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Abstract: Hydrogen energy is focused on as next-generation energy without environmental load.
Therefore, hydrogen production without using fossil fuels is a key factor in the progress of hydrogen
energy. In the present work, it was found that chitin–chitinase and collagen–collagenase composites
can generate protons by the hydrolysis of the enzyme. The concentration of the generated proton in
the chitin–chitinase and collagen–collagenase composites are 1.68 × 1017 cm−3 and 1.02 × 1017 cm−3,
respectively. Accompanying these results, proton diffusion constants in the chitin and collagen mem-
branes are also estimated to be 8.59 × 10−8 cm2/s and 8.69 × 10−8 cm2/s, respectively. Furthermore,
we have fabricated the bio-fuel cell using these composites as hydrogen fuel and demonstrated that
these composites become a fuel of the fuel cell.

Keywords: biomaterials; enzyme; proton conductivity; amperometry

1. Introduction

Hydrogen energy is important as next-generation energy with no environmental load.
Therefore, hydrogen production is important, and much research has been done. For
example, Dicks et al. reported how to use natural gas to produce hydrogen [1]. Möller et al.
suggested the possibility of converting natural gas to hydrogen using solar steam reform-
ing [2]. Lefebvre et al. also reported that AlO-ZrO-supported nickel-alumina spinel could
be used as a catalyst for steam reforming to generate hydrogen [3]. However, currently,
most hydrogen production depends on fossil fuels. Since fossil fuels have problems of
depletion and carbon dioxide emissions, it is necessary to present hydrogen production
without using fossil fuels. Biomaterials are also suitable in terms of carbon neutrality. For
example, Takahashi et al. suggested that hydrogen is produced from the photosystem II
(PSII) of plants [4]. Hosseini et al. also attempted to generate hydrogens from supercritical
water gasification (SCWG) of biomass [5]. In this way, the biomaterial is an attractive mate-
rial for hydrogen production without environmental load. It is also known that the solution
to the environmental pollution by the discarded plastics called the “microplastic problem”
is desired. Andrady, A, L described the “microplastic problem” where microplastics cause
marine pollution [6]. Cauwenberghe et al. also reported the effects of microplastics on the
human body [7]. Bilo et al. suggested that bioplastics are produced from rice straw [8]. Ma-
heswari et al. also indicated the use of Spirulina platensis to introduce new bioplastics [9].
In addition, Moorthy et al. suggested the possibility of a film blended with polyvinyl
alcohol and spirulina algae with higher biodegradability [10]. In this way, the biosystem
is an environmentally friendly one and is a useful system if it can be used for hydrogen
generation. Therefore, considering the hydrogen production of biomaterials is important.

From the viewpoint of the hydrogen ion (proton) transport, Dellago et al. described the
diffusion of protons through water-filled carbon nanotubes [11]. Proton transport capacity
is important when materials are used as electronic devices. Recently, some research on
proton transport of biomaterials has been conducted. Chitin is a biomaterial with the
chemical formula of (C8H13O5N)n and consists of long chains of N-acetylglucosamine.
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Shibata et al. reported on an epoxy/chitin nanofiber composite with hardened chitin [12].
Kawabata et al. have shown that chitin has a proton transport capacity and can be applied
to fuel cell electrolytes [13]. As described above, chitin has been put into practical use in
many fields such as biotechnology, pharmacy, agriculture, food engineering, environmental
technology, textile, and paper manufacturing industries. Collagen is a biological substance
consisting of amino acids such as glycine and proline and is also known as the main
component of fish scales. Matsui et al. suggest that the biomaterial “collagen” becomes
a proton conductor by hydration [14]. Furthermore, Matsuo et al. clarified that collagen
could be applied as a fuel cell electrolyte [15]. In addition, Matsuo et al. have created
a DNA thin film and are trying to apply it to a fuel cell electrolyte [16]. Furuseki et al.
described squid axonal electrolytes and their proton conductivity [17]. Thus, biomaterials
become excellent proton transporters.

In recent years, research has also been conducted on applying biological substances
to devices. Zhong et al. were trying to create a bio-device using polysaccharides [18]. In
addition, Park et al. reported on bio-FETs using DNA [19]. However, since rare metals are
used for hydrogen production, there are problems of cost and resource depletion. Therefore,
biomaterials that realize both proton conduction and proton generation contribute to
cheaper and better applications to devices. The enzyme, which is one of the biomaterials, is
known as an excellent catalyst. Kirk reported on the industrial use of enzymes in various
fields [20]. In addition, Galan et al. reported on application examples of enzymes in the
energy field [21]. Among them, various applications of hydrolases have been reported.
Sathya et al. reported on the diversity of meta-genomic-derived glycosyl hydrolases and
their application to the food industry [22]. Imig et al. described the application of soluble
epoxide hydrolases to the medical field [23]. Liu et al. have attempted to characterize
the structural and functional properties of polyethylene terephthalate hydrolases [24].
Hydrolases can be genetically modified to improve their activity. Chitinase and collagenase
are known as hydrolases that hydrolyze biomaterials. Arakane et al. reported that insect
chitinase is an endotype hydrolase [25]. In addition, Perrakis et al. clarified the crystal
structure of bacterial chitinase [26]. Furthermore, Fukamizo reported the catalytic action
of Chitinolytic enzymes [27]. In addition, Welgus et al. showed the collagen substrate
specificity of human skin fibroblast collagenase [28]. Daboor et al. extracted and purified
collagenase enzymes for industrial use [29]. In addition, Souza et al. reported the catalytic
mechanism of collagenase [30]. Thus, chitinase and collagenase are the enzymes of interest
and are known as excellent catalysts.

Recently, we have found that chitin–chitinase and collagen–collagenase composites can
generate protons. Enzyme-based proton production does not need to be fixed in terms of
proton conductivity, and since both are biomaterials, good consistency is also an advantage.
Karthikeyan et al. reported the influence of chitosan substrate and its nanometric form
on the green power generation in sediment microbial fuel cells [31]. This paper reports
on these results. In addition, we have determined the values of the diffusion constants
of protons in collagen and chitin. This result will help lead to the next generation of new
proton production methods.

2. Materials and Methods
2.1. Preparation of Chitin–Chitinase Composite

Chitin membranes were prepared by aspiration filtration at room temperature using
purified chitin slurry (Sugino Machine Limited, Uozu, Japan) dispersed in distilled water.
For suction filtration, a PTFE hydrophilic filter with 0.2 µm diameter holes was used.
Figure 1 shows a photograph of the prepared chitin membrane, which is a cloudy and
mechanically stable film. The dimensions of the chitin membrane used in this study are φ
4.5× 0.07 mm, as shown in Figure 1. Under humidified conditions, chitin also shows proton
conductivity. The value of proton conductivity increases with increasing humidity and
becomes ~1 × 10−2 S/m under 100% humidified conditions [13]. The chitin membrane is
stable up to 200 ◦C. The chitinase used in this study is of activity of 110 units/mL (FUJIFILM
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Wako Pure Chemical Corporation, Osaka, Japan). Proton production was carried out by
coating the chitin membrane with the chitinase. The proton concentrations predicted from
the mechanism are 2.36 × 1021.
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Figure 1. Chitin membrane.

2.2. Preparation of Collagen–Collagenase Composite

Figure 2 shows a collagen membrane grown from the purified collagen peptide
(UNIQS Co. Ltd., Yokohama, Japan). The dimensions of the collagen membrane used in
this study are φ 4.5 × 0.05 mm. As shown in Figure 2, the collagen film is transparent.
Under the humidified condition, the collagen exhibits proton conductivity by the transfer
of protons (or H3O+) through the water bridges formed between the OH, CO, and NH
groups of the side chains of the collagen peptide. The value of proton conductivity of the
collagen is ~1 × 10−3 S/m under 100% [14]. The collagen membrane is stable up to 160 ◦C.
The collagenase used in this study is of activity of 290 units/mg (FUJIFILM Wako Pure
Chemical Corporation). Protons were generated by coating the collagen membrane with
the collagenase. The proton concentrations predicted from the mechanism are 2.21 × 1024.
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2.3. Amperometric Measurements

The purpose of this study is to investigate the carrier generation when the enzyme
chitinase is applied to the chitin membrane. The generation and diffusion of carriers can
be studied by various methods, but in this study, we will use amperometry, which is
simple and quick to measure [32–35]. In this study, we use amperometry, which is a simple
and quick method. Amperometry is a method to investigate the carrier transport that
occurs when a step voltage is applied to a sample from the transient current [36–39]. The
application of a step voltage to the sample polarizes the internal charge and transports the
charge, which is the conduction carrier, to a stable position (near the electrode). As a result,
we can obtain information about the carrier from the transient current. The measurement
system is very simple (Figure 3), requiring only a DC power supply to apply the step
voltage, an ammeter to measure the current, and a computer to control them. In this study,
a DC stabilized power supply (keithley2400) was used as a DC power supply to apply a step
voltage, and the current was measured by a high precision digital multimeter (keithley2100)
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at room temperature. The chitin and collagen membranes with the dimensions shown in
the previous section were used for the measurements, and silver electrodes were applied
to those for the measurements. The complex was obtained by placing the membrane in
enzyme vapor and injecting it into chitin (collagen).
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2.4. Bio-Fuel Cells Using the Chitin–Chitinase and Collagen–Collagenase Composites as Fuel

In this section, we have fabricated the bio-fuel cell using the chitin–chitinase and
collage-collagenase composite as fuel and displayed that the chitin–chitinase and collagen–
collagenase composites become hydrogen fuels. We first explain the structure of the bio-fuel
cells. Figure 4 shows the schematic figure of the structure of the bio-fuel cell. As shown in
Figure 4, the chitin membrane was used as the fuel–cell electrolyte. The Pt-C electrodes
sandwiched the electrolyte, and chitin–chitinase (or collagen–collagenase) composite as
anode fuel was used. The oxygen in the air was introduced to the cathode as a fuel. The
stainless mesh was used as the current collector, and the generated current was measured
between the stainless-mesh current collectors of anode and cathode in the bio-fuel cell.
The electrode area was 1.59 × 10−5 m2, and the measurement was carried out under
humidified conditions.
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In the fuel cell characteristic measurement, the conditions of temperature, enzyme
activity, and film thickness are the same as the conditions of amperometric measurements,
and it is a highly biocompatible device. In this study, the current–voltage characteristics
were measured by a precision digital multimeter (keithley2100).
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3. Results and Discussion
3.1. Carrier Production in Chitin–Chitinase Composites

The simplest way to obtain information about the carriers produced by the enzyme is to
measure the change in the current flowing through the sample. As is well known, transient
changes in current can be known by amperometry. Therefore, we first investigated the
transient current changes of a well-known polysaccharide and its enzyme, chitin–chitinase
composite. Figure 5 shows the current value at each applied voltage. From Figure 5, the
maximum voltage in the range not affected by water splitting is 0.8V, and this time, the
transient current was measured when 0.8V was applied.
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Figure 6 shows the results of the measurements. In this measurement, the step
voltage of 0.8 V was applied as the value at which the transient currents of chitin and
chitin–chitinase composite coincide at t→∞. As shown in Figure 6, both the collagen and
chitin–chitinase composite exhibit so-called “transient currents” in which the current value
increases once and then slowly decays after the step voltage is applied.

The behaviors of these transient currents are very similar, suggesting that the transient
currents in the chitin and chitin–chitinase composite decay by the same mechanism. These
results suggest that there is a current generated by the carriers produced in the chitin–
chitinase composite. Considering that the chitin membrane is a proton conductor upon
hydration, as shown in Figure 6, it is suggested that the transient currents are caused by
the diffusion of protons in the chitin and chitin–chitinase membrane.
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The transient current due to carrier diffusion has already been analyzed in various
methods and can be understood by solving the diffusion equation. The diffusion of ions
due to transient currents is described by Fick’s first law as follows:

i = nFADo

(
∂Co

∂x

)
x=0

(1)

Here, n is the charge number, F is a Faraday constant that represents the charge per
amount of substance of an electron (9.6485 × 104 C/mol), A is the electrode area, and Do
and Co are the diffusion constant and carrier concentration, respectively. The symbol x is
the distance measured from the electrode interface to the bulk of the sample. The carrier
concentration gradient part of this equation can be solved by setting the diffusion equation
as C = Co for initial conditions t = 0 and x ≥ 0, C = 0 for boundary conditions x = 0, and
C→Co for x→∞, using the error function erf, can be obtained as the following equation,

c(t, x) = Coerf

(
x

2(Dot)1/2

)
(2)

Differentiating this and substituting it into Equation (1), we obtain the following equation,

i =
nFADoCo

(πDot)1/2 (3)

This equation is known as Cottrell’s equation, and it shows that the diffusion current
(transient current) at a flat electrode is inversely proportional to the square root of time. The
solid line in Figure 6 shows the result calculated by the Cottrell equation in Equation (3).
As shown in the solid line in Figure 6, the transient currents of both chitin membrane
and chitin–chitinase composite decrease at t−1/2 according to Cottrell’s equation. These
results suggest that carrier diffusion is the cause of these transient currents in Figure 6.
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Although the carrier concentration Co and the diffusion constant Do cannot be obtained
separately, the product of these two, CoDo

1/2, can be obtained directly from the experimental
result. The CoDo

1/2 of chitin membrane and chitin–chitinase composite were found to be
1.60 × 10−11 and 8.70 × 10−11 mol/cm2·s−1/2, respectively. This is an important value
for determining proton transport, and we can uniquely determine the diffusion constant
and carrier concentration in the system if the value of Co or Do is obtained. As is well
known, enzymes are catalysts, and the enzyme itself does not change between the starting
and ending states of the reaction but plays a role in promoting the reaction. The chitinase
used in this study plays a role in breaking the glycosidic bonds between chitin molecules
by hydrolysis. Figure 7 shows the schematic diagram. As shown in Figure 7, when the
enzyme chitinase encounters chitin, the glycosidic bond between the chitin molecules is
broken, and with the intervention of water, an OH group is attached to the C that formed
the glycosidic bond. Thus, the enzymatic breaking of the glycosidic bond gives rise to a
new OH group. Furthermore, as is well known, the protons of the OH groups of the side
chains are detached from the OH groups. This result suggests that chitinase, known as a
hydrolytic enzyme, plays a role in increasing the number of protons by generating new
protons which are carriers in chitin. In other words, considering that the main effect of
chitinase on proton transport is to increase the number of protons, we can assume that the
main contribution to the increase of transient current in chitin–chitinase composite is not
the change of the diffusion constant but the change of carrier concentration.
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Therefore, assuming that the change in diffusion constant due to chitinase is negligible,
the concentration of carriers generated in chitin by chitinase can be roughly estimated from
the measurement results shown in Figure 6. The product of the carrier concentration and
the diffusion constant of the chitin and the chitin–chitinase composite is CocDoc

1/2 and
CoeDoe

1/2, respectively. Using the condition Doc = Doe (=Do) for the diffusion constant, the
carrier concentration Coe produced in the chitin–chitinase composite is 5.4 times higher
than the carrier concentration Coc in the chitin membrane. This result also suggests that
Coc, Coe, and Do can be uniquely determined if another relation for Coc and Coe can be
obtained. Therefore, we further analyzed the difference in transient currents between the
chitin membrane and the chitin–chitinase composite. The results are shown in Figure 8.
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As shown in Figure 8, the difference in transient currents between the chitin membrane
and the chitin–chitinase composite, ∆i, decreases rapidly with time. The time variation
of the charge generated by the chitin–chitinase composite can be obtained by integrat-
ing the results of Figure 8. The time dependence is shown in the inset of Figure 8. As
shown in this figure, the current-generating almost saturates around 400 s. It is suggested
that this result is caused by the transport of protons generated by chitinase. Therefore,
the number of carriers generated in the chitin–chitinase composite can be obtained by
dividing the saturation charge by the charge element. The difference in carrier concentra-
tion between the chitin membrane and the chitin–chitinase composite is 1.68 × 1017 cm−3,
taking into account the volume of the chitin membrane. Using these values, Coc, Coe,
and Do are estimated to be (1.84 ± 0.0155) × 1016 cm−3, (1.86 ± 0.0172) × 1017 cm−3, and
(8.59 ± 0.0159) × 10−8 cm2/s, respectively. The maximum carrier concentration due to the
enzymatic reaction in the chitin–chitinase complex is estimated. The estimated concentra-
tion is 2.17 × 1021 cm−3. This result indicates that a part of protons in the chitin–chitinase
composite contributes to proton conduction. In addition, Hirota et al. show that the diffu-
sion constant in chitin is ~3 × 10−7 cm2/s at 268 K by the neutron quasi-elastic scattering
(QENS) measurement [40]. The diffusion constant in this work is close to the diffusion
constant obtained by the QENS measurement. The diffusion constant estimated from the
QENS measurement is a microscopic diffusion constant, which includes the diffusion at a
distance of several micrometers or less. On the other hand, the diffusion constant in this
study is a macroscopic diffusion constant, which is determined by the total amount of
carrier migration. It is generally suggested that the diffusion constant, including the micro-
scopic diffusion, could be larger than the macroscopic diffusion constant [41]. Considering
these, the diffusion constant obtained in this work is reasonable.

3.2. Carrier Production in Collagen–Collagenase Composites

Collagen and collagenase are also a well-known protein and enzyme. In this section,
we show the investigation of the carrier concentration and diffusion constant in the collagen
membrane and collagen–collagenase composite using the protein and its enzyme. Figure 9
shows the time dependence of transient currents in the collagen membrane and collagen–
collagenase composite.
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In this measurement, the applied voltage 0.8 V was determined as the value at which
the transient currents of collagen and collagen–collagenase composite coincide at t→∞. As
shown in Figure 9, the behaviors of these transient currents are similar to transient currents
in the chitin membrane and chitin–chitinase composite. These results indicate that the
transient currents in the collagen membrane and collagen–collagenase composite are not
caused by the discharging of the electric double layer but by the proton diffusion, as seen
in the chitin membrane and chitin–chitinase composite. The solid line in Figure 9 shows
the result of checking whether the measurement results in Figure 9 can be described by
the Cottrell equation in Equation (3). As shown in the solid line in Figure 9, the transient
currents of both collagen and collagenase-collagen membranes decrease at t −1/2 according
to Cottrell’s equation. These results suggest that transient current in the collagen membrane
and collagen–collagenase is also caused by the carrier diffusion. From these results, the
CoDo

1/2 of collagen and collagenase-collagen membranes were found to be 1.60 × 10−11

and 6.60 × 10−11 mol/cm2·s−1/2, respectively.
Collagenase used in this study plays a role in breaking the amide bonds between

collagen molecules by hydrolysis. Figure 10 shows the schematic figure of the reaction by
collagenase. As shown in Figure 10, when the enzyme collagenase encounters collagen, the
amide bond between the collagen molecules is broken, and with the intervention of water,
an OH group is attached to the Carbon that forms the amide bond. Thus, the enzymatic
breaking of the amide bond gives rise to a new OH group. As is well known, the protons of
the OH groups of the side chains are detached from the OH groups when under humidified
conditions. This result suggests that collagenase, a hydrolytic enzyme, plays a role in
increasing the number of protons by generating new protons, which are carriers of collagen.
Assuming that the change in diffusion constant due to collagenase is negligible, same as
the case of chitinase, the concentration of carriers generated in collagen by collagenase
can be roughly estimated from the measurement results shown in Figure 9. Figure 11
shows the difference in transient currents between the collagen membrane and the collagen–
collagenase composite. As shown in Figure 11, the difference in transient currents between
the collagen membrane and the collagen–collagenase membrane, ∆i, decreases rapidly with
time. The time dependence of the charge generated by the collagen–collagenase is shown
in the inset of Figure 11. As shown in the inset of Figure 11, the total generated carrier
charge obtains from the saturation value of around 400 s. From these results, the difference
in carrier concentration between the collagen membrane and the collagenase-collagen
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membrane is 1.02 × 1017 cm−3, taking into account the volume of the collagen mem-
brane. Using these values, Coc, Coe, and Do are estimated to be (3.27 ± 0.0481) × 1016 cm−3,
(1.35 ± 0.0209) × 1017 cm−3, and (8.69 ± 0.0269) × 10−8 cm2/s, respectively. The max-
imum carrier concentration of the collagen–collagenase complex due to the enzymatic
reaction is estimated to be 1.33 × 1021 cm−3. These results also indicate that a part of
protons in the collagen–collagenase composite yields proton conduction.
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3.3. Bio-Fuel Cells Using the Chitin–Chitinase and Collagen–Collagenase Composites as Fuel

Figure 12 shows the relationship between the current density and cell voltage of the
bio-fuel cell using chitin–chitinase fuel and collagen–collagenase fuel, respectively. As
shown in Figure 12, both the current–cell voltage curves using the chitin–chitinase fuel
and the collagen–collagenase fuel exhibit the typical current–cell voltage characteristic
feature in which the current density decreases with increasing the cell voltage. These results
indicate that chitin–chitinase composite and collagen–collagenase composite become the
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fuel of the fuel cell. That is, chitin–chitinase and collagen–collagenase composites generate
protons and become the fuel of the fuel cell.
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Figure 12. Current–cell voltage relation in the bio-fuel cell using the chitin–chitinase fuel and the
collagen–collagenase fuel.

In order to estimate the amount of the generated hydrogen roughly, we calculate
the proton concentration from Figure 12. The proton concentration can be calculated by
extrapolating the current–cell voltage curve to the current density axis using Faraday’s
second law roughly. The current i0 obtained from the extrapolated current–cell voltage
curve is expressed with the following equation, i0 = zmF. Here, F is the Faraday constant,
and m and z are the proton concentration per unit time and the charge number of a proton,
respectively. Using this equation and the dimensions of the chitin–chitinase and collagen–
collagenase composites, we can calculate the proton concentration m to be 2.77 × 1017 cm−3

for the chitin–chitinase composite and 2.73 × 1017 cm−3 for the collagen–collagenase
composite. These proton concentrations are in good agreement with 1.86 × 1017 cm−3, and
1.35 × 1017 cm−3 obtained from the transient currents in Sections 3.1 and 3.2. These results
indicate that the concentration and diffusion constants obtained in Sections 3.1 and 3.2 are
reasonable. In the present work, we can introduce that the substrate–enzyme composite
becomes a proton source and can be used as the fuel of fuel cells. In addition, by using
enzymatic carrier generation, the carrier concentration and diffusion constant can be
estimated by measuring the difference in transient currents. It is well-known that there are
a lot of enzymes. We plan to research the combination between substrate and enzyme with
a lot of hydrogen generation. These results will appear in future issues.

4. Conclusions

In this study, chitin–chitinase and collagen–collagenase composites were prepared,
and enzyme-based proton production was investigated. It was found that protons can be
generated by introducing the enzymes chitinase and collagenase into the substrates chitin
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and collagen. The proton concentrations produced by the chitin–chitinase and collagen–
collagenase composites were obtained to be 1.68 × 1017 cm−3 and 1.02 × 1017 cm−3,
respectively. In addition, the diffusion constants in the chitin and collagen membrane
were roughly estimated to be 8.59 × 10−8 cm2/s and 8.69 × 10−8 cm2/s, respectively.
These results suggest that the composites of hydrolytic enzymes and bio-proton conductors
become a new method for achieving proton production. In addition, a biofuel cell was
fabricated using chitin–chitinase and collagen–collagenase composites as fuel for the fuel
cell, and it was found that protons produced by chitin–chitinase and collagen–collagenase
can be used to fuel the fuel cell.
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