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Abstract: Natural rubber (NR) composites filled with silica are typically used for tire tread applica-
tions owing to their low energy consumption and low rolling resistance. Tire tread properties vary
broadly depending on the compound formulation and curing conditions. Silica loading is recognized
as a critical factor influencing the mechanical properties of the composites. In this work, we aim to
investigate the effect of silica loading (10–50 phr) on the mechanical properties of NR composites.
Silica was prepared from rice husk waste via chemical treatment and subsequent calcination at 600 ◦C.
Prior to the compound mixing process, silica was modified by a silane coupling agent to improve
compatibility with the NR matrix. The NR compounds reinforced with silane-modified silica from
rice husk were prepared using a two-roll mill machine. The scorch and cure times increased as the
silica loading increased. The mechanical properties of the NR composites, including tensile strength,
elongation at break, modulus, hardness, and abrasion loss, were examined as a function of silica
loading. Tensile strength increased and reached the maximum value at 20 phr but decreased at
high loading owing to the agglomeration of silica in the NR matrix. With increasing silica loading,
hardness and modulus increased, whereas elongation at break and abrasion resistance decreased
slightly. These results indicate that NR composites filled with silica are stiffer and harder at a higher
silica loading due to the strong interaction between silica and the NR matrix, inhibiting the segmental
mobility of rubber chains. We anticipate that the compound formulation presented in this work could
potentially be adapted to tire tread applications.

Keywords: natural rubber; rice husk; silica; composites; compounds; mechanical properties

1. Introduction

The tire industry has grown continuously worldwide, with increased global demand
every year [1]. Tire tread is one of the most important parts of tires and determines the
performance of vehicles since it directly contacts the pavement surface for a long operation
time under a heavy load [2,3]. Therefore, tire tread is easily worn out and damaged
compared to other parts. Moreover, tire tread–pavement interaction creates a frictional
force called skid resistance, which is an important factor that limits vehicle speed and the
design of pavement geometry for driving safety [4–7]. To meet industrial requirements
and ensure durability based on safety standards, further significant development of tire
tread with a low rolling resistance coefficient, high traction, and good wear resistance
is necessary [8–10].

In general, natural rubber (NR) is used as the major constituent in tread compounds
owing to its low heat build-up level and good mechanical strength [11,12]. Tire tread
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compounds consist of several components depending on the formulation, in which rein-
forcement filler is an essential component that helps to improve their mechanical proper-
ties [13–15]. The primary reinforcing fillers in the rubber industry are carbon black (CB)
and silica (SiO2) [16–18]. Each filler possesses its own advantages. CB provides a greater
modulus and hardness, improving the rubber’s resistance to tearing, abrasion, and flexing
fatigue, than silica. However, its rolling resistance and wet traction are constrained. Besides,
manufacturing CB by incomplete combustion of heavy petroleum products produces toxic
gases and hazardous waste, causing long-term negative effects to human health and en-
vironmental problems [19,20]. Silica, with a similar specific surface area and loading to
CB, provides less reinforcing power than CB because of its weaker polymer–filler interac-
tion. Mixing silica and rubber compounds without compatibilizers could result in poor
dispersion and agglomeration since silica (polar and hydrophilic surface) is incompatible
with non-polar rubber [21]. Nonetheless, silica improves the processability of rubber and
yields lower rolling resistance, resulting in reduced fuel consumption and low carbon
emissions. Moreover, it can be derived from renewable bioresources, such as rice straw [22],
rice husk [23], corn cob [24], sugarcane bagasse [25], and bamboo leaf [26]. Therefore, silica
could be used as a partial or complete replacement for CB fillers. Replacing CB fillers
entirely with silica is enchanting; silica is attractive since silica is an eco-friendly renewable
feedstock that can be used to produce fuel-saving tires [27,28]. Nonetheless, surface modifi-
cation of silica before mixing is required to enhance the compatibility between silica and the
rubber matrix. Silane coupling agents are usually used to achieve this aim [29,30]. Despite
significant progress in silica-reinforced NR composites, the optimal silica loading to achieve
the desired mechanical properties varies broadly depending on the silica properties, mixing
procedure, and formulation [31–35].

In this work, silica was extracted from rice husk via a chemical treatment and subse-
quent calcination process. Rice husk was chosen herein as a bio-resource of silica due to
the vast amount of rice husk waste in Thailand. Furthermore, among several bioresources,
rice husk contains the greatest silica content [36,37]. Prior to mixing with NR to make a
composite, silica derived from rice husk was modified by a silane coupling agent to enhance
its compatibility with NR. Silica loading in the composites varied from 10 to 50 phr, while
the other components were fixed. The effect of silica loading on the mechanical properties
of the NR composites is investigated and discussed in this study.

2. Experimental
2.1. Materials and Chemicals

Rice husk was obtained from a rice mill in Singburi province, Thailand. Concentrated
hydrochloric acid (37%, HCl) and ethanol (CH3OH, purity > 99.5%) were purchased
from RCI Labscan Ltd. (Bangkok, Thailand). Potassium bromide (KBr) was purchased
from PIKE technologies. Bis [3-(triethoxysilyl) propyl] tetrasulfide (C18H42O6S4Si2, Si69,
purity > 90%) as a silane coupling agent was purchased from Sigma Aldrich. Natural
rubber (STR20L grade) was purchased from Thai Hua Rubber Company. Deionized (DI)
water was employed throughout all experiments.

2.2. Preparation of Silica from Rice Husk

Rice husks were first washed twice with tap water and dried in an oven at 105 ◦C
for 24 h. The dried rice husks were treated with a 1 M HCl solution at 80 ◦C for 1 h and
then washed with DI water until the washed water was neutral. The HCl-treated rice
husks were dried in an oven at 105 ◦C for 24 h. After that, they were loaded in a ceramic
tray, calcined in a CWF 11/13 Carbolite chamber furnace at 600 ◦C for 1 h with a heating
rate of 5 ◦C min–1, and naturally cooled to room temperature under an air atmosphere.
The white product after calcination was obtained and is denoted as RHS. The RHS was
thoroughly ground with an agate and mortar and then sieved through a 100-µm mesh sieve.
The preparation process of silica from rice husk is schematically depicted in Figure 1a.
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Figure 1. Schematic illustration showing the preparation processes of (a) silica from rice husk and
(b) silane-modified silica.

2.3. Preparation of Silane-Modified Silica

A certain amount of Si69 (5.45 mL) was mixed with ethanol (800 mL) and stirred for
30 min to obtain a homogeneous solution. The RHS powders (100 g) were soaked in the
ethanol mixture containing Si69 and stirred for 60 min. The ethanol was then evaporated at
80 ◦C for 12 h in an oven, resulting in the Si69-modified RHS (Si69-RHS) with a light yellow
color. The overall preparation process of silane-modified silica is schematically shown in
Figure 1b. The Si69-RHS was further used as reinforcement fillers in the NR composites.

2.4. Characterization of RHS and Si69-RHS

The morphology was investigated using a Hitachi SU3500 scanning electron mi-
croscope at an acceleration voltage of 10 kV. The energy-dispersive spectroscopy (EDS)
analysis was undertaken with an Oxford Instruments Aztec One spectrometer equipped
with a scanning electron microscope. The samples were coated with a thin gold film by
sputtering before the investigation. Fourier transform infrared (FTIR) spectra were ac-
quired on a Bruker Alpha-E spectrophotometer in the wavenumber range of 500–4000 cm–1.
The samples were mixed with KBr and pressed into a pellet form for measurement. Ther-
mogravimetric analysis (TGA) was conducted using a TGA 2 Mettler Toledo Mettler in
the temperature range of 50–900 ◦C at a heating rate of 10 ◦C min–1 under nitrogen flow.
The specific surface area was measured on a Micromeritics 3Flex surface characterization
analyzer at liquid N2 temperature (−196 ◦C). Before the measurement, silica was heated at
100 ◦C for 6 h under a vacuum. The specific surface area was calculated from the adsorption
isotherm in the relative pressure range of 0.05–0.30 using the Brunauer–Emmett–Teller
(BET) theory.

2.5. Preparation of NR Compounds Filled with Silica

The formulations of NR compounds filled with Si69-RHS are shown in Table 1. The NR
compound formulae are designated as C-x, where x represents the Si69-RHS loading.
The mixing process was performed using a conventional laboratory two-roll mill (YFTR
8”). The obtained NR compounds were stored at 25 ◦C for 24 h in a closed container prior
to curing assessment using an M-2000 moving die rheometer (MDR). The testing procedure
was carried out according to the method described in the American Society for Testing and
Materials (ASTM) D5289. The respective scorch time (t2) and cure time (tc90) were obtained
from an MDR at 150 ◦C.
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Table 1. Formulations of the NR compounds filled with Si69-RHS.

Materials
Part Per Hundred (phr)

C-0 C-10 C-20 C-30 C-40 C-50

Natural rubber 100 100 100 100 100 100
Zinc oxide 5 5 5 5 5 5
Stearic acid 2 2 2 2 2 2

CBS a 1 1 1 1 1 1
Si69-RHS 0 10 20 30 40 50

Sulfur 1.5 1.5 1.5 1.5 1.5 1.5
Aromatic oil 10 10 10 10 10 10

a N-Cyclohexyl-2-benzothiazolesulfenamide.

2.6. Preparation of the NR Composites and Testing

The NR compounds were compressed using a compression-molding machine (Yong-
Fong Machinery, Ltd., Model YFY HM-100, Samut Sakorn, Thailand) at 150 ◦C according to
their respective cure times to obtain vulcanized NR composites (Figure 2). The fractured
surfaces of the vulcanized NR compounds were investigated by a scanning electron mi-
croscope at an acceleration voltage of 10 kV. The dispersion of Si69-RHS in the NR matrix
was examined by EDS mapping analysis. The NR composites were cut into a specific shape
according to the ASTM for each mechanical test as follows: The stress–strain curves of the
composites were measured on a Hounsfield H50KS testing machine according to ASTM
D412 at a crosshead speed of 500 mm min–1; hardness was measured using a Shore type A
durometer according to ASTM D2240; and abrasion resistance was tested using a QC-615A
AKRON abrasion test machine according to ASTM D2228. All mechanical values were
obtained from the average of 5 samples.
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3. Results and Discussion
3.1. Characterization of RHS and Si69-RHS

Figure 3a,c displays the SEM images of RHS and Si69-RHS, respectively. These images
reveal irregular-shaped particles broken into a micron scale of less than 100 µm. No sig-
nificant morphological change is observed between RHS and Si69-RHS, indicating no
effect of surface modification on the RHS morphology. The EDS analysis was conducted
to confirm the presence of Si69 on RHS by measuring the elemental composition in the
sample. From the EDS spectra (Figure 3b,d), only silicon (Si K) and oxygen (O K) signals
were detected for the RHS, while an additional small signal of sulfur (S K) was found for
Si69-RHS. This result confirms the presence of Si69 on RHS.
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The FTIR spectra of RHS and Si69-RHS shown in Figure 4 reveal similar absorption
features. A broad peak covering approximately 3200–3600 cm–1 and the peak at 1650 cm–1

are attributed to O–H stretching and O–H bending, respectively, indicating the presence
of water molecules. The absorption at 1096 and 810 cm–1 can be assigned to the Si–O–Si
stretching bond, which is the characteristic peak of silica [38]. However, the O–H stretching
and bending peaks of Si69-RHS became weaker, while a very small peak of the C–H stretch-
ing bond from Si69 appeared at 2995 cm–1 (shown in the inset) [39–41]. The suppression
of the O–H peak and the emergence of the C–H peak of Si69-RHS indicate its greater
hydrophobicity and reduced water absorption [40].
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To further confirm the presence of Si69 on RHS, TGA thermograms were recorded
and are depicted in Figure 5. For the first stage (50–150 ◦C), the RHS exhibited a significant
weight loss of approximately 7%, while a weight loss of less than 2% was observed for
Si69-RHS. The lower weight loss of Si69-RHS compared to RHS was due to less water
absorption on Si69-RHS caused by its hydrophobic surface, as discussed in the FTIR
analysis [40]. With an increase in temperature, the weight of RHS slightly decreased
from 92.8% at 150 ◦C to 91.4% at 900 ◦C. This small weight loss of RHS was due to the
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almost complete decomposition of organic compounds during the calcination process.
In contrast, a noticeable weight loss of approximately 4.2% was observed for Si69-RHS
with a temperature range of 150–700 ◦C, which was attributed to the decomposition of
Si69 [42,43]. According to the EDS, FTIR, and TGA analyses, the results are in good
agreement to confirm that RHS was successfully modified by Si69.
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3.2. Characterization of Si69-RHS/NR Composites

The scorch and cure times of the NR compounds filled with various Si69-RHS loadings
are shown in Figure 6. Both scorch and cure times tended to be longer with an increase
in the Si69-RHS loading. This increasing trend was in agreement with several previous
reports in the literature [44–46]. The high specific surface area (~280 m2 g–1) of Si69-RHS
could result in an increase in interaction with other components in compounds causing a
disturbance in the vulcanization process and, thus, delaying scorch and cure times [47].
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Figure 7 presents the SEM images taken from the fractured surface of the NR com-
posites. The NR composites without Si69-RHS had a relatively smooth surface (Figure 7a).
The fractured surface had no obvious formation of voids and became rougher as the Si69-
RHS loading increased (Figure 7b–f). However, it is difficult to identify and evaluate the
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dispersion of Si69-RHS in the NR matrix from the SEM images. To solve this issue, EDS
mapping analysis was conducted by measuring the dispersion of the Si element (blue) along
with C (yellow) and O (green) elements, as shown in Figure 8. The Si element revealed
uniform dispersion without agglomeration in the NR matrix at the Si69-RHS loadings of
10 and 20 phr. Good dispersion of the Si69-RHS in the NR matrix with good compatibility
could help improve the mechanical properties of the composites. However, agglomeration
began to be observed when the Si69-RHS loading reached 30 phr and became larger at
higher loadings (i.e., 40 and 50 phr).
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The mechanical properties of the NR composites filled with Si69-RHS were examined.
Tensile strength, modulus, and elongation at break can be determined from the stress–strain
curves, as shown in Figure 9a. From Figure 9b, tensile strength increased with increasing
Si69-RHS loading until reaching a maximum value of 20.9 ± 1.8 MPa at 20 phr, which was
an approximately 26% improvement from that of NR (16.6 ± 1.5 MPa). The increase in
tensile strength was attributed to good dispersion of Si69-RHS in the NR matrix and good
interfacial interaction between the matrix and fillers, which can facilitate a more efficient
energy-transfer process [44,48]. However, a further increase in Si69-RHS loading greater
than 20 phr had an adverse effect on the tensile strength of the NR composites. The decrease
in tensile strength is caused by the agglomeration of fillers in the NR matrix (>20 phr),
as shown in the EDS mapping analysis (Figure 8). The change in tensile strength in this
study is similar to the findings of Prasertsri and Rattanasom [44] and da Costa et al. [49].
With an increase in Si69-RHS loading from 0 to 50 phr, the elongation at break gradually
decreased from 734% to 599%, as shown in Figure 9c. In contrast, the opposite trend was
observed for the modulus at 100% of elongation (100% modulus). The 100% modulus
increased from 1.04 ± 0.11 MPa at 0 phr to 1.38 ± 0.08 MPa at 40 phr but slightly dropped
to 1.30 ± 0.06 MPa at 50 phr (Figure 9d).
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As shown in Figure 10a, the hardness (shore A) of the composites showed a similar
trend with the 100% modulus, which continuously increased from 33.2 ± 0.8 to 44.9 ± 0.1
with increased Si69-RHS loading. According to the reports by Jacques et al. [50] and
da Costa et al. [49,51], the hardness and modulus of vulcanized NR composites normally
increase with the use of particulate fillers. From our results, it is clear that the NR composites
became stiffer and harder when reinforcing with the Si69-RHS fillers since the interaction
between NR and Si69-RHS could restrict the segmental mobility and movement of rubber
chains, which decreased the elasticity of the rubber composites [45,52].
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Abrasion resistance is another important property for practical applications of rubber
tires since it reflects a tire’s ability to resist the progressive removal of material at the
surface from mechanical rubbing and scraping [53]. It was found that a high Si69-RHS
loading reduced abrasion resistance, as reflected by the higher value of abrasion loss
(Figure 10b). The abrasion loss of the NR composites filled with Si69-RHS loading of
50 phr was 0.24 ± 0.02%, which was about five-times greater than without Si69-RHS
(0.06 ± 0.01%). Although the abrasion loss of the NR composites filled with Si69-RHS
increased significantly, it showed satisfactory results for practical use. The mechanical
properties of the NR composites discussed above are summarized in Table 2.

Table 2. Mechanical properties of the NR composites filled with various Si69-RHS loadings.

Si69-RHS
Loading (phr)

Tensile Strength
(MPa)

Young Modulus
(MPa)

Elongation at
Break (%)

Hardness
(Shore A)

Abrasion Loss
(%)

0 16.6 ± 1.5 1.04 ± 0.11 734 ± 35 33.2 ± 0.8 0.06 ± 0.01
10 19.5 ± 1.5 1.17 ± 0.12 711 ± 17 38.3 ± 0.7 0.06 ± 0.01
20 20.9 ± 1.8 1.13 ± 0.09 731 ± 42 40.6 ± 0.7 0.13 ± 0.01
30 19.7 ± 0.8 1.23 ± 0.08 686 ± 5 41.6 ± 0.5 0.15 ± 0.02
40 18.5 ± 0.8 1.38 ± 0.06 635 ± 8 43.6 ± 0.5 0.17 ± 0.02
50 15.5 ± 0.5 1.30 ± 0.08 589 ± 15 44.9 ± 0.1 0.24 ± 0.02

4. Conclusions

NR composites were successfully prepared at different Si69-RHS loadings from 0 to
50 phr. High Si69-RHS loadings could disturb the NR vulcanization process, thus, pro-
longing both the scorch and cure times. The Si69-RHS fillers were uniformly dispersed
in the NR matrix with good compatibility at low loading (i.e., 10 and 20 phr); however,
agglomeration began to be observed at 30 phr. For the mechanical properties of the NR
composites, tensile strength reached the maximum value at a Si69-RHS loading of 20 phr
and decreased at high loadings (>20 phr) owing to the agglomeration of fillers in the NR
composites. With increasing Si69-RHS loading, hardness and 100% modulus tended to
increase, whereas the opposite trend was observed for elongation at break and abrasion
resistance. These results indicate that the addition of Si69-RHS could inhibit the mobility of
the rubber chain, making the composites stiffer and harder. The results presented in this
work could be helpful in further optimizing and developing a suitable formula for the NR
composites for tire tread applications.
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