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Abstract: A novel negative thermal expansion (NTE) material composed of Sm0.85Sr0.15MnO3-δ was
synthesized using the solid-state method. By allowing Sr2+ to partially replace Sm3+ in SmMnO3, the
ceramic material Sm0.85Sr0.15MnO3-δ exhibits NTE properties between 360K and 873K, and its average
negative thermal expansion coefficient was −10.08 × 10−6/K. The structure of Sm0.85Sr0.15MnO3-δ

is orthogonal, the space group is pbnm, the morphology is regular, and the grain size is uniform.
The results of X-ray diffraction and XPS (X-ray photoelectron spectroscopy) suggest that the NTE
phenomenon is related to the electron transfer of Mn ions. With the increase in temperature, Mn4+ is
rapidly transformed into Mn3+, accompanied by Mn4+O6 octahedron distortion and oxygen defects.
It was found that the sample volume continually decreased at the same time.

Keywords: negative thermal expansion; Sm0.85Sr0.15MnO3-δ; lattice distortion; oxygen defects;
Jahn–Teller effect

1. Introduction

We know that most instruments are composed of various materials, but with increases
in temperature, different thermal expansion coefficients of various constituent materials
may lead to thermal mismatches, and small cracks in the equipment can lead to performance
failures and even instrument damage. NTE materials have attracted considerable research
attention in the production of composites with accurately controllable positive, negative, or
zero coefficients of thermal expansion [1–11].

A great number of NTE materials have been found, such as oxides (Cu1.5Mg0.5V2O7,
Cu2V2O7, and HfMnMo3O12, etc.) [12–16], antiperovskite Mn3XN, and perovskite (BiNiO3,
Gd1-xSrxMnO3-σ, and Er0.7Sr0.3NiO3-δ, etc.) [17–21]. However, each material has limitations
because of some defects. ZrW2O8 is a metastable phase at room temperature (RT), which is
difficult to prepare due to it readily decomposing [1]. ZrV2O7 exists as a phase transforma-
tion at 375K [2]. Y2Mo3O12 has a water-absorbing quality at RT. Although antiperovskite
(Mn3Cu(Ge)N, Mn3NiN, and Mn3ZnN, etc.) possesses the properties of superconductivity,
giant magnetoresistance, magnetocaloric effects, and constant electrical resistivity [8], the
NTE temperature range is usually under RT, and its preparation conditions are very strict.
Mn3Cu(Ge)N needs to be grown on a silicon surface with high pressure and argon gas
protection. The NTE perovskite ABO3 (A = Gd, Er, and Bi, etc.; B = Mn, Er, Sr, Ni and Sr,
etc.) not only shows NTE properties in a large temperature range above RT but also has
simple preparation conditions.

Kurimamachiya-chouses conducted research on Sr2+ partly substituting Gd3+ in
GdMnO3. They pointed out that Gd1-xSrxMnO3-δ had excellent NTE properties [18]. L.
J. Fu reported the NTE material of Er0.7Sr0.3NiO3-δ with Sr2+ partly substituting Er3+ in
ErNiO3 [19]. These studies suggest that the substituting method is an effective way to
prepare new kinds of NTE materials with excellent properties [16,18–20]. In the present
study, we conducted research on Sr2+ partly substituting Sm3+ in SmMnO3. The thermal
properties are discussed.
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2. Experimental Procedures

The sample was prepared according to the conventional solid-state method. Analytic-
grade Sm2O3 (purity 99.5%), SrO (purity 99.5%), and MnO2 powder were used as raw
materials. Using MnO2 as the raw material, Mn2O3 powder was prepared by burning in a
923 K furnace for 10 h.

Sm2O3, SrO, and Mn2O3 powders were mixed according to the mole ratio of
Sm:Sr:Mn = 0.85:0.15:1. The mixtures were ground using an agate mortar for 1 h and
then ground with ethanol for 2 h. The obtained mixtures were then dried for 1 h at 353 K
in a baking oven. Afterward, the mixtures were pressed into cylindrical-shape compacts
(Ø10 × 5 mm) using a powder pellet machine (769YP-15A, 200 MPa). The compacts were
initially sintered in a pipe furnace (AY-BF-555-180) at 1273 K for 10 h in air and subsequently
sintered at 1623 K for 10 h. The sample was allowed to cool in the furnace naturally.

The linear thermal expansion coefficient was measured using a dilatometer Linseis
L76 (heating and cooling rates of 5 K/min). The XRD measurement was carried out using
Bruker D8 Advance with CuKα radiation. The XRD pattern of the sample was analyzed
using X’Pert HighScore Plus software. The lattice constants a, b, and c and the unit cell
volume of the sample were calculated using powderX software and the least square method.
The surface morphology of the sample was observed using the FEI Quanta 250 scanning
electron microscopy (SEM), and the EDS energy spectrum was obtained using an Appllo
XP. The TGA and DSC were tested using a LabsysTM thermal analyzer. The XPS (X-ray
photoelectron spectroscopy) was performed using a Thermo Scientific K-Alpha instrument
for the valence analysis of the Mn element. The BET tests were performed to determine the
size and volume of the holes using an ASAP2460 device.

3. Results and Discussion
3.1. Phase Analysis

Figure 1a is the XRD pattern of the sample at RT. Comparing the XRD pattern
with the JCPDS cards for SmMnO3 (00-025-0747), Eu0.9Sr0.1MnO3 (No. 00-051-0252), and
Eu0.8Sr0.2MnO3 (00-051-0251), we found that the diffraction peaks were similar to those
of the JCPDS cards, except for some shifts, which suggests that the as-prepared sample
had similar structure to that of SmMnO3, Eu0.9Sr0.1MnO3, and Eu0.8Sr0.2MnO3. It can be
confirmed that the ceramic Sm0.85Sr0.15MnO3-δ crystallizes in an orthorhombic structure.
As the ionic radius of Sr2+ (ionic radius 1.18 Å) is bigger than that of Sm3+ (ionic radius
0.958 Å), the difference in the ionic radius may cause lattice distortion. As Sr2+ partly
substitutes for Sm3+, the diffraction peaks also shift.
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Figure 1. The XRD patterns: (a) Sm0.85Sr0.15MnO3-δ and (b) SmMnO3. Figure 1. The XRD patterns: (a) Sm0.85Sr0.15MnO3-δ and (b) SmMnO3.
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Figure 2a shows the SEM image of the sample. We found that the ceramic sample
was composed of homogenous spherical or elliptic spherical particles with some obvious
agglomerations. There were pores and microcracks in the sintered body. The size of the
particles was uniform, with an average grain size of about 1~2 µm. The EDS analysis of
the sample revealed the primary elements of Sm, Sr, Mn, and O, and their atomic ratio
(Sm:Sr:Mn:O) was about 0.85:0.15:1:3 (seeing Table 1). Combined with the XRD analysis,
we identified the composition of the samples as being Sm0.85Sr0.15MnO3.
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Figure 2. (a) SEM image of the ceramic Sm0.85Sr0.15MnO3-δ; (b) EDS spectrum corresponding to the
SEM image.

Table 1. Atomic ratio of Sm, Sr, Mn, and O in Sm0.85Sr0.15MnO3-δ by EDS.

Element Sm Sr Mn O

(at.%) 14.46 2.39 16.20 66.95

3.2. Thermal Expansion Property

Figure 3a–c show the relative length (dL/L) with the temperature increases of SmMnO3,
SrMnO3, and Sm0.85Sr0.15MnO3-δ, respectively. SmMnO3 (Figure 3a) and SrMnO3 (Figure 3b)
showed positive thermal expansion. Calculating according to the curve, the expansion
coefficients were 5.24 × 10−6/K and 12.7 × 10−6/K, respectively. When the temperature
was below 360 K, the ceramic Sm0.85Sr0.15MnO3-δ showed a positive thermal expansion of
0.46875 × 10−6/K. As the temperature increased, the ceramic Sm0.85Sr0.15MnO3-δ showed
an NTE property in the range of 360 to 873 K. The average linear expansion coefficient was
−10.08 × 10−6/K.

Figure 4 shows the high-temperature XRD patterns of ceramic Sm0.85Sr0.15MnO3-δ
from RT to 873 K. As the temperature increased, the diffraction peaks of Sm0.85Sr0.15MnO3-δ
moved slightly to small angles, except three diffraction peaks (31.54◦, 33.79◦, and 52.65◦)
that moved to a large angle.

Figure 5 shows the variation in the Sm0.85Sr0.15MnO3-δ lattice parameters and volume with
temperature increases, which was calculated using the powderX software. In a, c in Figure 5,
the increase occurred gradually, while in b in Figure 5, it decreased as the temperature in-
creased gradually. We believe that the thermal expansion of Sm0.85Sr0.15MnO3-δ was due to
anisotropy. We can see that from RT to 360 K, Sm0.85Sr0.15MnO3-δ showed a positive expan-
sion property. As the temperature increased to 360~873 K, Sm0.85Sr0.15MnO3-δ showed an
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NTE property with the average linear expansion coefficient of −3.33 × 10−6/K. However,
the original calculation of the negative thermal expansion coefficient of Sm0.85Sr0.15MnO3-δ
in this temperature range was −10.08 × 10−6/K, according to Figure 3. As can be seen
from Figure 2 above, there were pores and microcracks in the crystal. Therefore, we believe
that when the temperature rises, the crystal squeezes the open space, namely, these pores
and microcracks, which is another reason for the negative thermal expansion.
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ture increases.

Table 2 shows the pore size, pore volume, and BET surface area of the sample. The
specific surface of the material itself is large, and the general level of adsorption is good.
When the pore structure of carbon materials is more complex, it is easy to have a flexible
hole, and the pore size becomes larger after gas adsorption. With the doping of Sr2+, oxygen
defects are caused, and the gas is adsorbed in the pores. With the further doping of Sr2+,
the adsorption oxygen saturation does not change. With the increase in temperature, the
gas is sintered out, the b-axis shrinks at the same time, and the pore size becomes smaller,
resulting in the negative expansion property.

Table 2. Pore size, pore volume, and BET surface area of the sample.

Sample Pore Size (nm) Pore Volume (cm3/g)
BET Surface Area

(m2/g)

Sm0.85Sr0.15MnO3-δ 15.7842 0.002563 0.6351

Figure 6a is the XPS spectrum of Sm0.85Sr0.15MnO3-δ; the characteristic peaks of Sm,
Sr, Mn, and O are shown in the figure, respectively. The surface of the sample was free from
any pollutants, and element C was used for the calibration of the XPS atlas. Figure 6b,c
show the XPS spectra of Mn. In the XPS spectrum, the sample had a bimodal structure,
which indicates that the Mn elements on the sample surface existed in two forms: Mn3+

and Mn4+, which led to the oxygen vacancy. The presence of the oxygen vacancy facilitated
the movement of electrons between Mn4+ and Mn3+. The oxygen vacancy also led to
the shortening of the bond length of the Mn-O bond, which led to lattice distortion and
generated internal stress; this reduced the bond angle of Mn-O-Mn and increased the
double-exchange effect.
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3.3. Discussion

SmMnO3 is a typical manganite perovskite structure. The structure of SmMnO3 is
shown in Figure 7. As for the MnO6 octahedron in SmMnO3, the distortion was caused by
a change in the length of the Mn-O bond.
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There are three kinds of common modes for this change [22–26] as follows. (1) The
surface tension contract model Q1, as shown in Figure 8a. Six oxygen atoms of the unit cell
move close to or far away from the manganese atom at the same time, making the Mn-O
bond length decrease or increase significantly. This model can increase the energy of the
system, which is not conducive to the system energy being able to decrease and makes the
system extremely unstable in turn. (2) The plane distortion model Q2, as shown in Figure 8b.
In a unit, two oxygen atoms in the horizontal plane leave a manganese atom, while the other
two oxygen atoms become close to the manganese atom. The location of the two oxygen
atoms in the vertical plane remains unchanged. (3) The expansion mode, or inspiratory
mode Q3, which is shown in Figure 8c. In a MnO6 octahedron, the two oxygen atoms in
the vertical plane leave manganese atoms, while the four oxygen atoms in the horizontal
plane become close to the manganese atom simultaneously. For a MnO6 octahedron, the Q1
and Q2 models normally exist. Since the Q1 model is unstable, the distortion of the MnO6
octahedron is mainly the Q2 model, also called the plane distortion model.
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We used MnO2, Sm2O3, and SrO as the raw materials to prepare Sm0.85Sr0.15MnO3-δ.
In the reaction process, there was a reciprocal transformation between Mn3+ and Mn4+.

When Sr2+ substitutes the Sm3+ in SmMnO3, Sr2+ will occupy the position of Sm3+. To
maintain the valence balance, electron transfer occurs in the Mn3+ converting into Mn4+

in Sm0.85Sr0.15MnO3-δ. Additionally, the p electron of O2− will migrate to the orbit of the
nearby Mn4+, and the d electron of Mn3+ will migrate to the orbit of the nearby Mn3+. Thus,
this mechanism results in the electronic conduction and position exchanges of Mn4+ and
Mn3+ ions. The system energy remains unchanged throughout. This process is known as
the double exchange [27]. The structure of Mn3+-O2−-Mn4+ forms in the process. However,
according to the theory of Zener [28], the route of electron transfer between two Mn3+

changes between Mn3+ and Mn4+. In order to keep the electron transfer between two Mn3+,
the magnetic moment between Mn3+ and Mn4+ ions should be parallel to each other. In this
situation, it is favorable for there to be more electron transfer between Mn3+ and Mn4+ ions.

According to the analysis of the variable-temperature XRD data, we considered that
the thermal property of Sm0.85Sr0.15MnO3-δ might be related to the interaction of the lattice
vibration and electron transfer between Mn3+ and Mn4+. As the temperature rose, the
lattice vibrated dramatically and Mn4+ converted into Mn3+. Moreover, the electron transfer
rate increased between the Mn3+ and Mn4+ ions. The number of Mn3+ ions that can cause
the Jahn–Teller [29] effect increased. The oxygen ions in the Mn3+O6 octahedron became
slant, or even produced oxygen defects, making the unit cell volumes decrease. From RT
to 360 K, the unit cell volume increased. The reason is that the contribution of the lattice
vibration to the thermal expansion exceeded that of the MnO6 octahedral distortion and
oxygen defects. As the temperature increased, Sm0.85Sr0.15MnO3-δ showed a low positive
thermal expansion property, and above 360 K, the unit cell volume decreased. With more
Mn4+ ions converting into Mn3+, the Mn3+O6 octahedral distortion was enhanced and
oxygen defects occurred. These contributed more to the thermal expansion than the lattice
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vibration. Therefore, Sm0.85Sr0.15MnO3-δ shows a negative thermal expansion property
between 360 K and 873 K.

The DSC and TGA results of ceramic Sm0.85Sr0.15MnO3-δ also support the above
statements. Figure 9a presents the DSC curve of ceramic Sm0.85Sr0.15MnO3-δ. In the curve,
Sm0.85Sr0.15MnO3-δ has an endothermic peak at about 360 K. This shows that more Mn4+

ions were converted to Mn3+ with the increase in temperature. Thus, Mn3+O6 octahedral
distortion was enhanced and oxygen defects occurred. The unit cell volume began to
decrease, which is consistent with the results calculated by the high-temperature XRD
(seeing b in Figure 5). As electron transfer occurred between the Mn3+ and Mn4+ ions,
the amount of Mn4+ decreased, and oxygen ions in the Mn3+O6 octahedron became slant
or even produced oxygen defects. The TGA results of Sm0.85Sr0.15MnO3-δ confirm the
existence of oxygen defects. In Figure 8b, the weight of the Sm0.85Sr0.15MnO3-δ sample
decreased when the temperature increased from RT to 873 K. In addition, the variable-
temperature XRD (seeing Figure 5) showed that there was no phase transition with the
increase in temperature. As electron transfer occurred between the Mn3+ and Mn4+ ions,
Mn4+O6 converted into Mn3+O6 and oxygen defects appeared. Therefore, we consider that
the loss of the weight can be ascribed to the oxygen defects.
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Moreover, the non-stoichiometric ratio of Sm0.85Sr0.15MnO3-δ caused the mole ratio
mismatch of the Sm, Mn, and O atoms. Some lattice vacancies and interstitials existed in the
crystal lattice, making the lattice distortion continuous. In the structure analysis, the crystal
distortion was found to have a direct impact on the bond length and angle of the MnO6
octahedron. As for ABO3, when we conducted the substitution in the A position with a
different ionic radius, especially in the non-stoichiometric ratio manganese perovskite, the
size mismatch effects of the A position ion together with lattice space and interstitial caused
a difference in the crystal structure. These eventually led to a great change in the lattice
parameters and unit cell size [30–32].

4. Conclusions

(1) A novel negative thermal expansion material composed of Sm0.85Sr0.15MnO3-δ was
synthesized using the solid-state method with an NTE coefficient of −10.08 × 10−6/K
from 360 to 873 K.

(2) The particles were homogenous spherical or elliptic–spherical particles with a uniform
particle size of about 1~2 µm.

(3) The ceramic Sm0.85Sr0.15MnO3-δ crystallized in an orthorhombic structure with the
space group Pbnm. When Sr2+ substituted the Sm3+ in SmMnO3, Sr2+ occupied the
position of Sm3+. To maintain the valence balance, electronic transfer occurred in the
Mn3+, converting into Mn4+ in Sm0.85Sr0.15MnO3-δ. The Mn3+-O2−-Mn4+ structure
formed in the process.

(4) The thermal property of Sm0.85Sr0.15MnO3-δ is considered to be related to the in-
teraction of the lattice vibration and electron transfer between Mn ions. As the
temperature rise, the lattice vibrated dramatically and more Mn3+ converted into
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Mn4+. Additionally, the electron transfer rate increased between the Mn3+ and Mn4+

ions as the temperatures increased. The number of Mn3+ ions that can cause the
Jahn–Teller effect increasesd. The oxygen ions in the Mn3+O6 octahedron became
slant or even produced oxygen defects. The contributions of the lattice vibrations and
electron transfer between Mn3+ and Mn4+ to the thermal expansion changed with the
increasing temperature.

(5) The pore energy in the sintered body partially absorbed the expansion of the a-
axis a and the c-axis; the negative expansion phenomenon can be explained from
the perspective of the contraction of the b-axis. The abnormal thermal expansion
behavior of the Sm0.85Sr0.15MnO3-δ perovskite system is caused by the presence of
pores in the sintered body combined with the negative expansion of the b-axis in the
perovskite system.
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