, but with a limited amount of drugs,
and the stent failed to release the drug molecules in a suitable time frame [235]. Polymer-
based drug eluting stents, namely bioresorbable vascular stents (BVS), have recently been
developed as a new class of cardiovascular stent, which aims to improve the atherosclerotic
vessel healing by gradual bioresorption, thereby effacing the foreign implant over time [236].
However, the vessel healing using BVS could not meet the expected advantages and patients
treated with BVS suffering from a higher risk of late stent thrombosis (LST), very late stent
thrombosis (VLST), target lesion failure (TLF), and cardiac death, presumably due to the
inherent properties of polymeric stent, such as limit stent expansion and weaker radial
strength when compared with the metallic stent [237–240]. The BVS has to be made with
thicker and wider strut to provide appropriate mechanical support, which disrupts the
laminar blood flow, thus promoting platelet activation and subsequent thrombosis [241].
To date, the FDA approved cardiovascular stents are polymer–metal composite-based
stents, mainly from two major classes: (1) first-generation drug-eluting stent using durable
polymers, and (2) second-generation drug-eluting stent using biodegradable polymers.

3.2.1. Durable Polymer Metal Stent: First-Generation Drug Eluting Stent

The first major breakthrough of the PCI technology occured with the invention of
the 1G-DES, a polymer-coated metal stent with antiproliferative drugs [27]. Current FDA
approved 1G-DES released either an antiproliferative drug paclitaxel or an immunosuppres-
sive drug sirolimus from a layer of polymer coating [242]. The FDA approved 1G-DES are
coated with durable polymers such as poly(styrene-block-isobutylene-block-styrene) (SIBS),
Poly(ethylene-co-vinyl acetate) (PEVA), and Poly(n-butyl methacrylate) (PBMA) [242]. The
polymer coatings offer new functions to the cardiovascular stent: (1) serve as a reservoir to
endow temporally controlled drug release from the polymer metal stent, to inhibit blood
clotting, and to limit the overgrowth of tissues that triggered by PCI-related arterial wall
injury; (2) provide protection to metallic stent from corrosion to maintain radical strength
of the stent and to prevent stent fracture [243]. Moreover, 1G-DES creates much less burden
for the patient in terms of in-stent restenosis, but with the cost of another problem, the
development of LST, (between one month and one year after implantation) and VLST,
(>1 year after implantation) [244,245]. The generally accepted underlying mechanism of
such increased LST and VLST risk is due to the antiproliferative drugs in the 1G-DES delay-
ing the re-endothelialization of blood vessels [244,245]. Hence, 1G-DES has been shown to
present a considerably higher risk of developing VLST in comparison with BMS (adjusted
risk ratio (RR) 1.87 (1.47–2.25)) [246]. Other studies have shown that the permanent polymer
coatings (such as PEVA and PBMA) in 1G-DES contribute to impaired arterial healing [247].
These findings support that the permanent polymer coatings in 1G-DES hamper normal
re-endothelialization. Moreover, the permanent polymer coating in 1G-DES is inevitably
creating higher risk factors, such as accelerated neoatherosclerosis (NA) plaque growth
and hypersensitivity reactions that will eventually develop into ST [247–249]. Indeed, the
healing of atherosclerotic vessels into normal blood vessels requires long-term monitoring.
At the early stage after the stent implantation, the drug-eluting should exert an antipro-
liferative effect in order to prevent restenosis, and the patients should receive the DAPT
therapy for at least 12 months to prevent early thrombosis [250,251]. Proper blood vessel
re-endothelialization after the PCI is pivotal to prevent LST and VLST.

3.2.2. Biodegradable Polymer Metal Stent: Second-Generation Drug Eluting Stent

With the lesson learnt from the 1G-DES, the second-generation drug eluting stent
(2G-DES) aims to select the more biocompatible, biodegradable polymer to replace durable
polymer as new coatings for drug eluting stents. The 2G-DES with a biodegradable coating
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(e.g., CoCr-Everolimus with poly-L-lactide (PLLA) coating, CoCr-EES) mitigates polymer-
associated chronic inflammation and hypersensitive reactions, thereby providing superior
protection from LST and VLST (CoCr-EES vs. PES, a 1G-DES or vs. BMS, at median follow-
up of 3.8 years) [230,252]. The 2G-DES also showed better clinical outcome than 1G-DES in
terms of disease complications and mortality, such as reduced repeat revascularization in
ST-segment elevation myocardial infarction (STEMI) patients [253]; lower rates in major
adverse cardiovascular events (MACE), cardiac death, recurrent MI, as well as target or non-
target lesion revascularization (TLR/non-TLR) in non-ST-segment elevation myocardial
infarction (NSTEMI) patients [254,255]. This evidence places 2G-DESs as the current gold
standard and benchmark comparator to ongoing trials [230,252].

3.2.3. The Advance of Cardiovascular Stent: Polymer–Metal Stents Engineered with
Macroscopic and Microscopic Features

Recent advancements in stent technology have greatly reduced the risk of resteno-
sis, stent thrombosis, and other clinical complications. The stent thrombosis remains a
difficult task to solve due to its high mortality (45%) and high recurrence rate (15–20% at
five years) [256,257]. There is a myriad of factors associated with the occurrence of throm-
bosis, such as the profile of patient, progress of lesion, and execution of the procedure, that
have already been discussed in detail in other published reviews [258–260].

Compared to other implant biomaterials (e.g., dental implant, pacemaker, and joint
replacement), the cardiovascular stent is placed in a bent vessel with continuous blood
flow. The cardiovascular stent has to maintain structural integrity to prevent narrowing of
the artery, and concurrently the stent should not exert too much circumferential stress on
the artery that may lead to unnecessary trauma, subsequently leading to disease compli-
cations [261–263]. Therefore, the cardiovascular design requires the fine tuning of some
extra macroscopic properties of the material, such as radial strength, elastic strength, and
Poisson’s ratio [264–266]. On the other hand, the haemodynamic nature of the blood vessel
has been well known to be pivotal to proper vessel healing and tied to the occurrence of
thrombosis. Laminar blood flow with high shear stress to artery is crucial to trigger athero-
protective effects that promote the survival of endothelial cells. Blood flow disturbances,
such as turbulent flow/circulating flow, conversely, trigger both platelet activation and
prevent endothelialization (Figure 11) [267–269].

Figure 11. (left) The atheroprotective effect of laminar blood flow and (right) blood flow disturbance
by a thick strut. Laminar blood flow creates high shear stress to artery and trigger the release
of anticoagulant and antithrombotic molecules (e.g., NO, PGI2, TFPI, tPA, thrombomodulin) by
endothelial cell, migration of leukocytes and monocytes, and proliferation of smooth muscle cells
that collectively promote the survival of endothelial cells. Blood flow disturbance such as turbulent
flow/circulating flow, conversely, trigger both platelet activation and prevent endothelialization.

The current design of cardiovascular stent aims to minimize turbulent flow via the
development of different geometric stent models with minimal stent thickness (i.e., mini-
mum polymer and metal) to avoid flow disturbance [270,271], without compromising their
protective effects (e.g., optimal drug release kinetics, and stent radial strength). The effects
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of polymer–metal stent macroscopic properties on the performance of cardiovascular stents
and clinical performance are summarized in Table 1. Stent geometry (i.e., strut distance,
strut width, stent shape) is one of the major parameters that affect the haemodynamic
nature of arteries as discussed in other reviews [272–275]. On the other hand, thin stents
are well known to minimize blood flow disturbance more than thick stents, thus benefiting
their clinical performances (e.g., reduced the incidence of stent malapposition and evagina-
tions) [271,276]. Therefore, the development of new alloys with better mechanical strength
and radial strength [277], and thus new polymers with better drug loading and optimized
drug release profile [278], can collectively contribute to the development of thinner stents.

Table 1. The effects of polymer–metal stent macroscopic properties on the performance of cardiovas-
cular stents and clinical performance.

Parameters Effects on the Performance of Cardiovascular Stents
and Clinical Performance Refs.

Stent Geometry

Distance between strut Further the distance elicit less blood flow disturbance [258]
Strut width Narrower the strut elicit less blood flow disturbance [272]

Strut sizing (oversize/undersize) Slightly oversize (10% than vessel diameter) is
beneficial to reducing risk of ST and VLST [273,274]

Properties of metal/alloy

Metal/Alloy selection
Alloy with improved mechanical properties render
thinner struts design possible CoCr, PtCr (81–91 µm)
vs. 316 L stainless steel (141 µm)

[277]

Diameter/thickness of metal

Thin metal stent (<100 µm)→ less blood flow
distrubance that reduce the risk of stent malapposition
and evaginations
Thick metal stent (>100 µm)→ generation of
circulatory blood flow and promote platelet activation

[271,276]

Properties of polymer

Selection of
Amorphous/Semicrystalline/Crystalline

polymer

Enhanced Polymer Crystallinity

• Reduced Dispersion of drug in polymer coating
• Increased Mechanical strength of polymer
• Reduced of Moisture and gas permeability of

polymer coating
• (Biodegradable polymer) Reduced

biodegradation rate

[236,243,278–280]

Polymer thickness

Increasing the thickness of the polymer coating

• Increase the risk of the polymer deformity
• Increase strut thickness thus create circulatory

blood flow
[281–283]

Polymer degradation kinetics

No significant difference in target vessel
revascularization (TVR), MI, ST, and VLST between
fast (<6 months) and slow (>6 months) polymer
degradation

[284]

3.2.4. Key Microscopic Features of Polymer—Metal Stent

Endothelialization (i.e., adhesion of endothelial cells) is a crucial step for arterial heal-
ing after the inevitable artery injury caused by PCI. Studies have indicated the critical role
of the endothelium (i.e., layer of vascular endothelial cells) in preventing disease complica-
tions, such as vascular thrombosis, intimal hyperplasia, LST, and VLST [244,245,285]. A
healthy endothelium is considered as an anticoagulative phenotype that secretes a high
level of vasodilators (e.g., nitric oxide (NO), prostacyclin (PGI2)), and prevents the exposure
of elastic lamina and SMCs that can release a pro-coagulant thromboplastin into the blood-
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stream. Incomplete endothelialization or dysfunctional endothelium leads to a biological
cascade that promotes SMCs proliferation and platelet activation, and thus blood coagula-
tion, thereby causing thrombosis [286–289]. Therefore, it is of importance to promote early
re-endothelialization after implantation of cardiovascular stents to prevent PCI associated
complications. The advance of nanotechnology in biomaterials provides new tools for cell
adhesion. Rapid re-endothelialization can be achieved via different nanotechnologies, such
as the use of core-shell nano/micro particles as a multi-drug/bioactive molecules delivery
system [290,291], creating different nanostructured stent surfaces (e.g., change of surface
topography)[292,293], and by virtue of bioactive ligand-mediated cell adhesion [294].

One way to achieve early re-endothelialization is the implantation of a stent with drug
and bioactive molecules that release in proximity to wounded arteries. Wang et al. [295]
reported a hydrophobic core/hydrophilic shell nano/micro particles that was then coated
as a drug eluting stent coating. The PLGA solution contains the antiproliferative drug and
serves as the precursor of core coating, whereas the chitosan solution contains the platelet
glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21 for shell coating. These two
solutions were injected from the coaxial nozzle and form the dual core/shell drug particles.
Such a coating can inhibit platelet adhesion and activation, as well as SMCs proliferation
and migration in vitro. In vivo data (porcine coronary artery model) have indicated that
the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents
promotes re-endothelialization and inhibit neointimal hyperplasia.

Another way to achieve rapid re-endothelialization is to modulate artery microen-
vironment at the molecular level. Nitric oxide (NO) releasing materials have also been
incorporated into a part of the polymer coating to elicit anti-thrombosis/restenosis func-
tions, presumably due to their crucial role in vasodilation [296,297]. Pioneer research on
NO-releasing/generating coatings involved either an NO supplier or catalyzer (e.g., N-
diazeniumdiolate or ascorbic acid) that releases the therapeutic dosage of NO to restore en-
dothelial cell functions [298–300]. On the other hand, there are various biomolecules/bioactive
ligands that can promote the growth of endothelial cells, including heparin, hyaluronic
acid, chondroitin sulfate, fucoidan, and gallic acid [301–305]. Combining the NO releasing
coating with bioactive ligands can thereby promote re-endothelialization via biomimetic
microenvironment. Zhao et al. [306] reported a stepwise copper-catechol-amine (MCA)
surface coating approach on vascular stent. The amine groups of MCA were conjugated
with heparin, and the CuII-DA/HD networks elicited a glutathione peroxidase (GPx) like
activity similar to CuII, which triggered the decomposition of blood stream S-nitrosothiols
(RSNO) into NO. The heparin moiety and NO release exhibited synergistic effects in terms
of rapid re-endothelialization, enhanced antithrombogenicity, SMCs suppression, inhibition
of intimal hyperplasia, and in-stent restenosis in the adult New Zealand white rabbit model.
Wu et al. [307] reported a NO eluting hydrogel coated vascular stent that can suppress
neointimal hyperplasia by virtue of GPx mimetic organoselenium generated NO. The
hydrogel is composed of alginate and gelatin that are analogous to hyaluronic acid and
collagen in the ECM. The hydrogel composition was optimized so that it is mechanically
strong enough to withstand balloon angioplasty. The alginate backbone was modified with
selenocysteine eliciting a GPx-3 like catalytic properties that were able to degrade RSNO
into NO. The hydrogel coated vascular stent had shown the persistent suppression of
neointimal hyperplasia in both the New Zealand white rabbit model and Bama miniature
pig model.

Surface topography/nanotopography is an emerging technology to regulate cellular
behaviors [308,309]. A change of surface topography can influence protein adhesion
and even endow stent adhesive properties to a specific cell type. The design of surface
topography primarily depends on the cell morphology and cell alignment of interest. In
the case of endothelial cells, which possess an elongated morphology, studies have shown
that substrates with a parallel grooved surface promote the migration of endothelial cells
in comparison with the smooth counterpart [310]. Such groove patterns have shown the
selective adhesion of endothelial cells and concurrent inhibition of SMCs adhesion [311].
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The surface of the stent can also be modified by the addition of a nanostructure, such
as TiO2 nanotubes. Desai et al. [312,313] reported that the nanotubular titanium oxide
surface promotes endothelial cell adhesion while inhibiting SMCs adhesion. Iglič et al. [314]
reported the beneficial effects of an electrochemical oxidized TiO2 nanotube array. This
oxidized TiO2 nanotube array (15 nm in diameter) elicited selective endothelial cell adhesion
over the SMCs, and concurrently inhibited platelet adhesion, which is instrumental for
antithrombotic metal stents.

4. Conclusions and Perspective

In the reviewed plasmonic biotechnology examples in Section 2.1, the unique optical
features, such as fluorescence enhancement and high photothermal conversion efficiency,
have been elicited in the interaction between plasmonic material and biomolecules. Such
plasmonic–biomolecule interplay would be the basis of diagnostic strategy advancement.
Furthermore, diagnostic approaches with simple procedures could be made commercially
available to the public, e.g., as a lateral flow assay. Cost-effective and timely diagnosis could
alleviate the pressure in diagnostic centers and facilitate the screening process in society.
Particularly, in the outbreak of COVID-19, the development of high sensitivity biosensor
platforms has become a significant research area [315–317]. Besides, nanomaterials could
act as a biomolecule or drug carrier upon cellular uptake. Real time intracellular RNA
detection would facilitate cell biology research and disease diagnosis through monitor-
ing gene expression at the single cell level. The high photothermal conversion efficiency
feature conferred its photothermal therapy application, which might be designed as a
repeatable treatment. Furthermore, recent research has focused on the development of
multifunctional nanocomposites, which could offer both diagnostic and therapeutic appli-
cations, such as the discussed RNA responsive nano-dimer reported by Kyriazi et al. [59].
Recently, Nam et al. [318] reported that chemo-photothermal therapy could activate antitu-
mor immune response, which could suppress the non-treated second tumor. We believe
the detailed interaction between such plasmonic particles assisted therapy and that the
subsequent change in immunity would be of great research interest. We believe that the
evaluation of engineered nanocomposite performance in vivo from the immunology aspect
will become an essential path toward clinical translation.

In the reviewed examples of polymer–metal composite health devices under Section 3,
polymer–metal composite materials are shown to play an indispensable role in optimizing
the mechanical properties of implants. Titanium–PEEK composite dental implants have
shown adjusted elastic modulus for better load transfer [160–162]. The metal implants were
coated or composited with different functional polymers that improve the overall perfor-
mance of implants, such as improved biointegration and biocompatibility [165,167,168],
reduced risk of disease complications [215,230,242,252,275,278], and enhanced wound heal-
ing [291,292,294]. While the current development of polymer–metal composite dental
implants focus on dental crowns, composite materials for dental screws and abutments re-
main largely unexplored. An uneven force distribution of the implant-abutment connection
system can cause abutment screw fracture [319]. It is of importance to highlight that im-
plant design often requires the aid of both analytical and computational support [320,321].
For example, the evaluation of the anti-wear performance of dental implants relies on
a precise biotribology model (artificial saliva at the interface of the dental implant) for
the dental implant, such that the dental implant can reproduce the same performance
for surgical applications. Similarly, the development of cardiovascular implants requires
multidisciplinary research, including material science, cardiology, computational studies on
fluid mechanics, and large-scale network meta-analysis [322–326]. Recent findings on ma-
terial cell interactions provide insights in developing novel cardiovascular stents. Barakat
et al. [327] discovered the importance of microgroove depth in regulating the collective
migration of vascular endothelial cells with intact cell–cell junctions, which can be utilized
for rapid re-endothelialization and to restore endothelium functions after stent implanta-
tion. Moreover, new coating strategies can be instrumental for tailor made cardiovascular
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stents. Studies have demonstrated the use of asymmetric surface coating (i.e., different
coatings on the luminal and abluminal stent surface) to elicit excellent re-endothelialization
as well as anti-inflammatory and anti-thrombotic effects, presumably due to the precise
antiproliferative drug delivery to the bloodstream (abluminal layer) and avoidance of
drug delivery to the artery (luminal layer) that inhibits re-endothelialization [328,329]. We
believe such a strategy can be utilized in the existing polymer/polymeric nanoparticle
coatings for developing next generation polymer–metal composite cardiovascular stents.

New polymer-based or metal-based materials can be the inspiration for develop-
ing new polymer–metal composite healthcare materials. Recently, amazing materials
with intriguing features have been reported, including conformational change polymeric
nanoparticles [330,331], photoactuating amphiphiles [332–334], mussel mimetic hydro-
gels [335,336], and chiral nanoparticles [337,338]. These new findings can contribute to
the development of various polymer–metal composite healthcare materials, including
personalized medications, high quality implants, and ultra-sensitive diagnostic kits.
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