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Abstract: Stiffness anisotropy is a natural consequence of a fibrous structure of composite materials.
The effect of anisotropy can be two-fold: it is highly desirable in some cases to assure a proper material
response, while it might be even harmful for the applications based on “isotropic” composite materials.
To provide a controllable flexibility in material architecture by corresponding fibre alignment, the
methodologies for the precise non-destructive evaluation of elastic anisotropy and the fibre orientation
are required. The tasks of monitoring the anisotropy and assessing the fibre fields in composites are
analyzed by using the two types of ultrasonic waves suitable for regular plate-shaped composite
profiles. In the plate wave approach, the effect of “dispersion of anisotropy” has been shown to
make the wave velocity anisotropy to be a function of frequency. As a result, the in-plane velocity
pattern measured at a certain frequency is affected by the difference in the wave structure, which
activates different elasticity against the background of intrinsic material anisotropy. Phase velocity
anisotropy and its frequency dependence provide a frequency variation of the beam steering angle
for plate waves (dispersion of beam steering). In strongly anisotropic composite materials, the beam
steering effect is shown to provide a strong focusing of ultrasonic energy (phonon focusing). For
bulk shear waves, the orthotropic composite anisotropy causes the effect of acoustic birefringence.
The birefringent acoustic field provides information on stiffness anisotropy which can be caused by
internal stresses, texture, molecular or/and fibre orientation. On this basis, a simple experimental
technique is developed and applied for mapping of fibre orientation in composite materials. Various
modes of acoustic birefringence are analyzed and applied to assessing the fibre fields in injection
moulding composites and to identify the fibre lay-ups in multiply materials. The birefringence pattern
is also shown to be sensitive and applicable to characterizing impact- and mechanical stress-induced
damage in composites.

Keywords: composite anisotropy; phonon focusing; acoustic birefringence; fibre orientation; damage
in composites

1. Introduction

High-performance composite materials are rapidly becoming a mainstream technology
and material of choice in demanding applications within the aerospace, automotive, medical,
defense, wind energy, sports, and industrial sectors. According to a new study, the global
composites market size is projected to grow from USD 88.0 billion in 2021 to USD 126.3
billion by 2026 [1]. A rapid growth of advanced composite materials used in safety critical
applications imposes strict requirements to manufacturing reliability, quality assurance of
new industrial products and existing components. This evokes the development of new
methodologies for the non-destructive evaluation (NDE) of composite materials in order
to provide greater sensitivity in monitoring product quality and its degradation caused by
environmental factors or deviations in the manufacturing process, progression of damage, etc.

A particular benefit of fibre-reinforced composites is concerned with flexibility in a
smart material design whose elastic anisotropy meets requirements of bearing multi-axial
mechanical or thermal loading [2]. For continuous fibre (carbon, aramid) pre-preg materials,
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the required stiffness anisotropy is obtained by a suitable orientation of fibre plies and a
choice of their stacking pattern in a composite laminate. In short-fibre injection moulding
composites, a local fibre orientation is less controllable but is mainly determined by a
streamline flow direction which is usually quite difficult to predict or/and calculate. The
recognition of an overall anisotropy pattern, particular fibre directions in a stack of plies,
and characterization of stiffness anisotropy of a ply lay-up are the high-priority tasks for
composite manufacturing and applications.

Ultrasonic waves are widely used for probing elastic anisotropy and the estimation of
elastic moduli in anisotropic materials from single crystals to fibre-reinforced composites.
These applications are based on the fact that elastic anisotropy for ultrasonic waves (longi-
tudinal, shear or surface waves) is an intrinsic material property which is fully determined
by its matrix of elastic moduli [3–5]. Since composite products are manufactured predom-
inantly as plate-like components, conventional (bulk and surface) ultrasonic waves are
narrowly applicable, particularly for thin composite plates, and the plate (guided) waves
are used instead [6–8]. In this case, the effect of velocity dispersion should be (if feasible)
sorted out and the conditions for inversion velocity anisotropy data to quantify material
stiffness to be determined.

The approaches to be applied for inverse problem of plate wave velocity anisotropy in
composite materials include direct analytical calculations [9–11] and various versions of the
numerical and approximate analytical methods [12,13]. In this regard, particular questions
to be answered are whether and (if yes) how plate wave anisotropy (and accompanying
energy flow parameters) depends on frequency. The answers are of primary importance,
e.g., in plate wave application for structural health monitoring (SHM) of composite compo-
nents where the plate waves are used for collecting and conveying information in various
directions over a large area of an anisotropic material [14,15].

Unlike optically anisotropic materials, where optical birefringence is a well-established
field of applications, such an important parameter of ultrasonic waves as polarization is
actually disregarded in anisotropy measurements. A strong effect caused by the anisotropic
structure of composite materials has brought back interest in studies and applications of
ultrasonic birefringence [16]. The developed applications of ultrasonic birefringence are
mainly concerned with stress analysis and closely related to photo-elastic experiments:
the stress-induced anisotropy results in splitting of a shear wave into two orthogonally
polarized waves travelling at different velocities (acoustoelastic birefringence) [17–19]. The
difference in velocities was found to be proportional to the difference in principal stresses
and was applied to evaluation of external and residual stresses in constructional materials,
such as wood and metals [20–22].

In this paper, the effects and applications of the two ultrasonic approaches introduced
above are considered in terms of characterization of the in-plane stiffness anisotropy, local
fiber directions in short- and long-fiber composites, including depth-resolved measure-
ments and multiply lay-up materials. The features of the zero-order (a0- and s0-) plate
wave anisotropy found by calculations and validated experimentally in laminate materials
are shown to be frequency-dependent and frequency-sensitive to the lay-up structure.
The inverse problem of material elastic anisotropy characterization is considered for low-
frequency flexural modes with axial strain domination that activate in-plane Young’s
modulus stiffness. Phase velocity anisotropy and its frequency dependence provide fre-
quency variation of the beam steering angle (dispersion of beam steering) and phonon
focusing for flexural waves.

Various modes of ultrasonic birefringence are proposed and analyzed theoretically.
The fibre reinforcement is shown to induce decomposition of a shear wave in a pair of par-
tial waves of different velocities and polarizations to result in an elliptical particle motion.
The amplitude and phase of the receiver output signal contain the information on the fibre
direction and the degree of material reinforcement. The calculations validate a high sensi-
tivity of different birefringence setups for quantification of the in-plane stiffness anisotropy,
discerning local fibre directions and inconsistency in the manufacture of multiply composite
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laminate structures that result in departure from the isotropic lay-up in composite laminates.
The applications also include mapping short-fibre fields in injection moulding specimens
and long-fibre in-plane undulation. An opportunity to identify the fibre lay-ups in multiply
composites is shown by examining the measured velocity curves against the simulation
results for reference composite structures. Damage and cracking produced in composites
obviously modifies its in-plane stiffness anisotropy and affects the birefringence pattern.
The inverse approach enables to apply the birefringence measurements for characterizing
impact- and mechanical stress-induced damage in composites.

2. Plate Wave Measurements: Genuine or Deceptive Anisotropy?
2.1. Frequency Dispersion of Plate Wave Anisotropy

Elastic wave anisotropy is deemed to be an intrinsic material property, which is fully
determined by the matrix of elastic moduli. One of the significant results of our previous
study is the finding that it is not true for ultrasonic waves in plates whose anisotropy
is shown to be a function of frequency [23]. The “dispersion of anisotropy” occurs for
plate waves in all anisotropic materials including fiber-reinforced composites. This effect
is, therefore, important for applications since the plate waves are widely used for non-
destructive testing of the composite materials.

The dispersion of anisotropy was first observed in our experiments in carbon fibre-
reinforced plastic (CFRP) [23] and also confirmed by numerical calculations. The calcu-
lations use the interactive computer program Disperse [11], which generates dispersion
curves for plate waves in transversely isotropic materials (unidirectional (UD-) composites).

To reveal the effects of dispersion of anisotropy, the calculations of the in-plane phase
velocity for the a0 mode (va0) as a function of azimuth angle (α) were carried out for
various values of (frequency) × (thickness) ( f · D) parameter. The results of calculations
are presented in polar coordinates for a wide range of ( f · D) in Figure 1. The dispersion
of anisotropy is clearly seen in Figure 1: the shapes of the va0(α) curves and the velocity
values change evidently as the wave frequency changes. To characterize and quantify
the variation of the anisotropy patterns, we introduce the anisotropy parameter (A) as
the ratio of the phase velocities along 0◦ and 90◦ directions. A frequency dependence of
this parameter quantifies the dispersion of anisotropy. The results of calculations for the
Aa0( f ) = v0

a0
/v90

a0
based on the data in Figure 1 are given in Figure 2. As the frequency

increases, it exhibits a sharp decent from a certain “static” value (∼=1.95, Figure 2a, insert)
to an asymptotic plateau at higher frequencies.

Figure 1. Calculations of in-plane phase velocity anisotropy. (a0 mode) in UD-CFRP: consecutive values
of ( f ·D) parameter for the curves in the direction of arrow are: 4000, 3000, 500, 250, 175, 50 and 5.
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Figure 2. Calculations of dispersion parameters for in-plane anisotropy for a0- (a) and s0- (b) modes
in UD-CFRP.

The estimate for the “static” value of the anisotropy parameter can also be determined
from the ratio of the low-frequency velocities of s0 modes [5]:

Astatic
a0

≈ (v0
S0/v90

S0)
1/2

. (1)

Direct calculations of the dispersion curves for the s0 modes propagating along and
across the fibres in UD-CFRP yield at low frequency end (v0

S0/v90
S0) ≈ 3.8 (Figure 2b) so

that (1) readily validates the value Astatic
a0

obtained above.
At high frequencies, the a0 modes are gradually converted into surface acoustic waves

(SAW), which determine the high-frequency end of the anisotropy dispersion curve in
Figure 2a. The SAWs are non-dispersive; they produce mainly shear out-of-plane near-
surface deformation and expected to have lower elastic anisotropy. This was confirmed
experimentally by direct measurements of the SAW velocities along and across the fibres
in UD-CFRP [24]. The measurements yield the estimate for the high-frequency limit of
a0-anisotropy parameter as:

AHF
a0

= (v0
SAW/v90

SAW) ∼= 1.2± 0.3, (2)

which fits closely to the calculation data in Figure 2a.
Similar calculations of the anisotropy dispersion carried out for the s0 modes in UD-

CFRP are shown in Figure 2b. The values of As0 are substantially higher than those for
a0 mode.

Because the symmetrical modes make good use of intrinsic composite anisotropy by
producing mainly pure longitudinal deformation along and across the fibres. The low-
frequency plateau in the s0-velocity anisotropy is estimated as Astatic

S0
= (Astatic

a0
)

2 ∼= 3.8,
which is in full accord with calculations in Figure 2b. At high frequencies, both s0 modes
are converted into SAWs; this provides a gradual decay of the s0-anisotropy parameter in
Figure 2 to the asymptotic plateau given by (2).

The physical reason for the dispersion of velocity anisotropy is concerned with a
frequency-dependent variation in the wave structure. For example, in a low-frequency a0
mode, the axial strain dominates and runs through the whole thickness of the specimen
(Figure 3a). Such a strain naturally activates Young’s modulus, which determines the (static)
bending stiffness of a plate. As the frequency increases, the wave field is “pushed out”
from the interior of the material and the axial strain is diminished while the out-of-plane
shear strain enhances (Figure 3b). Material stiffness activated by the high-frequency wave
is close to the out-of-plane shear modulus. The frequency-dependent structural transition,
therefore, contributes to velocity dispersion of the a0 mode in a selected propagation
direction. As a result, the azimuth velocity pattern measured at a certain frequency is
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affected by the difference in the wave structure, which activates different elasticity on the
background of intrinsic material anisotropy. The contribution of the wave structure varies
with frequency, thus providing the dispersion of velocity anisotropy.

Figure 3. Strain distributions with depth for a0 mode for different values ( f · D) (7-(a), 7000-(b)) in
2.5 mm-thick 90◦-CFRP plate.

2.2. Depth-Resolved Measurements of Anisotropy

As it has been shown above, the effect of plate wave structure variation causes the
wave anisotropy to be frequency dependent and thus makes the direct use of the material
stiffness measurements misleading. However, in some cases, it can also find beneficial
applications. E.g., in multi-ply composite laminates, the plate wave velocity is determined
by the contributions of all plies deformations into an overall stiffness. However, since the
particle motion and the local strain produced by the wave at different frequencies change
over the plate thickness, each of the contributions will depend on the degree of “activation”
of a particular ply. Typical displacement patterns calculated by using the Disperse program
for the a0 modes of different frequencies in 0◦ direction of UD-CFRP are shown in Figure 4.

Figure 4. Displacement patterns for a0 modes for different frequencies and various ( f · D) in
UD-CFRP.

In both cases shown in Figure 4, the in-plane displacement is maximal on the plate
surface and zero in the middle plane. This provides a similar inhomogeneous depth
distribution of longitudinal strain in the specimen (Figure 5). At higher frequencies, the
longitudinal strain is displaced from the interior of the specimen to its outer part due
to the “skin-effect”. As a result, maximum contribution to bending stiffness for higher
frequency a0 modes is expected from the surface plies while the role of the inner plies is
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diminished. This effect provides an opportunity for the depth-resolved measurements of
stiffness anisotropy in laminate composites.

Figure 5. Depth distribution of longitudinal strain in UD-CFRP at two different frequencies.

To demonstrate the feasibility of the depth-resolved probing of stiffness, two specimens
of UD-CFRP prepregs (HexPly M18/1 G947 UD) were manufactured. The laminate plies
were made in quasi-isotropic symmetrical lay-ups [0/45/−45/90] s and [0/60/−60] s in
regard to the middle plane, which is common for most applications to avoid out-of-plane
bending under plane stress conditions.

A quasi-isotropic lay-up is expected to exhibit no stiffness anisotropy when the in-
plane stiffness is averaged over the thickness of the sample. The lack of such “averaged”
anisotropy in our specimens was confirmed by the measurements of acoustic birefringence
using through the transmission of bulk shear waves [25]. Unlike the bulk wave case,
the weighted averaging with the emphasis on the outer plies is expected for the flexural
wave propagation. To generate and detect the 200 kHz a0 modes in CFRP laminates
( f · D ≈ 400), a slanted mode of air-coupled ultrasound was used in a single-sided access
configuration [26]. The phase of the received signal as a function of distance between the
transducers was measured for the precise evaluation of flexural wave velocity. Owing to
non-contact excitation/detection, the change in the propagation direction (α) was managed
by rotation of the specimens in azimuth plane. The measurement results (Figure 6) reveal
noticeable velocity anisotropy for both laminates. According to Figure 6, the in-plane
velocity anisotropy is (v0

a0 − v90
a0)/v90

a0 ≈ (1410/1260)− 1 ≈12% in the [0/45/−45/90] s
and (1360/1190)− 1 ≈ 14% in the [0/60/−60] s that makes the laminates substantially
non-isotropic for plate waves.
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2.3. Inversion of Plate Wave Velocity Data to Derive Material Stiffness Anisotropy

To single out material anisotropy, one has to eliminate the frequency dependent
variation in the wave structure, i.e., the velocity data should be taken for the same wave
structure that can be obtained by frequency variation. Figure 7 illustrates this approach for
the a0 modes in 2.5 mm UD-CFRP plate: the three identical in-depth strain distributions for
the directions of 0◦, 45◦ and 90◦ require substantially different frequencies and propagate
with different velocities.

Figure 7. Identical strain distributions with depth calculated for a0 modes in different directions of
UD-CFRP at different frequencies.

Each of the wave fields correspond to initial sections of the dispersion curves where
the axial strain prevails so the primary stiffness activated by the wave along the xi-direction
is Young’s modulus Ei. Its contribution to the a0-wave velocity is given by the relation
known to be valid for f → 0 [5]:

(va0)i = (πD f )1/2(Ei/3ρ(1− νikνki))
1/4 (3)

where D is the thickness, and in-plane Poisson’s ratios νik are involved.
For CFRP, the product of ν in (3) is << 1 [27], so that Young’s modulus can be found as:

Ei ≈ [(3ρ/π2D2)((va0)
4
i / f 2)] (4)

To reveal Young’s modulus anisotropy, the combinations of (va0)i and f , which activate
an axial strain and form an identical wave structure similar to that given in Figure 7, were
calculated for 10◦ steps in azimuth angle α. The Ei(α) plot obtained is shown in Figure 8; a
further increase in the low-frequency axial strain by reducing the frequency weakly affects
the E values within few % interval. The results in Figure 8 are in fair compliance with the
data obtained in [27] and confirm the feasibility of the “identical wave structure” approach
for the evaluation of stiffness anisotropy.
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A similar approach operates well for the s0 modes in a low-frequency range: according
to Figure 9, the identical wave structures with axial strain dominance are found at different
frequencies along and across the fibres. At (and below) these frequencies, Young’s modulus
anisotropy can be estimated from the relation [5]:

(vs0)xi = [Ei/ρ(1− νikνki)]
1/2 ≈ (Ei/ρ)1/2 (5)

Figure 9. Identical strain distributions with depth calculated for s0 modes in 0◦ (a) and 90◦ (b)
directions of UD-CFRP at different frequencies.

By using velocity data given in Figure 9 (insets) in (5), the values of Young’s moduli
are calculated as: E0 ∼= 126.6; E90 ∼= 8.7 and found to be in reasonable agreement with the
data in Figure 8.

To observe the effect of anisotropy dispersion in the experiment and verify the results
of the calculations, the measurements of the phase velocity for zero-order plate waves
were carried out in a wide frequency range. Both the air-coupled ultrasound (ACU) [26]
and wave form imaging (WIM) [28] methodologies were used for measurements of a0
modes over (18–250) kHz frequency range. A broad-band excitation (150–900 kHz) by
using high-frequency wave piezo-transducers was applied for velocity measurements of
the s0-waves. The specimen studied was epoxy cured 20-ply high-strength CFRP lay-up
(weight fibre content ≈ 50%; thickness D = 2.5 mm) consisting of (2 × 9) unidirectional (0◦)
carbon fibre plies and two fabric carbon fibre (±45◦) plies in the middle.

From the measured velocity data in Figure 10, the frequency variation of the plate
wave anisotropy is derived; the results are shown in Figure 11. A close agreement with
the calculation results in Figure 2 confirms that the frequency dispersion of anisotropy is
significant for both a0 and s0 waves in CFRP. The s0-wave anisotropy is strongly affected by
frequency variation due to transition from high-modulus longitudinal to low-stiffness shear
deformation. For a0 waves, the contribution of longitudinal deformation to low-frequency
bending stiffness provides maximum anisotropy in the “static” case. The phenomenology
developed enables a rapid analytical quantification of frequency dispersion of anisotropy
in composite materials with known elastic coefficients.

Figure 10. Measured velocities of a0 (a) and s0 (b) modes as functions of frequency in CFRP.
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Figure 11. Anisotropy parameters for a0 (a) and s0 (b) modes derived from velocity measurements in
Figure 10.

2.4. Anisotropy Effects in Plate Wave Propagation in Composites

The phase velocity anisotropy and its frequency dependence demonstrated above have
significant implication on the plate wave propagation in strongly anisotropic composite
materials. Azimuth velocity dependence is visualized readily by the WIM methodology [28].
The WIM is a rapid and intuitive technique; the problem with its application to mapping of
material stiffness is that it provides an angular dependence for the group velocity. Therefore,
an additional conversion from the group (vg) to the phase velocity (vp) pattern is required.

The relation between the group and phase velocities is easily seen from Figure 12a:

vp(θ) = vg(α) cos ψ. (6)

Figure 12. Relation between group and phase velocities for plate waves. The group velocity pattern
(a) is measured by WIM in CFRP at ( f · D) = 175. Phase velocity pattern converted from the WIM
data (b, circles); calculations for UD-CFRP at ( f · D) = 175 (b, solid line).

The orientation (θ) of the wave vector
→
K (and phase velocity) is found as a normal

to a local tangent to the group velocity waveform in the direction α. The angle ψ is then
determined as ψ = θ − α while vg(α) is measured directly from the waveform image
(Figure 12a).

The conversion of the WIM data (for a0 waves at ( f · D) = 175) to the phase velocity
pattern based on relation (6) is illustrated in Figure 12b (circles). The solid line in this



J. Compos. Sci. 2022, 6, 93 10 of 23

figure shows the results of the direct calculations of the in-plane phase velocity pattern in
UD-CFRP.

The data in Figure 12 demonstrate a substantial difference between the in-plane
group and phase velocity patterns for a0 modes. The validity of the conversion procedure
is supported by an excellent agreement of the converted data with calculations using
Disperse (Figure 12b). According to Figure 12a, the angle ψ between the wave energy and
phase propagation can be quite large to cause substantial beam steering. This effect, well-
known in the acoustics of crystals [3], is basically disregarded in ultrasonic applications
in composite materials. The beam steering angle is determined by a local curvature of the
in-plane anisotropy curve vp(α):

tgψ = (1/vp)dvp/dα. (7)

It can also be found as ψ = θ − α from the WIM experimental data. In Figure 13a, the
results of calculations of ψ based on (7) are compared with those derived from the WIM
wave front measurements (Figure 12a) for CFRP. Both approaches reveal a strong impact of
steering on the propagation of a0-plate waves in the slanted directions.

Figure 13. Beam steering effect for a0 modes in CFRP (( f · D) = 175): (a) calculated in-plane beam
steering anisotropy (solid line) and ψ(α) derived from WIM measurements (circles); (b) dispersion of
beam steering: the values of ( f · D) parameter for the curves in the direction of arrow are: 5, 100, 175,
500, and 3000.

Unlike the case of bulk ultrasound, the dispersion of anisotropy provides frequency
variation of the beam steering angle for plate waves (dispersion of beam steering). The
effect is illustrated in Figure 13b: the steering angles reduce as ( f · D) parameter increases.
The frequency variation of maximum |ψ| values calculated predicts a very strong energy
steering (ψ ∼= 40◦) for thin CFRP plates or low frequencies.

The experimental evidence for the beam steering effect in CFRP is shown in Figure 14.
The a0 mode is excited in 2.5 mm-thick CFRP plate with 50 kHz air-coupled transducer;

the wave propagates at (−45◦) to the fibre direction (wave vector
→
K in Figure 14). The

wave field on the surface of the specimen is visualized with a scanning laser vibrometer.
The image in Figure 14 shows that the energy flux strongly deviates from the propagation

direction while the wave phase front remains normal to
→
K . The steering angle between

→
Vg

and
→
K in Figure 14 is measured to be ∼=32◦ ± 2◦ that is in a very close agreement with the

calculations in Figure 13b.
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Figure 14. Experimental observation of beam steering in CFRP (( f · D) = 125): air-coupled a0-wave
propagates at (−45◦) to fibre direction (0◦).

The sign variation of the steering angle in Figure 13 indicates that for any in-plane
direction of propagation, the energy flux deviates in such a way in order to stay closer
to the fibre direction. Therefore, for the omnidirectional plate wave, the beam steering in
CFRP should result in energy focusing in the neighbourhood of the fibre direction. This
effect, known as “phonon focusing” [29], has been observed in crystalline materials [30]
and is also predicted to exist in composites [31]. The energy enhancement caused by non-

uniform azimuthal distribution of
→
Vg is characterized by the focusing factor: F = |dθ/dα|−1.

Equation (7) shows that this derivative is fully determined by the in-plane phase velocity
anisotropy. Since vp(α) changes with frequency, the phonon focusing for a0 waves will
also be frequency-dependent. This is illustrated in Figure 15, where F(α) is calculated at
different values of ( f · D) parameter. The data indicate that the phonon focusing depends
strongly on frequency. The maximum focusing is expected at low ( f ·D) when the material
anisotropy for flexural waves increases.
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To experimentally observe the phonon focusing in CFRP, a small (~5 mm diameter)
wide-band piezo-transducer was attached in the centre of a (300 × 200 mm2) CFRP plate
and used for excitation of cylindrical a0 waves. The wave field formed in the specimen
was visualized on the opposite site with a laser scanning vibrometer. The images of
averaged (RMS) vibration velocity distributions measured over (260 × 160 mm2) area at



J. Compos. Sci. 2022, 6, 93 12 of 23

two frequencies are shown in Figure 16. The focusing along the fibre direction is clearly seen
in both cases. Unlike the crystalline materials, the higher wave attenuation in composites
has a significant effect and makes the propagation distance much shorter for the higher-
frequency waves.
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3. Ultrasonic Birefringence: A Remedy to Unravel a Tangle of Fibers?
3.1. Theoretical Background and Various Operation Modes

The reinforced materials (fibre composites) manifest different anisotropic configura-
tions depending on the material structure and composition. The bidirectional in-plane
reinforcements (Figure 17) induce three orthogonal twofold axes of symmetry and display
an orthotropic anisotropy. Such anisotropy remains valid as long as both in-plane rein-
forcement directions are not identical. Otherwise, the material acquires a fourfold axis of
symmetry (the z-axis) and upgrades to the tetragonal symmetry.
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Figure 17. Coordinate system used in bidirectional reinforced composite material.

The impact of the fibre array on characteristics of acoustic wave propagation is ob-
tained from the Christoffel equation [3]:

(cijklnjnl − ρv2δik)uk = 0, (8)

where cijkl are elastic moduli; nj,l are the components of a unit vector in the direction of
wave propagation; δik is the Kronecker symbol; ρ is the density of the material; v is the
acoustic wave velocity; and uk are the displacement vector components. A non-trivial
solution of (8) requires:

| cijklnjnl − ρv2δik | = 0 (9)

which determines the velocities vm (m = 1, 2, 3) for a given direction of propagation.
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Since composite and metallic materials are often produced in a sheet-like geometry,
the bulk wave propagation direction is limited by the z-axis; hence, n3 = 1; n1,2 = 0. In the
case θ = 0◦, these values and the elastic moduli matrix for orthotropic symmetry [3] are
used in (8) to obtain:

(c55 − ρv2)u1 = 0; (c44 − ρv2)u2 = 0; (c33 − ρv2)u3 = 0. (10)

The first two relations in (10) show that the velocities for the in-plane shear waves
polarized along the orthogonal fibre directions are different: v1 =

√
c55/ρ; v2 =

√
c44/ρ.

The values of the elastic moduli are proportional to the number of fibres in the correspond-
ing direction: c44 > c55 in Figure 17, so that the vertical fibres form the “fast” polarization
direction.

Therefore, a linearly polarized shear wave in the material (without attenuation) is
decomposed into two shear waves polarized along the reinforcement directions and propa-
gating with different velocities:

→
u T(z, t) = UTx

→
e x sin(ωt− k1z) + UTy

→
e y sin(ωt− k2z), (11)

where k1 and k2 are the wave numbers for the shear waves polarized along the x- and
y-axes, respectively;

→
e x,
→
e y are the unit vectors along the corresponding axes. The wave

amplitudes in (11) depend on the orientation of the transmitting shear wave transducer:
UTx = UT cos β; UTy = UT sin β, where β is the angle of the transmitter polarization
(Figure 17) and UT is the amplitude of its displacement.

Since k1 and k2 are different (ultrasonic birefringence), after traversing a plate of
thickness d, the particle displacement acquires (in a general case) an elliptical polarization:

→
u T(d, t) = (UT cos β)

→
e x sin ωt + (UT sin β)

→
e y sin(ωt + ∆ϕ), (12)

where the phase shift is:
∆ϕ = d(k1 − k2). (13)

The parameters of elliptical motion contain the information on the fibre direction
(azimuth angle θ) and the degree of material reinforcement which is proportional to ∆ϕ.
To retrieve this information, one has to analyse the amplitude (V0) and the phase (ψ) of
the output signal of a similar receiving transducer as a function of its azimuth orientation
(γ) [16,32]:

V0 =
√

V2
1 + V2

2 + 2V1V2 cos ∆ϕ; ψ = tg−1 V2 sin ∆ϕ

V1 + V2 cos ∆ϕ
, (14)

where V1 = cos(β− θ) cos(γ− θ); V2 = sin(β− θ) sin(γ− θ).
To evaluate the fibre reinforcement, the four modes of operation are possible:

1. Transmission mode (arbitrary orientations of the transmitter and receiver).
2. Crossed transmitter–receiver orientation.
3. Transmission for γ = β.
4. Reflection birefringence mode.

In the first transmission mode, for a tetragonal composite (symmetrical in-plane
reinforcement), ∆ϕ = 0 and the material does not change polarization of the shear waves
for any polarization angle β. The amplitude and phase of the output signal are calculated
from (14) and shown in Figure 18 as functions of the polarization angle γ of the receiver
(for β = 45◦ and ∆ϕ = 1◦). As one would expect, the output amplitude follows a
|cos(γ− β)| relation and nullifies for crossed positions of the transmitter and receiver
(figure-eight curve). The curves in Figure 18 (for ∆ϕ = 1◦) are, therefore, typical for “almost
symmetrical” distribution of stiffness in the plane of a composite material. The asymmetry
of the reinforcement is recognized by the polarization change to elliptical (∆ϕ = 45◦),
circular (∆ϕ = 90◦) and the correspondent variations in the phases in Figure 18.



J. Compos. Sci. 2022, 6, 93 14 of 23

Figure 18. Output amplitude (a) and phase (b) as functions of receiver polarization angle for β = 45◦:
∆ϕ = 1◦ and 45◦ (solid lines); ∆ϕ = 90◦ (dashed lines); 135◦ (dotted line in Figure 18b).

The crossed transmitter–receiver set-up corresponds to γ = 90◦ + β in (14). Figure 19,
a shows the results of calculations of the output amplitude V0(γ) in this mode for the
fibres positioned at θ = 60◦. The fibre direction is recognized by a deep minimum of the
output signal when a single wave polarized along the fibres is generated. As expected, the
overall output amplitude decreases as the stiffness asymmetry (∆ϕ) reduces (inner curve
in Figure 19a); it turns into zero in a material with fully symmetrical in-plane stiffness.
Therefore, the crossed set-up is suited for discerning the fibre direction as well as the
departure from isotropic lay-up in composite laminates.

Figure 19. Calculations of V0(γ) in modes 2 (a) and 3–4 (b). (a) Fibre setup at θ =60◦(∆ϕ = 80◦

for outward and ∆ϕ = 20◦ for inward curve); (b) parallel configuration with fibres at θ = 20◦ for
∆ϕ = 80◦ and ∆ϕ = 0◦ for outward circle.

For a parallel transmitter–receiver arrangement (γ = β) in transmission, the output
amplitude peaks clearly at the fibre direction (Figure 19b). A single partial wave excited at
this position is received in the best way by a parallel detector. The depth of the amplitude
variation imprints the in-plane stiffness anisotropy: four-lobe response changes for a circle
in a symmetrical lay-up. The parallel configuration is, thus, a sensitive tool for both the
fibre orientation and in-plane stiffness anisotropy.

The condition γ = β is automatically met in the reflection birefringence mode. Besides
all the benefits of the parallel set-up, this mode uses a single transducer and provides a



J. Compos. Sci. 2022, 6, 93 15 of 23

single-sided access to the material. The latter is a very important factor for on-site material
testing. For γ = β from (14): max |ψ| = |∆ϕ|, i.e., the value of maximum phase shift
directly quantifies the reinforcement asymmetry of in-plane stiffness. A “fast” polarization
corresponds to a fibre direction and is readily revealed by a minimal signal delay. It is
accompanied by a peak in the amplitude variation (Figure 19b) which also indicates the
fibre orientation.

3.2. Partial Wave Approach: Sensitivity to Lay-Up Inconsistency

Unlike lattice anisotropy of crystalline materials, in laminate composites, the stiffness
anisotropy is formed by a lay-up of plies. Each of them displays a twofold symmetry but a
resulting anisotropy is a function of the number of plies and their orientation. Therefore,
such an artificial anisotropic structure can be represented as a superposition of orthotropic
layers. As it was shown above, a shear wave entering each of arbitrarily oriented birefrin-
gent layers is decomposed into two shear waves which also acquire an additional phase
shift. After traversing through a laminate composite, a superposition of all partial waves
forms the resultant wave field measured by a receiving transducer.

The feasibility of such an algorithm is illustrated below for the parallel transmis-
sion and reflection birefringence modes in a multiply (0◦ + 45◦ − 45◦ − 90◦) CFRP lam-
inate (Figure 20). In the first (0◦) layer, the radiated shear wave is split into two waves
(“fast” and “slow”) polarized along the x- and y-axes so that the input of (+45◦) layer is:
U1 = U0 cos α sin(ωt + δ1) and U2 = U0 sin α sin(ωt), where δ1 is the phase shift due to
difference in the wave velocities (v f ast and vslow). In the next layer, each of these waves
is decayed into a similar pair of partial waves which acquires a relative phase shift ∆1.
In the (−45◦) area, no wave decomposition takes place but the pairs of the “fast” and
“slow” waves change place and acquire additional phase shift ∆2. After a final decompo-
sition in the 90◦ (x”, y”) layer (phase shift δ2), four pairs of waves are summed up by the

receiver whose output amplitude and phase are: U2
out =

8
∑

i=1
(Ui sin ψi)

2 +
8
∑

i=1
(Ui cos ψi)

2;

ψ = tg−1
(

8
∑

i=1
(Ui sin ψi)/

8
∑

i=1
(Ui cos ψi) , where ψi the various combinations of δ1,2 and ∆1,2.
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It is instructive, to demonstrate the two cases of symmetrical lay-ups: ∆1 = ∆2 and
δ1 = δ2. For a symmetrical (+45◦ − 45◦) lay-up (∆1 = ∆2 = ∆), the above relations are
simplified:

Uout = U0

√
sin4 α + cos4 α + 2 sin2 α cos2 α cos(δ1 − δ2)

ψ = tg−1

(
sin(δ2 + ∆) sin2 α + sin(δ1 + ∆) cos2 α

cos(δ2 + ∆) sin2 α + cos(δ1 + ∆) cos2 α

)
The results of calculations (Figure 21) show that azimuth angle variations of both the

amplitude and the phase depend exclusively on the in-plane stiffness asymmetry (δ1 − δ2)
between the 0◦ and 90◦ layers. The contribution of the symmetrical (+45◦ − 45◦) lay-up
is zero due to balancing of birefringence. When (δ1 − δ2) = 0, the birefringence in (0–90◦)
lay-up is also cancelled and the composite laminate is fully isotropic.

Figure 21. Amplitude response of birefringence to ≈60 µm offset in 0–90◦ CFRP lay-up.

Thus, in the cross-plied composite laminate, the birefringence probes the difference
in the in-plane stiffness between successive plies. That provides an extraordinary high
sensitivity of the technique to any deviation from the symmetry caused either by extra plies
or change in their alignment.

As an example, Figure 21 also shows the output amplitude and phase variations
for the (0–90◦) lay-up which is “unbalanced” by δ1 − δ2 = 30◦. For the birefringence in
UD-CFRP composite [16], this phase difference corresponds to an offset in thickness of
≈60 µm between the 0◦ and 90◦ layers. Such an imbalance of less than a half-ply thickness
can be revealed in the deviation of the amplitude curve (Figure 21). The fibre orientation in
the extra ply thickness (0◦ or 90◦) is readily indicated by a “fast” polarization direction of
the transducer.

In a similar way, a minor asymmetry in the (+45◦ − 45◦) lay-up can be detected readily
on the background of a symmetrical 0◦–90◦ structure (Figure 22). The ±45◦ rotational turn
of the amplitude curve indicates the source of the offset. The phase measurements enable
to quantify the inaccuracy; the “fast” polarization direction of the transducer specifies
particular (+45◦ or −45◦) orientation of an extra ply.
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Figure 22. Amplitude response of birefringence to ≈60 µm offset in +45 − 45◦ CFRP lay-up.

4. Birefringence Applications
4.1. Mapping of Fibre Fields in Composites

As it was shown in Section 3.1, the fibre direction in a unidirectional (UD) rein-
forced composite is readily determined in the birefringence reflection mode by detecting
a “fast” wave polarization. Such an experiment includes a single sided shear wave gen-
eration/detection followed by the measurements of the amplitude/phase (delay) of the
output signal as a function of polarization angle (polarization amplitude/phase (velocity)
curve). In our experiments, the Krautkrämer ultrasonic flaw detector (USIP 12) was used
for excitation/reception of (2.5–4) MHz shear wave pulses generated by piezo-transducers
with known polarization direction. The transducer was attached to the hand of the six-axis
robot IRB 120 (supplier ABB, Switzerland) and pressed against the specimen through a
layer of viscous ultrasonic coupler; the generated/detected wave polarization was varied
by rotation of the transducer (Figure 23). Such a setup is sufficient for mapping the fibre
orientation by recording the polarization angle corresponding to the “fast” wave in the
specimen. An example of the polarization velocity curve measured in a stacked UD GFRP
is shown in Figure 24 where the “fast” wave polarization is along 0◦ and indicates the
orientation of continuous fibres in the plate.
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tern is due to a central position of a polymer flow inlet. A drastic enhancement of the fi-
bre alignment is observed in the areas of strips and caused by regularization of the flow 
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Figure 24. Polarization velocity curve measured in a UD GFRP plate.

The examples of mapping of short glass fibre orientations in polymer industrial com-
ponents produced by injection moulding are shown in Figure 25. The “fast” polarization
directions are indicated by arrows; the length of the arrows is proportional to a local de-
gree of reinforcement (∆ϕ). The specimen in Figure 25a is a large (300 × 200 × 4 mm3)
polyurethane plate with the holes formed by circular barriers in the mould. The arrow
pattern measured is in a good agreement with expected streamlines in the mould (poly-
mer flow from right to left). Some additional reinforcement observed around the holes is
evidently due to accumulation of fibres in the vicinity of the barriers.
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specimen 160 × 250 × 2 mm3 (a); polyurethane 300 × 200 × 4 mm3 (b) specimen.

The polypropylene specimen in Figure 25b has a complex shape with a series of
horizontal and vertical stripes separated by narrow slots. An overall radial arrow pattern
is due to a central position of a polymer flow inlet. A drastic enhancement of the fibre
alignment is observed in the areas of strips and caused by regularization of the flow around
the barriers.

Similar measurements also enable to trace particular fibre (or fibre bundle) directions
that could be applied for recognition of a characteristic composite pitfall: an in-plane
fibre undulation. For 2D-parallel continuous-fibre structures, the local fibre orientation
(angle αi) represents a derivative dY/dX = tgαi of the fibre trajectory (Y(X)) in the point of
measurement (Xi). As a result, a series of αi measurements in the point along the X-axis
enables to reconstruct the fibre trajectory by using the following relation:

Y(X) = Y0 +
n

∑
i=0

∆xtgαi, (15)
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where Y0 is the initial fibre coordinate and ∆x is the distance between the measure-
ment points.

Relation (15) was applied for probing a fibre trajectory in a unidirectional CFRP
specimen with specially produced in-plane undulation areas. The results in Figure 26 show
that even a small (5◦) deviation in the fibre alignment is detected reliably by using the
birefringence technique.
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In multiply composites, a similar experiment identifies a major reinforcement direction
which is caused by various fibre orientations in lay-up stacks. To identify the fibre lay-
ups involved the measured polarization velocity curves have to be examined against the
simulation results for reference composite structures. The latter can be obtained by using
the analytical partial wave approach (Section 3.2) or the MatLab calculations of successive
reflections/transmissions at the interfaces between the plies [33]. The minimum difference
between the measured and the simulated results indicate a close equivalence of the multiply
composite studied to the reference arrangement.

Figure 27 shows the measured and simulated results for velocity polarization curves
(polar plots) obtained in GFRP composites with various fiber lay-up stacks [34]. The simu-
lation was performed by using the MatLab simulation approach [33]. The measurements
were carried out by using the 1 MHz shear wave transducer. The signal for the transducer
was a sinus burst of one cycle. Polarization angle scans were performed in 1◦ steps that
were also used to calculate the phase velocity. The impact of the extra plies on top of 0◦-plies
is intuitively clear: the main reinforcement direction (max velocity) departs progressively
from 0◦ direction (Figure 27).

To estimate the agreement between the experiment and the simulation, the RMS error
is calculated for each set of measurement which is found to be <1%. Thus, the simulation
procedure recognizes the lay-up stacks quite precisely. If, therefore, a gap between the
measured and simulated polarization velocity curves is found to be substantially greater,
it might be an indication of faulty lay-ups or some other manufacturing-related defects
caused by the fiber orientation.
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4.2. Monitoring Damage Development in Composites

Besides being important for choosing the material orientation to respond to in-service
loads, the “stiff” and “soft” directions are relevant for the development of damage in
composites, e.g., induced by impacts [35,36]. The crack opening is shown to be more
easily produced in a weakly bonded direction so that impact-induced cracks propagate,
predominantly, along a strongly bonded (reinforcement) orientation (Figure 28a). Since the
in-plane shear stiffness conforms to the binding force anisotropy, the birefringence can be
used to predict orientation of cracking in composite materials. In the bi-axial composite
(Figure 28b), the cracking area is strongly elongated along the 90◦ axis, so that predominant
crack orientation also corresponds to the direction of the higher shear stiffness.
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Damage and cracking produced in composites obviously modifies its in-plane stiffness
anisotropy and affects the birefringence pattern. To verify the feasibility and sensitivity
of the ultrasonic phase variations, the measurements were implemented for a series of
bi-axial fabric composite specimens with the damage induced by tensile loading. The
results of output phase variations obtained by rotating the 2.25 MHz-shear wave receiver in
transmission mode are shown in Figure 29b for different tensile loads applied. The step-wise
phase behaviour measured for the 4 kN case indicates that material is weakly anisotropic.
Comparison of the experimental data with calculations from (14) confirms that the 90◦ axis
is slightly stiffer in shear with ∆ϕ = 5◦. For higher loads, the stiffness anisotropy pattern
changes: the asymmetry in shear stiffness between the 90◦ and 0◦ directions increases,
making the material more anisotropic. The phase shift bounds from ∆ϕ = 10◦ for 8.1 kN
∆ϕ = 30◦ for 16 kN load. Such an increase correlates well with macro-cracking induced in
the specimen in this range of loads and aligned along the stiffer 90◦ direction.

Figure 29. For different tensile loads applied to bi-axial (0–90◦) glass fabric composite.

5. Conclusions

In the ultrasonic frequency range, the stiffness anisotropy assessed by using bulk
wave velocities is independent of frequency and fully determined by elastic moduli of
composite material. In plate-like composites, the in-plane velocity anisotropy measured
for plate waves is not constant but is a function of frequency even for materials deemed
to be homogeneous and non-dissipative. The reason for that is concerned with velocity
dispersion, which affects the wave propagation in different ways for various azimuth
directions and thus modifies the elastic anisotropy pattern. Such an effect of dispersion
of elastic anisotropy is of importance in dynamic testing and elastic wave applications
in composite materials. It also provides the dispersion of beam steering phenomena
in composites that causes energy focusing in the neighbourhood of the fibre direction
(“phonon focusing”) in strongly anisotropic composites.

In bi-directional fibre-reinforced composites, a linearly polarized shear wave is decom-
posed into two shear waves polarized along the reinforcement directions and propagating
with different velocities (acoustic birefringence). The parameters of elliptical motion in-
duced by the birefringent ultrasonic shear waves in fibre-reinforced composites deliver
information on the in-plane stiffness anisotropy of the material. A reliable compliance
between the theoretical description developed and the experimental data enable to estimate
the strength of birefringence and to derive the stiffness asymmetry for shear strain. The
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birefringence approach is suitable for rapid non-destructive mapping of the short- and
long-fibre fields in both injection molding and multiply composites. The testing method
involves standard ultrasonic instrumentation (burst mode) and is based on the measure-
ments of the shear wave delay as a function of the polarization angle (polarization velocity
curve). The measurements are readily automated by using robots for the variation of the
wave polarization by the shear wave transducer rotation. The technique also quantifies
the in-plane stiffness anisotropy and identifies various fibre orientations in lay-up stacks.
Cracked damage in composite materials modifies the stiffness anisotropy pattern and is
also revealed by the birefringence measurements.
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