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Abstract: A practical procedure for predicting the remaining fatigue life at an arbitrary stress ratio is
developed and verified. The procedure was based on the validated damage function, in conjunction
with the Kim and Zhang S-N curve model. The damage function was used for finding various iso-
damage points dependent on three independent variables (i.e., stress level, number of fatigue cycles,
and stress ratio). The verification was conducted using Alclad 24S-T aluminium alloy, available in the
literature for fatigue loading varied under three different loading schemes. The first scheme was for
two different stress ratios, the second was for three different stress ratios, and the last was for a single
stress ratio as a special case. The prediction accuracies were found to be in an error range of −0.1 to
5.6%, −0.5 to −0.6, and 1.5 to 1.7% for the 1st, 2nd, and 3rd schemes, respectively.
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1. Introduction

The term ‘fatigue’ in engineering seemingly first appeared in 1854 [1]. Fatigue is a
phenomenon that takes place when the progressive damage under cyclic loading occurs to
materials. There have been two different ways to approach the fatigue damage problems.
One of the ways is to deal with cracks individually using fracture mechanics parameters,
such as the stress intensity factor. The other way is to deal with “small” cracks [2] for
fatigue life in a collective manner for crack initiation and growth at a relatively large scale,
which requires an S-N curve model for characterisation (S and N in the acronym stand for
stress and number of fatigue loading cycles, respectively).

Predicting the remaining fatigue life (RFL) following a prior fatigue loading associated
with the S-N behaviour of the engineering materials has been a challenge since Palmgren [3]
and Miner [4] attempted empirically. The history reveals that the application of the empiri-
cal approaches has been limited to some special cases, as reviewed in ref. [5]. Eskandari
and Kim [5] eventually established a theoretical framework for fatigue damage validity,
in conjunction with the Kim and Zhang S-N curve model [6,7]. The RFL depends on the
fatigue damage accumulated during fatigue loading. The fatigue damage can be quantified
using the damage function [5], which is, in general, a function of multiple independent
variables. Quantified damage can be applicable to both composite and monolithic materials
independent of the damage mechanism types involved [5]. If a material is subjected to a
constant loading amplitude at a stress ratio (R), the RFL may be considered as a function of
two variables, i.e., stress level and number of loading cycles. If a material is subjected to a
different loading amplitude as a result of changing the stress ratio (R), it may be considered
as a function of three variables, i.e., stress level, number of loading cycles, and R. In this
case, it may need to have a predicted S-N curve to deal with a new stress ratio.

Kim and Huang [8] confirmed and verified a method for predicting the RFL with a
new method for S-N curve characterisation applicable for time dependent materials, using
the fatigue damage as a function of two independent variables at a single stress ratio (R)
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under tension-tension loading. As a natural progression, the prediction of the RFL using
the fatigue damage as a function of three independent variables has been desired. This
implies that, to find the parameters of the damage function, there must be a mathematical
relationship between the stress ratio and S-N curve, given that the parameters of the
damage function can be obtained from a relevant S-N curve. Kim [9,10] recently developed
a practical method for predicting S-N curves at an arbitrary stress ratio, allowing us to
proceed with further development of the three-variable problem. A solution to the three-
variable problem may be important for potentially dealing with random fatigue loading in
the future, given that the two variable approach is limited to a fixed stress ratio.

The purpose of the present paper was to develop a new procedure for predicting
the RFL, using the fatigue damage function involving three independent variables. A
successful outcome of the present work may be potentially a firm basis for developing a
methodology for predicting the RFL under random fatigue loading.

2. The Theory

The Kim and Zhang S-N curve model has been evaluated [6,11,12] to be best suited not
only for fatigue characterisation, but also for the prediction of the stress ratio
(R = σmin/σmax = valley stress/peak stress) effect on the fatigue lives of composite ma-
terials. The number of cycles at failure (N = Nf) in the model with the lowest cycle (N = N0)
for material breaking point is given as a function of applied peak stress (σmax), which is
as follows:

N f =
(σuT)

−β

α(β− 1)

[(
σmax

σuT

)1−β

− 1

]
+ N0 (1)

or inversely,

σmax = σuT

α(β− 1)
(

N f − N0

)
(σuT)

−β
+ 1


1

1−β

(2)

where N0 = lowest number of cycles at the material breaking point,
σuT = ultimate tensile strength, and
α, β = damage parameters.

Although the value of N0 is, in general, not exactly 0.5 for R 6= 0 and R 6= ±∞, it
may be practically reasonable to approximate the cycle to be 0.5 cycle for an S-N curve
characterisation. In fact, the breaking point is usually not obtainable from a fatigue testing
machine because of the limited controllability, but it can be obtained from a universal testing
machine. A practical method for using the value of 0.5 is proposed for time-dependent
materials applicable to metallic materials [8].

The parameters (α, β) are obtained from the fatigue damage rate for T-T (tension-
tension) loading or T-C (tension-compression) (if σuT > σuC (compressive strength)) and
given by the following equation:

∂D f

∂N f
= α(σmax)

β (3)

where Df is the fatigue damage at tensile fatigue failure independent of stress ratio, which
is defined by the following equation:

D f = 1− σmax

σuT
(4)

A Matlab script for determining α and β is available in ref. [8]. The two parameters
(α and β) in Equation (3) are determined by numerically differentiating an experimental
fatigue data set for (1− σmax/σuT) versus Nf, followed by linearization by taking log on
both sides of the differentiated data set. As a result, the intercept of the least square line
of the differentiated data set becomes log α and β becomes its slope. If σuT < σuC for
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C-T (compression-tension) or C-C (compression-compression) loading, σuT and σmax in
Equations (1)–(4) are replaced with σuC and σmin, respectively [10].

The fatigue damage function (D) for any point on S-N plane given by the following
equation [5,13]:

D = D f dn
f (5)

where n is the validated exponent to be determined according to the practical procedure
described in Appendix A, and d f is the (general) location factor with a value range of 0 to 1
for a point on the S-N plane at an arbitrary number of cycles (N) and peak stress (σmax),
defined for a point b (Figure 1) as

d f =
log N − log N0

log N f − log N0
(6)
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the iso-damage point does not correspond to that at the new stress level σmax2 when low-high loading
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3. Development of Procedure for Predicting the Remaining Fatigue Life at an Arbitrary R

The procedure to be developed here is based on the theory above. If the prediction
of RFL is for a case of a single R, Equations (1)–(5) can be used for finding an iso-damage
point at a new stress level on an S-N plane. If it is for a case of an arbitrary R at a new
stress level, the same equations can be used but require another set of different parameter
values from a new S-N curve. Thus, at least two S-N curves for a particular loading zone
(e.g., T-T loading) in the CFL (constant fatigue life) diagram [10] are necessary for the
latter case prediction. It should be noted that any other S-N curve can be predicted in each
loading zone, provided that two S-N curves are available in the corresponding loading
zone according to the method in ref. [10], allowing us to predict the RFL at a new stress
level with any other R.

As schematically illustrated in Figure 1a, two S-N curves for two different stress ratios
(i.e., R1 and R2) are considered here. When the fatigue load cycling at σmax = σmax1 stops
at a point b1 under the S-N curve with R = R1 and is then changed to σmax = σmax2 with a
different stress ratio R = R2, a method for predicting the remaining fatigue life (∆N2) at R
= R2 may be developed. The sequence number given in each box (i.e., 1 to 4) in Figure 1a
may be useful to indicate each point for sequential consideration. The following procedure
involves mainly finding iso-damage points under two different S-N curves.

The location factor (d f b1) at the first point b1 (Figure 1a) with N = N1 at σmax = σmax1 =
σmaxA1 for R = R1 is found according to Equation (6),

d f b1 =
log N1 − log N01

log N f A1 − log N01
(7)

following the calculation of number of cycles at failure (N f A1) at σmax = σmaxA1 for R = R1,

N f A1 =
(σuT)

−β1

α1(β1 − 1)

[(
σmaxA1

σuT

)1−β1

− 1

]
+ N01 (8)

where each subscript ‘1’ indicates R = R1.
The damage of the first iso-damage point (D f B1) at the 2nd point B1, the damage of

which is equal to that at the 1st point b1 (D f b1 ), is required to be found with

D f B1

(
= D f b1

)
= D f A1

(
d f b1

)n1
(9)

using Equation (5). The second iso-damage point under R = R2, damage (D f B2) at the
3rd point B2 with R = R2 is found at the same stress level on the S-N curve with R = R2
according to Equation (4), giving the following equation:

D f B2 = D f A1

(
d f b1

)n1
(10)

Thus, damage at the third iso-damage point b2 (D f b2) at a new stress level σmax2 is
required to be found for R = R2, the damage of which is equal to that of the 3rd point B2
and to that of the point b1 so that

D f b2

(
= D f B2

)
= D f A2

(
d f b2

)n2
(11)

Accordingly, the location factor for the point b2 is found from Equations (9)–(11).

d f b2 =

(
D f B2

D f A2

)1/n2

(12)
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and thus, the remaining fatigue life (∆N2) for R = R2 is predicted to be

∆N2 = N f A2 − N2 (13)

The practical sequence of the calculations with details involving two stress ratios is
provided in Table 1. If three or more different stress ratios are involved for various load
variations, the same procedure developed here can be used for predicting RFLs by choosing
progressively two S-N curves with the associated calculations.

Table 1. Sequence of calculations for predicting the remaining fatigue life in volving two stress ratios.

Steps Equations for Calculation Comments

1 N f A1 = (σuT)
−β1

α1(β1−1)

[(
σmaxA1

σuT

)1−β1
− 1
]
+ N01

Number of cycles at failure
at σmax = σmaxA1 for R = R1

2 d f b1 =
log N1−log N01

log N f A1−log N01

Location factor at point b1 at
σmax = σmaxA1 for R = R1

3 D f A1
= 1− σmaxA1

σuT

Damage at failure at
σmax = σmaxA1 for R = R1

4 D f B1
=
(

d f b1

)n1
D f A1

Damage at point B1 or B2 for
R = R1 or R = R2

5 σmaxB = σuT

[
1−

(
d f b1

)n1
D f A1

]
Stress at σmax = σmaxB

6 N f B1 = (σuT)
−β1

α1(β1−1)

[(
σmaxB
σuT

)1−β1
− 1
]
+ N01

Number of cycles at failure
at σmax = σmaxB for R = R1

7 N f B2 = (σuT)
−β2

α2(β2−1)

[(
σmaxB
σuT

)1−β1
− 1
]
+ N02

Number of cycles at failure
at σmax = σmaxB for R = R2

8 D f B2 = 1− σmaxB
σuT

Damage at failure at
σmax = σmaxB for R = R2

9 D f A2 = 1− σmaxA2
σuT

Damage at failure at
σmax = σmaxA2 for R = R2

10 d f b2 =
( D f B2

D f A2

)1/n2 Location factor at point b2 at
σmax = σmaxA2 for R = R2

11 N f A2 = (σuT)
−β2

α2(β2−1)

[(
σmaxA2

σuT

)1−β2
− 1
]
+ N02

Number of cycles at failure
at σmax = σmaxA2 for R = R2

12
log N2 =

d f b2

(
log N f A2 − log N02

)
− log N02

Number of cycles (N2) at point b2
for R = R2

13 ∆N2 = N f A2 − N2
Predicted remaining number of

cycles at σmax = σmaxA2 for R = R2

The accuracy of the prediction is a measure of how closely the experimental failure
points (N2 + ∆N2) are located to the relevant S-N curve. The location of each experimen-
tal failure point can be determined from log

(
10log N2 + ∆N2

)
using Step 12 in Table 1.

Accordingly, the accuracy may be calculated using an error calculation, which is as follows:

Error =
log
(

10log N2 + ∆N2

)
− log

(
N f A2

)
log(N f A2)− log(N0)

(14)

The procedure developed here is applicable for a special case of single R (i.e.,
R = R1 = R2). However, when low-high loading is applied with a single R, or with two stress
ratios for similar S-N curves, an exceptional case is possible. Figure 1b is an example of a
single R, where cyclic loading stopped at point b1 at σmax1 and increased to σmax2 for further
loading but it is possible that the new stress level of the iso-damage found at point B’1 on
the S-N curve is lower than that of point B’2 on the S-N curve at the 2nd stress (σmax2),
when experimental/numerical uncertainties are high. In this case, the failure point may
be approximated to be NfB’2 + ∆N2 using Equation (1) and an experimental value of ∆N2,
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given that the damage values at two points B’1 and B’2 are usually not much different.
Therefore, an error of RFL prediction may be as follows,

Error =
log
(

10log NB′2 + ∆N2

)
− log

(
N f B′2

)
log(N f B′2)− log(N0)

(15)

4. Experimental Data

Fatigue experimental data sets for Alclad 24S-T aluminium alloy with an ultimate
strength of 475 MPa were obtained from ref. [4] for three different stress ratios, R =−0.2, 0.2,
and 0.5 (Figure 2). They were fitted to Equation (1) with the following parameter values:
α = 1.65 × 10−16, β = 4.197, and N0 = 0.5 for R = −0.2; α = 6.47 × 10−13, β = 2.582, and
N0 = 0.5 for R = 0.2; and α = 9.37 × 10−16, β = 3.538, and N0 = 0.5 for R = 0.2. The dashed
lines of each S-N curve represent a confidence interval of 95%. The confidence interval
for R = 0.5 appears to be relatively large, due to the small number of data points. The test
specimens for the data sets were of dog-bone-shape made from flat sheet with material
grain orientation perpendicular to sinusoidal fatigue loading.

The results of the RFL experiments for ∆N2 conducted for the material used for the
S-N behaviours shown in Figure 2 were also obtained from ref. [4] and are listed in Table 2.
The data in Table 2 consist of three load schemes for experimental variation, i.e., the first
scheme is for two different stress ratios (i.e., R = −0.2 and 0.2), the second scheme for three
different stress ratios (i.e., R =−0.2, 0.2, and 0.5), and the last scheme for a single stress ratio
(i.e., R = −0.2). The first part of the first load scheme is for high-low loading. For example,
the first applied maximum fatigue stress at σmax1 = 241 MPa was stopped at N = 40,000
cycles with R = −0.2, followed by a decrease to σmax2 = 224 MPa with R = 0.2, resulting in
specimen failure in 149,500 cycles (=∆N2). The second part of the first load scheme was for
low-high loading (e.g., σmax = 172 to 259 MPa).

The second load scheme was for three stress ratios, i.e., R = −0.2, R = 0.2 and R = 0.5
(Table 2). In the first part of this load scheme, for example, the first fatigue loading at
σmax1 = 276 MPa with R = −0.2 was stopped at N = 20,000 cycles, followed by the
same stress σmax2 = 276 MPa, but with a different stress ratio R = 0.2 for further loading
∆N2 = 50,000 cycles without failure at this point. This experiment continued at the same
stress but with a different stress ratio, R = 0.5, until the specimen broke due to additional
cycling ∆N2 = 143,000 cycles.

The last load scheme was for a special case with a single stress ratio for both high-low
and low high loadings.
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Table 2. Loading schemes and RFL experimental results (∆N2) with prediction errors.

R (MPa) ×1000
Cycles

logNf
from Equation (1)

Predicted
b2 (log N2)

Error of RFL
Prediction

−0.2 σmax1 = 241 N1 = 40 NfA1 = 4.930 -
0.2 σmax2 = 224 ∆N2 = 149.5 NfA2 = 5.438 5.107 −0.1%
−0.2 σmax1 = 259 N1 = 40 NfA1 = 4.820 -
0.2 σmax2 = 172 ∆N2 = 423 NfA2 = 5.679 5.271 −1.8%
−0.2 σmax1 = 276 N1 = 30 NfA1 = 4.713 -
0.2 σmax2 = 184 ∆N2 = 83 NfA2 = 5.622 5.172 4.3%
−0.2 σmax1 = 276 N1 = 35 NfA1 = 4.713 -
0.2 σmax2 = 184 ∆N2 = 32.5 NfA2 = 5.622 5.233 5.3%

0.2 σmax1 = 172 N1 = 312 NfA1 = 5.679 -
−0.2 σmax2 = 259 ∆N2 = 56.8 NfA2 = 4.820 4.849 −5.6%
0.2 σmax1 = 184 N1 = 200 NfA1 = 5.622 -
−0.2 σmax2 = 276 ∆N2 = 46.2 NfA2 = 4.713 4.620 −4.6%
0.2 σmax1 = 172 N1 = 350 NfA1 = 5.679 -
−0.2 σmax2 = 259 ∆N2 = 23.8 NfA2 = 4.820 4.904 − 3.8%

−0.2 σmax1 = 276 N1 = 20 NfA1 = 4.713 -
0.2 σmax2 = 276 ∆N2 = 50 NfA2 = 5.215 4.850 -
0.2 σmax1 = 276 N1 = 70.334 + 50 NfA1 = 5.215 -
0.5 σmax2 = 276 ∆N2 = 143 NfA2 = 5.628 5.490 −0.5%
−0.2 σmax1 = 207 N1 = 40 NfA1 = 5.165
0.2 σmax2 = 224 ∆N2 = 80 NfA2 = 5.438 4.999
0.2 σmax1 = 224 N1 = 98.937 + 80 NfA1 = 5.438
0.5 σmax2 = 276 ∆N2 = 80 NfA2 = 5.628 5.583 − 0.6%

−0.2 σmax1 = 241 N1 = 33 Nf1 = 4.930
−0.2 σmax2 = 190 ∆N2 = 108.7 Nf1 = 5.294 4.718 1.7%
−0.2 σmax1 = 190 N1 = 127 Nf1 = 5.294
−0.2 σmax2 = 276 ∆N2 = 6.3 Nf1 = 4.713 N/A 1.5%

5. Results and Discussion

The experimental failure points (represented by square and circular symbols) obtained
from cyclic loading, which varied from R = −0.2 to 0.2, are shown in Figure 3a,b, with
reference to the relevant S-N curves selected from Figure 2. Two different ways of loading,
i.e., high-low and low-high loadings, are separately given in Figure 3a,b respectively. The
straight lines, as already described in Section 3, represent the applied loading paths and
connections between iso-damage points. The three iso-damage points were calculated
according to the procedure developed earlier, in conjunction with experimental data points
and numerically calculated values for exponent (n) in Equation (5) (i.e., n = 7.47, 9.38,
9.69 for R = −0.2, 0.2, and 0.5, respectively). The error of RFL prediction according to
Equation (14) was found to be in a range of −0.1 to 5.3%, as listed in Table 2 for high-
low loading (Figure 3a) and was found to be in a range of −5.6 to −3.8% (Figure 3b) for
low-high loading.

Figure 3c shows two experimental failure points represented by circular symbols (it
looks as though they are one because two points are almost identical). This is a case where
three stress ratios (i.e., R = −0.2, 0.2, 0.5) are involved in load variations. Note that the
specimen failure did not occur at the 2nd R (=0.2) for the 1st additional cyclic loading
(∆N2), but took place at the 3rd R (=0.5), due to the 2nd additional cyclic loading (∆N2).
The first load variation was conducted with a constant σmax (=276 MPa), while the second
load variation was with different stress levels (σmax = 207, 224, and 276 MPa). Equation (14)
was used again for prediction accuracy to find how the failure point is close to the S-N
curve with R = 0.5. The prediction errors were found to be −0.5% and −0.6% for the 1st
(σmax = constant = 276 MPa) and 2nd (σmax = 207, 224, 276 MPa) load variations, respectively.
They appear to be more accurate than those of the first load scheme (Figure 3a,b).

Figure 3d shows a special case where a single S-N curve for R = −0.2 is used. Two fail-
ure points are shown from two different ways of load variation. One is represented by a
square symbol for high-low loading and its prediction error was found to be 1.7%, accord-
ing to Equation (14). The other is represented by a circular symbol for low-high loading.
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This is an exceptional case where the iso-damage point on S-N curve at the stress level
(σmax = 255 MPa), whose damage is equal to that of the load stopping point, does not
correspond to that the new stress level (σmax = 276 MPa) applied for load variation. In this
case, as already discussed in Section 3, Equation (15) may be used for a prediction accuracy
and an error of 1.5% was found.

When all the failure points are considered, no noticeable trend affected by the load
sequence is found in Figure 3. One might expect the load sequence effect to occur when
the cyclic loading is varied. For example, when a stress level decreases to a lower stress
level (i.e., high-low loading), the fatigue life may be expected to increase due to the crack
closure [14], or vice versa. The scatters of data points in individual cases in Figure 3a,b,
however, both display that the deviations of failure points from each S-N curve tend to
be opposite to such an expectation, and that the predictions in Figure 3c,d are accurate
without much deviation. Therefore, it may be deduced that the small cracks constituting
the S-N curve behaviour are unlikely to be affected by the load sequence, unlike the long
cracks. The behaviour observed here appears consistent with the other experimental results
in the literature [8], even though some experimental uncertainties are always possible for
different loading schemes.
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Figure 3. Fatigue loading schemes and failure points: (a) high-low loading for R = −0.2 and R = 0.2;
(b) low-high loading for R = −0.2 and R = 0.2; (c) loading for R = −0.2, 0.2 and 0.5; and (d) high-low
and low-high loadings for a single stress ratio R = −0.2.

6. Conclusions

A procedure for predicting the remaining fatigue life (RFL) associated with S-N curves
and multiple stress ratios has been developed for engineering materials. It has been verified
using experimental results obtained from three different loading schemes for an aluminium
alloy. The first scheme was for two different stress ratios, the second was for three different
stress ratios, and the last was for a single stress ratio as a special case. The prediction errors
have been found to be in the range of −0.1 to 5.6%, −0.5 to −0.6, and 1.5 to 1.7% for the 1st,
2nd, and 3rd schemes, respectively.
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Appendix A

An approximately valid exponent n in Equation (5) is found according to the numerical
procedure outlined in Figure A1a, with notation in Figure A1b. The procedure starts with
an arbitrarily nominated initial small value for n (e.g., n = 1) and follows the two sets of
calculation steps, which are as follows:

Step a1: D f at points B (=DfB) and A (=DfA) (Figure A1a) and for σHmax and σLmax,
respectively, using Equation (4);

Step a2: d f at point b (=d f b) using Equation (5) (i.e., d f b =
( D f B

D f A

)1/n
);

Step b1: LogNf at point B (=NHB) and point C (=NHC) using Equation (1);

Step b2: d f for point C at σLmax (=d f C =
log N f B+0.3
log N f C+0.3 ), where NfB and NfC are Nf (see

Equation (1)) at σHmax and σLmax, respectively;
Step 3: ∆d f = d f b − d f C This procedure is repeated until a calculated value (= ∆d f )

becomes positive for all other high (σHmax) and low (σLmax) stresses. If ∆d f turns out to
be negative, n may be increased by typically 0.1 or less. Then, it is repeated for other pair
of stresses (i.e., σHmax and σLmax). The interval (=σHmax − σLmax) may be typically 1 MPa
or smaller. Finally, it is ensured that ∆d f is positive for the peak stresses. A Matlab script
based on the procedure for finding a valid exponent n is given in ref. [8].
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