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Abstract: The paper reports the results of an experimental and numerical investigation into the
effect of the support conditions on the low velocity impact behaviour of sandwich composite panels.
Significant differences are observed experimentally between the structural and damage responses
to impact of small-span and large-span sandwich panels. In particular, impact events on large-span
panels generate lower peak forces, larger displacements and smaller damage sizes in comparison
to small-span panels subjected to the same impact energy. The experimental results are employed
to validate the capability of a finite element (FE) tool to simulate the impact behaviour of the
sandwich panels for the different boundary conditions. The comparison of FE and experimental
results shows that the model provides a good prediction of the structural response as well as of
the extent and mechanisms of impact damage for both small-span and large-span lengths, thus
demonstrating the potential of the FE tool for verification and design of sandwich components in real
engineering applications.

Keywords: sandwich composites; low velocity impact; boundary conditions; FE simulation

1. Introduction

Over the years, composite sandwich structures, where two composite skins (or facings)
are bonded to a lightweight core, have been increasingly used in various areas, ranging from
civil and automotive sectors to aerospace and marine applications, because of their high
strength-to-weight and stiffness-to-weight ratios, excellent energy-absorbing capability
and good corrosion properties [1]. A major limitation of sandwich composites is their
high vulnerability to localised damage caused by foreign object impacts, which inevitably
occur during manufacturing, transport, construction and maintenance [2]. In particular,
the damage generated by low-velocity impacts may be difficult or impossible to detect by
visual inspection, since it often initiates and grows within the impacted composite facing
without any evident dent or crack on the surface. This type of damage, known in aerospace
applications as barely visible impact damage—BVID [3], can have a detrimental effect on
the strength of the sandwich composite and lead to the ultimate collapse of the whole
structure [4].

In recent years, the need to prevent failures and reduce the extent of costly and time-
consuming experimental testing has called for reliable simulation and design tools capable
of predicting the damage generated by impacts on sandwich composite structures. For
this reason, a number of combined experimental and numerical investigations have been
conducted to characterize the response of sandwich composites to low-velocity impacts as a
preliminary step for the development and validation of physically-based damage modelling
approaches. A significant amount of this research work has specifically addressed the
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impact damage behaviour of sandwich composites with polymeric foam cores, which have
gained considerable interest due to their low weight, limited cost, easy assembly process
and excellent acoustic and thermal insulation properties [5–7].

The damage introduced by low-velocity impacts in foam-cored sandwich composites
usually exhibits a complex pattern, consisting of a combination of failure modes, such as
delaminations, matrix cracks, fibre fracture, foam crushing and face-core debonding. Both
the extent and the typical features of this damage are strongly dependent not only on the
properties of the composite facings and of the foam core, but also on the size and boundary
conditions of the impacted sandwich panel.

Various studies have been, for example, conducted to examine the influence of the
foam density on the structural response and on the damage mechanisms of sandwich
composites subjected to impact. It is generally acknowledged that the resistance to impact
damage is improved by increasing the stiffness and the strength of the core, with specimens
with lower density foam core exhibiting lower threshold energy for damage initiation and
more extensive damage areas than specimens with higher density cores [8–11]. The gain in
damage resistance of composite sandwiches observed with increasing foam density can
be attributed to the improved support provided by denser and stiffer foam cores to the
impacted skin. On the other hand, the thickness of the core was seen to have a significant
influence on the damage extent only for thicknesses below a certain limit value [4,12],
as a consequence of the increasing importance of the overall bending deformation with
decreasing core thicknesses.

The impact behaviour of sandwich composites was also observed to be greatly affected
by the characteristics of the composite facings [7,13–16]; layup, thickness and ply properties
playing a key role in controlling the structural response (peak load, impact duration, force
history, etc.) and the damage resistance (in terms of nature, extent and through thickness
distribution of the different failure modes) of the sandwich material.

Even though a variety of analytical and numerical approaches have been proposed
to model impact damage in sandwich composites [2,17,18], the complexity of the failure
mechanisms and the strong nonlinearity of the material response generally requires the use
of finite element (FE) tools to achieve an accurate prediction of the initiation, evolution and
interaction of the different damage modes occurring during the impact event. FE models
that combine stress/strain failure criteria (to identify damaged elements) with element
deletion or sudden stiffness reduction schemes (to introduce the degradation of material
properties due to damage) have been adopted in various studies to examine the response
to impact of sandwich panels or beams [14,19,20]. Within this modelling strategy, shell
elements have often been chosen to reproduce the behaviour of the composite skins to
reduce the computational cost. As an example, Shokrieh and Fakhar [20] used 4-node
shell elements for the skins and 8-node solid elements for the core to analyse the impact
behaviour of sandwich composites with glass/epoxy skins bonded to a PVC foam core.
The Chang–Chang model was applied to predict the occurrence of intralaminar damage
(fibre fracture and matrix cracks) within the skins, while the foam core was modelled as an
elastic–plastic material. A similar modelling scheme, where the Hashin failure criterion
was used to detect damage initiation, was followed in [21] to simulate the impact response
of sandwich plates with carbon/epoxy skins and polyurethane foam.

In recent years, more advanced progressive damage models, in which the application
of failure criteria to predict damage initiation is associated with procedures for continuous
degradation of material properties [22,23], have been increasingly employed to investigate
the low-velocity impact behaviour of sandwich composites. A general strategy that has
become frequently adopted to simulate damage in the composite skins involves the com-
bined use of continuum damage mechanics (CDM) methods [24] to model in-ply matrix
cracking and fibre fracture with cohesive elements [25] to represent cracks at locations
known a priori, such as delaminations at interfaces between layers of different orienta-
tions. Energy-based procedures are generally incorporated in both CDM and cohesive
models to introduce a gradual decrease of the elastic properties due to damage [22]. Crush-
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able foam models are typically applied to represent the inelastic behaviour of the foam
core. Several investigations based on this modelling framework have been reported in
the literature for the simulation of low-velocity impact damage in foam cored sandwich
composite plates [11,13,15,26–31]. The predictions of these studies generally show a good
agreement with experimental data in terms of structural behaviour as well as damage
features and extent. However, a critical aspect of these analyses is that the development
and validation of the models have been carried out by comparing the simulated and exper-
imental responses of small-scale samples supported on short-span lengths. As a matter of
fact, the comparisons presented in the references cited above [11–16,20,21,26–31] were all
based on experiments on sandwich plates positioned over rectangular or circular openings
with sizes ranging between 45 and 125 mm or even fully supported on a rigid base. Ex-
perimental evidence shows however that the span length plays a key role in the impact
response of sandwich beams and plates [32,33], which appears to be essentially controlled
by local indentation effects for small-span lengths but greatly affected by the dynamic
deformation behaviour of the overall plate for large-span conditions. For a reliable use of
simulation tools in the design phase of sandwich composite components, it is therefore
important to evaluate the predictive quality of the numerical models not only for impacts
on small scale samples but also for sizes and loading conditions more representative of real
engineering applications.

In this study, a series of impact tests were carried out at different energies on foam-
based sandwich panels with two different sizes and span lengths, specifically chosen to
achieve impact responses that vary from those dominated by local material properties
at the contact region (i.e., for small spans) to those involving the crucial effect of the
global dynamic deformation of the sandwich plate (for large spans). Experimental data
and observations collected for the two different boundary conditions were used to verify
the performance of an FE model previously developed by the authors to predict the
structural behaviour and damage resistance of impacted sandwich composites. The results
of the FE analyses were compared to the experimental outcomes on the basis of a number
of relevant validation metrics (force histories, force-deflection curves, damage size and
pattern) to assess the reliability of the simulations for the two different (global vs. local)
response domains.

2. Materials and Experimental Testing

Sandwich panels made of composite skins bonded to a polymeric foam core were
manufactured for this investigation. The facing skins of the panels consisted of ten plies
of unidirectional carbon/epoxy prepreg (Texipreg HS300/ET223 by Seal, Legnano, Italy)
laid up in a [03/±45] s stacking sequence. Individual plies had a fibre volume ratio of
0.62 and a nominal thickness of 0.32 mm. The core material was a closed-cell PVC foam
(Divinycell HP) with a thickness of 20 mm. Divinycell HP is a foam specifically developed
for compatibility with low-medium temperature prepreg systems, which may be processed
at temperatures up to 145 ◦C and is capable of continuous operation in a temperature range
between −200 and 80 ◦C [34]. Foams with densities of 65 kg/m3 (HP60) and 160 kg/m3

(HP160) were used for the sandwich core.
The panels were consolidated in a vacuum-bag through a co-curing process, during

which bonding of the composite skins to the foam core was achieved simultaneously with
the curing of the prepreg layers without the use of additional adhesive material. The
thermal cycle consisted of a 25 min heating stage up to 100 ◦C, followed by a dwell time
of 6 h and a final cooling stage to room temperature maintaining vacuum. Panels with
250 mm × 250 mm and 350 mm × 350 mm planar sizes were manufactured to examine the
impact response of the sandwich composites and to validate the predictive quality of the
FE model for impacts on both small-span and large-span boundary conditions.

The impact tests were conducted using an instrumented drop-weight testing ma-
chine equipped with a 2.34 kg impactor provided with a 12.5 mm hemispherical inden-
ter. A pneumatic braking system integrated within the testing rig was used to stop the
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impactor after the rebound so as to prevent multiple impacts on the specimen. Dur-
ing impact, the 250 mm × 250 mm panels were simply supported on a steel plate with a
small 45 mm × 67.5 mm rectangular opening (small-span configuration), while the large
350 mm × 350 mm panels were supported along two opposite sides parallel to the 0◦ direc-
tion, with an inner span between the supported edges of 300 mm (large-span configuration).
Figure 1 shows schematics of the small-span (Figure 1a) and large-span (Figure 1b) support
configurations. The sandwich panels were impacted at the centre with energy levels be-
tween 2 and 6.2 J, obtained by varying the drop height of the impactor mass. The range
of impact energies was selected to approximately cover damage responses spanning from
damage initiation to BVID. The contact force between the impactor and the sandwich sam-
ple was measured by a semiconductor strain-gauge bridge bonded to the indenter, while
the signal from an infrared sensor was used to determine the impact and rebound velocities.
The displacement of the indenter was obtained as a function of time by integration of the
contact force versus time history.
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Figure 1. Geometry and support conditions of small-span (a) and large-span (b) sandwich panels.

The damage produced by the impact was assessed by visual inspection and by X-
radiography enhanced by infiltration of a zinc iodide liquid solution opaque to X-rays in
the damaged region. Stereoscopic X-ray observations were also made to assess the through-
thickness distribution of internal damage. Ultrasonic C-scans were carried out in sandwich
panels impacted at the lower energy (≈2 J) to obtain information on possible internal dam-
age not connected to the external surface, which may remain undetected by X-radiography
because of the impossibility of the radio-opaque liquid to fill the fracture surfaces.
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3. Experimental Results

Figures 2 and 3 show force histories and force–displacement curves for impacts on
sandwich panels with low density (HP60; Figure 2) and high density (HP160; Figure 3)
cores. The graphs compare the impact curves of panels positioned on the 45 mm × 67.5 mm
window cut-out (small-span configuration) with those of panels supported on the 300 mm
span (large-span configuration).
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Figure 2. Force–time (a) and force–displacement (b) curves measured during impact on HP60
sandwich panels supported on large-span and small-span lengths.

It is immediately seen that, for both HP60 and HP160 sandwich composites, the struc-
tural response of panels with a large span is very different to that of panels supported on a
small-span window. An evident difference concerns the general shape of the impact curves,
which show fluctuating force histories for large-span panels as compared to smoother
and more regular force histories for small-span panels. Furthermore, as expected, because
of the lower flexural rigidity of large-span panels, impacts on panels supported on the
long 300 mm span are characterized by lower peak loads, larger displacements and longer
impact durations than small-span counterpart panels. The significant difference in the
peak impact forces between large-span and small-span responses can be readily seen in
the graphs of Figure 4, which plot the peak force values as a function of impact energy for
HP60 and HP160 panels. It may be worth remarking that, because of the increased support
provided by the high density HP160 foam to the impacted skin, HP160 panels exhibit a
much stiffer response than corresponding HP60 panels, with higher peak loads, smaller
displacements and shorter impact durations, as is easily observed by comparing the graphs
of Figures 2–4.
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A detailed examination of the traces of Figures 2 and 3 shows that the force–time and
force–displacement curves measured during impact on small-span and large-span panels
have the same trend during the initial stage of contact. However, the impact responses
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start to diverge considerably for larger displacements, when the large-span panels start ex-
hibiting high-amplitude, low-frequency, force oscillations, with global force–displacement
slopes significantly lower than those of small-span panels. These results clearly indicate
that after the very early contact phase, during which the local indentation response domi-
nates the interaction between the impactor and the panel, the impact behaviour becomes
increasingly dependent on the boundary conditions. Therefore, the characteristic shapes
of the large-span impact curves are the result of the complex combination of the local
elastic and damage response to indentation, the global flexural response of the panel, and
the dynamic interaction between the impactor, the target panel and the surfaces of the
supporting fixture.

X-radiographs of damage induced by impacts of increasing energies on small-span
and large-span lengths are shown in Figures 5 and 6, respectively, for HP60 and HP160
foam cores. The sandwich panels exhibit similar impact damage patterns, consisting of a
stack of peanut-shaped delaminations that develop at different interfaces of the impacted
skin, together with shear and tensile matrix cracks that affect, respectively, the central
+45◦/−45◦ plies and the bottom 0◦ plies. Neither significant fibre fracture nor debonding
between the core and the composite skins were observed on the impacted panels for the
examined range of impact energies. It is immediately seen that, for the same impact energy,
the extent of damage is significantly smaller in large-span panels than in small-span panels
for both HP60 and HP160 cores. These results show that the boundary conditions play
a critical role not only in controlling the structural response of the sandwich component
but also in driving the onset and growth of the damage induced by the impact in the
composite skin.
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4. FE Modelling

An FE tool for the prediction of the structural and damage response of sandwich
composites subjected to impact was developed and verified by the authors in previous
studies by comparison with experimental results on small-span sandwich panels with
different skin layups and foam core densities [11,15,30]. The numerical tool has been
applied in this investigation to simulate the impact behaviour of the sandwich panels
for the two support configurations (small span vs. large span) described in the previous
section. The main objective of the analysis was assessing the predictive performance of the
FE model when modelling impacts on structural systems in which the global deformation
of the whole sandwich structure plays a major role in the response to the impact event. The
data acquired during the experimental tests have been used as a reference basis to explore
the robustness of the model and verify the capability of the tool to correctly capture and
reproduce the change in the impact response of the sandwich composites generated by the
different support conditions.

The numerical tool, which is based on the ABAQUS/Explicit solver, simulates the
initiation, the growth and the interaction of the typical damage modes that develop in
the composite skins by means of energy-based continuum damage mechanics models
for intralaminar damage (i.e., matrix cracks and fibre fracture) and interfacial cohesive
elements for interlaminar damage (delaminations). The damage models were implemented
into ABAQUS/Explicit through user-defined VUMAT material subroutines. C3D8R solid
elements with reduced integration and COH3D8 cohesive elements were respectively used
to represent the individual layers and the interfaces between layers of different orientations.
The foam material was modelled using C3D8R elements implementing a crushable foam
plasticity model with volumetric hardening available in ABAQUS/Explicit. Figure 7 shows
the FE model built for the simulations, where an element size of 0.5 mm × 0.5 mm on the
plane of the laminated skins was used in the fine region of the mesh.
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A detailed description of the mesh geometry, material models and numerical setups
adopted for the FE analyses, as well as of the experimental tests performed to measure the
entire set of material properties used in the FE calculations, can be found in [15].

5. Comparison between Numerical and Experimental Results

Experimental and simulated force–time and force–displacement curves for three en-
ergy levels are plotted in the graphs of Figures 8–11. Figures 8 and 9 compare the numerical
and measured responses to impact of panels with HP60 foam core. Analogous comparisons
are shown in Figures 10 and 11 for panels with HP160 foam core.
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It may be seen that a rather good agreement is achieved in terms of force–time histories
and force–displacement curves between FE simulations and experiments for both small-
span and large-span boundary conditions. We may notice that the FE model correctly
captures the drastic modification of the response of the sandwich plates when the boundary
conditions are changed from the small-span to the large-span support. In particular, the
graphs of Figures 8a–11a show that the impact curves obtained when modelling impacts
on small-span panels exhibit a rather smooth trend, which is indicative of a structural
behaviour essentially controlled by the localized material response at the contact region.
On the other hand, the FE simulations of impacts on large-span panels, presented in the
graphs of Figures 8b–11b, show that the model is able to reproduce the peculiar shape of
the force–time and force–displacement curves, by correctly replicating the presence of the
high-amplitude, low-frequency, force fluctuations due to the dynamic oscillation of the
whole panel induced by the impulsive load.

The predictive performance of the model is summarized in terms of peak force in the
graphs of Figure 12, where the maximum forces measured during impact on small-span
and large-span panels are plotted as a function of impact energy for HP60 (Figure 12a)
and HP160 (Figure 12b) sandwich panels. The graphs show that a rather good correlation
is achieved between simulated and experimental peak impact forces for the different
boundary configurations, foam core densities and impact energies, even though the FE
model tends to slightly overestimate the peak forces of large-span HP 160 panels at higher
impact energies. It is seen, in particular, that the FE analyses reproduce correctly, for both
HP60 and HP160 sandwich composites, the reduction in the peak forces measured on
large-span panels as compared to small-span panels, thus confirming the effectiveness of
the tool in properly accounting for the global dynamic response to impact of the structure.
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Figures 13 and 14 compare images of impact damage as revealed by X-radiography
with damage maps obtained by the FE analyses, where the different grey levels correspond
to different damage depths. We may see that the FE model produces a faithful description
of the damage pattern of the HP60 and HP160 sandwich panels for both the small-span and
large-span support conditions. The FE simulations provide an adequate prediction not only
of the planar size and of the typical shape of the impact damage, but also of the sequence of
the different failure mechanisms that occur under increasing impact energy. In agreement
with the experimental observations, the FE analyses predicts that damage initiates with a
long matrix crack on the bottom 0◦ plies and small delaminations at the +45◦/−45◦ and
−45◦/+45◦ interfaces. With increasing impact energies, delaminations are predicted to
develop and grow at the other interfaces, along with some diffuse matrix cracking in 0◦

and ±45◦ layers, as indicated in the FE damage maps of Figures 13 and 14. The FE tool is
also capable of capturing, with remarkable accuracy, the distribution of internal damage at
different depths of the impacted skin, as shown in the example of Figure 15, which presents
a three dimensional reconstruction of the individual failure mechanisms predicted by the
FE model for a 6.1 J impact on a large-span HP160 sandwich panel.

The predictive performance of the FE model in terms of overall damage extent is
illustrated in the graphs of Figure 16, which compare experimental and predicted projected
damage areas for small-span and large-span panels. The projected damage areas, defined
as the projection onto a single plane of the delaminated areas at all interfaces of the
impacted skin, was measured on the radiographic images as the area enclosed by the
contour enveloping all delaminations. The data reported in the graphs of Figure 16 show
a remarkably good quantitative match between values of experimental and simulated
damage areas, with the proposed FE model successfully capturing the significant difference
in damage size observed, for the same impact energy level, between the large and small
support configurations.
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6. Conclusions

The influence of the boundary conditions on the impact behaviour of sandwich com-
posites was examined in this study at impact energies inducing damage with different
BVID severities. Panels with carbon/epoxy skins and low density (HP60) or high density
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(HP160) PVC foam cores were manufactured for the impact tests. Two different support
conditions (a small-span and a large-span configuration) were experimentally investigated.
The relevant data collected during the experiments were used to explore the capability of
an FE tool to correctly reproduce the structural behaviour of the sandwich composites over
the different response scenarios associated with the two boundary conditions.

The experimental observations show that the impact response of large-span panels is
significantly different from that of small-span panels. Impact events on large-span panels
are characterized by lower peak forces, larger displacements and longer contact durations
as compared to those of corresponding small-span panels. Furthermore, the force history
measured during impact on large-span panels is strongly perturbed by high amplitude
oscillations associated to the overall dynamics of the panel. In contrast, small-span panels
exhibit a much smoother force history, which is essentially controlled by the local response
of the material at the contact region. The support conditions also greatly affect the damage
response of the sandwich composites, with extents of impact damage in large-span panels
always notably smaller than those of counterpart small-span panels.

A comparison of the experimental results with the outcomes of the numerical sim-
ulations shows that the FE model predicts, with a rather good accuracy, the structural
behaviour (in terms of force–time and force–displacement curves) and the damage re-
sponse (damage size, individual failure mechanisms and three-dimensional pattern) of
HP60 and HP160 sandwich panels for both the small-span and the large-span support
conditions. The FE tool thus appears capable of simulating correctly, without any model
tuning or parameter calibration, the physical mechanisms by which the support conditions
affect the impact behaviour of the sandwich panels, thus suggesting the applicability of the
proposed numerical approach for modelling the impact response of sandwich structures
with scales and boundary conditions typical of real engineering applications. Additional
experimental tests and associated FE simulations are however needed to extend the analy-
sis to impacts with energies inducing higher damage severities, such as those involving
large-scale fibre fracture or perforation/penetration conditions.
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