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Abstract: The physicochemical nature of the amino group NH2’s landing on the basal plane of the
graphene and on the edge atoms of the graphene nanomesh was revealed. The mechanism of covalent
binding between the NH2 groups and the carbon atoms of the graphene and the GNM was discovered
in silico by the SCC DFTB method. The maximum amount ratio of the amino groups to carbon atoms
equaled 4.8% for GNM and 4.6% for the basal plane. The established values of the concentration and
the trend of change in the work function of electrons are experimentally confirmed.

Keywords: graphene; graphene nanomesh; aminated graphene nanomesh; amino groups;
functionalization; in silico

1. Introduction

Graphene nanomesh (GNM) is one of the graphene nanomaterials that continue to
develop rapidly [1–3]. GNM has adjustable electronic properties including a tuning band
gap, a high specific surface area and a unique topology [4]. Such 2D-nanomaterials with
holes of different nanometer sizes are widely applied in electronics, gas nanosensors, mem-
brane filtration, catalysis as well as for energy storage and conversion [5–9]. This material
is unique since its properties can be tuned in the result of certain functionalization. For
example, on the basis of GNM decorated with single-stranded DNA, a sensor device was
designed with fast response and recovery for detecting different substances including
carbon acids, aldehydes, organophosphates and explosives [10]. Based on a N-doped
GNM, a highly efficient electrochemical sensor was successfully developed to determine
residual amounts of organophosphate pesticides including methylparation [11]. Aminated
GNM can be effectively used as a metal-free catalyst for oxygen-reduction reactions [12].
Functionalization by silicon or nitrogen makes GNM a promising material for a design
of lithium-ion battery electrodes and supercapacitors [13]. Xu et al. found that the per-
formance parameters of nitrogen-doped GNM electrodes are significantly improved in
comparison to pure GNM; a battery with such an electrode demonstrates stable operation
with capacity retention for 6000 cycles [14]. The GNM is in general decorated with oxygen-
containing groups [15–19]. It is shown that the presence of oxygen-containing groups leads
to an increase in a GNM-specific capacity due to the increased Faraday reactions leading to
an additional charge accumulation [19]. The application of GNM with oxygen-containing
groups is also promising for sensors application. Earlier it was shown that graphene oxide
demonstrates excellent sensor parameters including increased sensitivity to gases such as
NO2, NH3, CO, ethanol, H2O, trimethylamine, HCN and dimethylmethylphosphonate [20].
Such material is a prospect element for chemoresistive sensors [21].
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Equally important for practical purposes is the functionalization of the graphene’s
basal surface accompanied with a formation of sp3 bonds in carbon atoms. Since NH2 is an
electron-withdrawing group, decorating graphene with amine groups changes its electronic
structure, in particular, increasing conductivity and tuning the electron work function [22].
At present, aminated graphene is considered as a promising material for various applica-
tions in photovoltaics, gas and biosensors, for drug delivery and for the synthesis of new
composites [23–26]. Various strategies for amine functionalization of graphene are used.
For example, amine groups are attached via plasma functionalization [27].

It was shown experimentally that amino groups attach to edge atoms as well as to a
basal surface. However, it remains unclear which landing is preferable and how exactly it
occurs, what is the topology of the groups’ arrangement, which of cis- or trans-configuration
is beneficial. This hinders practical approaches for engineering the topology of amine
groups on graphene. To approach this issue, in silico approaches are required. Note that
many papers are devoted to simulation of graphene nanostructure functionalization by
different topologies [28–32]. One of the important points here is a correct determination of
functional groups’ landing sites. The paper [28] is devoted to a comprehensive analysis of
different approaches for the modeling of graphene functionalization by quantum-chemical
methods: empirical, semiempirical and DFT. Models of functionalized graphene obtained
by the DFT approach are also shown in [29–31]. Empirical approaches to graphene–polymer
nanocomposite functionalization simulation [32] and finite-element methods for exploring
new properties of functionalized graphene nanoplates [33] are also in demand. Some
patterns of graphene functionalization by different groups are identified. For example, it
is found that the most often met oxygen-containing groups at the graphene surface are
epoxy (C-O-C), phenolic hydroxil (-OH), carboxyl (-COOH) and other carbonyl groups
(C=O) distributed over the surface of graphene sheets. Herewith, carboxyl groups are
located mostly at the edges while phenolic hydroxil and epoxy are located at the basal
plane [34–36]. Other widely spread groups contain nitrogen, sulfur, fluorine and other
atoms [37–39].

This work is devoted to exploring the physicochemical nature of the functionalization
of a graphene’s basal plane GNM circle with amino groups, in order to establish a landing-
group topology, its concentration and influence on the electronic structure.

2. Materials and Methods
2.1. Computational Details

The modeling was performed by the self-consistent charge density functional tight-
binding (SCC DFTB) [40] method realized in dftb+ [41]. A supercell of the GNM represented
the monolayer graphene of 186 carbon atoms with a circle hole of 1.2 nm in diameter. Opti-
mization was performed in periodic box with lattice vectors of 2.46 × 2.55 nm. The basal
plane of graphene represented the GNM of the same sizes but without a hole. Dispersion
interaction was taken into account by the application of the Lennard–Jones potential with
Universal Force Field (UFF) parameters. The sampling of the Brillion zone was performed
by the Monckhorst–Pack scheme with 6 × 6 × 1 mesh. The electron temperature was equal
to 300 K. The search of the ground state was performed by the conjugate gradient method
using lattice vectors and atom coordinates as the variable parameters.

2.2. Materials Synthesis

All the studied functionalized graphenes were synthesized via liquid phase modi-
fication of the initial graphene oxide (GO) purchased from Graphene Technologies, Ltd.
(Moscow, Russia, www.graphtechrus.com, accessed on 30 July 2022). During the GO syn-
thesis, sonication was excluded to prevent the disruption of flakes, achieving their mean
lateral size of 10–200 µm.

C-ny graphene was synthesized according to the method described in Ref. [42]. In
brief, 30 mL GO aqueous suspension of 0.3 wt.% of the concentration was poured into a
Teflon reaction vessel and mixed with Na2SiO3 powder (Merck, US) while stirring to reach
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pH = 9. The pH values of the suspensions were evaluated with a Fisher Scientific Accumet
Basic AB15 pH meter (Thermo Fisher Scientific, Waltham, MA, USA). The acquired reaction
mixture was heated at T = 80 ◦C for 48 h in the air while stirring. Afterwards, it was
cooled down to room temperature and purified via five cycles of centrifugation (Sigma
S-16 centrifuge, Roedermark, Germany), for 15 min each, with an acceleration of 18,200 g
and sequential rinsing of the obtained sediment at distilled water (30 mL).

The set of aminated graphenes was synthesized using the Leuckart reaction [43], using
C-ny graphene or GO as an initial substrate. Holey Am graphene, denoted hereinafter as
Am#1, was acquired by pouring C-ny aqueous suspension, of 15 mL volume at 0.8 wt.%,
into a Teflon reaction vessel with the subsequent addition of 50 mL of CH3NO (Merck,
Darmstadt, IN, USA). The acquired reaction mixture was heated at T = 125 ◦C for 72 h
with the vessel being connected to the reflux condenser. Afterwards, the suspension was
cooled down to room temperature and the synthesized rGO-Am was copiously washed
with deionized water (3 cycles) and isopropyl alcohol (3 cycles) using a glass filter of 40 µm
of pore size. To synthesize the pristine Am graphene (Am#2), the GO aqueous suspension
instead of the C-ny graphene was treated in otherwise identical conditions. Finally, the
overfilled Am graphene (Am#3) was synthesized by the same synthesis protocol but raising
the temperature to T = 165 ◦C.

2.3. Materials Characterization

The present and relative concentration of amine groups along with other nitrogen-
and oxygen-containing moieties in the synthesized amine graphenes was examined by
the means of X-ray photoelectron spectroscopy (XPS). The survey, C 1s, and N 1s X-
ray photoelectron spectra were collected using the NanoPES experimental station at the
Kurchatov Synchrotron Radiation Source (National Research Center Kurchatov Institute,
Moscow, Russia). The ESCA module (SPECS) equipped with XR-MF microfocus X-ray
source (Al Kα, 1486.61 eV) and Phoibos 150 analyzer was used. The spectra were calibrated
with respect to the Au 4f7/2 line (84.0 eV). Prior to the measurements, all samples were
placed at a chamber evacuated down to the pressure of P = 10−9 Torr for 6 h to remove all
possible adsorbates. No heating was applied to prevent the changes in the composition of
oxygenic moieties in the GO. XPS survey spectra were measured with the energy step of
0.5 eV, while for the C 1s and N 1s core-level spectra, this value was 0.05 eV.

For each studied material, the X-ray photoelectron were collected in four different areas
of the sample with the subsequent averaging for further processing. CasaXPS software
(Version 2.3.16Dev52, Casa Software Ltd., Teignmouth, United Kingdom) was applied
for the deconvolution of the acquired C 1s and N 1s X-ray photoelectron spectra with a
subsequent quantification of the relative concentration of the carbon and nitrogen atoms
at different states. All the spectra were fitted with a Shirley background. For the C 1s
deconvolution, a set of one asymmetric Doniach–Sunjic function (DS0.15,150; GL90) and
five symmetric Gaussian–Lorentzian functions of a 30–70% ratio (GL(30)) were applied.
For the N 1s deconvolution, four symmetric Gaussian–Lorentzian functions of a 30–70%
ratio (GL(30)) were applied.

For the XPS measurements, all the samples were prepared on the Si wafers (p++) by
the drop-casting of 75 µL of the isopropyl suspensions, 5 × 10−1 wt.% of concentration,
with the subsequent drying at room temperature (ca. 25 ◦C) for 3 h.

To examine the work function values of the synthesized materials, the SE cut-off
spectra were acquired at the excitation energy of hv = 130 eV at the Russian–German
beamline of electron storage ring BESSY-II at Helmholtz-Zentrum Berlin (HZB), using the
ultrahigh vacuum experimental station [44]. To calculate the WF values, the following
equation was used:

eΦm = hv − (EF − ESEC) (1)

where hν = 130 eV is the energy of the photons, EF and ESEC are the positions of the Fermi
level and the cut-off threshold, both represented in the kinetic energy scale [45].
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The set of microscopic methods was applied to analyze the crystal structure and
morphology of the synthesized Am graphenes. TEM images and ED patterns were acquired
from the GO and the Am graphene platelets deposited from the aqueous and isopropyl
suspensions, of 5 × 10−5 wt.% of concentration, on the surface of the TEM Cu grids
(400 Mesh), using a Jeol JEM-2100F microscope (Jeol, Tokyo, Japan) with a point-to-point
resolution of 0.19 nm at an accelerating voltage of 200 kV.

3. Results
3.1. In Silico Functionalization of GNM

The process of the GNM functionalization by amino groups was performed by the
original methodic, which allows the unveiling of the stereochemical configuration and
spatial distribution of any functional group on the edges of the GNM holes. Feasibility of
this methodic was demonstrated in one of our previous works, exhibiting the theoretical
examination of the structure and electrophysical properties of GNM decorated by the
carboxyl groups, which results fully coincided with experimental findings [46]. For the case
of amine groups covalently attached to the edges of nanoholes, the methodic was employed
as follows: (1) an optimization of a supercell atomic structure and calculation of electron
charge density distribution over atoms; (2) an identification of the atom with a maximum
amount of excess charge and the binding of amino group to this atom; (3) a passivation
of the neighbor edge atom and a reoptimization of the supercell. This process continued
while all the edge atoms near the nanohole were not functionalized. Figure 1 shows the
supercell with the circle hole in two angles: top and side view. Down the arrow, there is the
supercell with the one attached group of NH2 (marked with the number “1”), and next to
it is there is a color map of the electron charge density distribution over the atoms; next,
on the arrow on the right side of the figure, there are two different configurations of the
attached NH2 group (marked with the number “2”)—cis and trans.
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As it is seen from Figure 1, initially the GNM was a perfectly flat structure. An
addition of the NH2 groups lead to a noticeable curvature of the supercell’s atomic mesh:
the NH2 group seemed to “pull” part of the atomic mesh above the plane—up in the
direction of the Z axis. After the attachment of one NH2 group, part of its charge flew
to the graphene. As shown in Figure 1, there is a lack of an electron charge of 0.32|e|
on the NH2 molecule. There is also an excess charge on almost all the atoms of the basal
surface (marked with a green-blue shade). After adding a second group of NH2, two almost
identical energy variants appeared. In both cases, a bunch of C-NH2 atoms also had an
insufficient electronic charge, but in this case, it equaled to 0.28 ± 0.01|e| regardless of the
cis- or trans-configuration.

The pure GNM demonstrated a small energy gap of 0.04 eV and a Fermi level of
−5.02 eV. After the addition of an amine group and two hydrogen atoms, the gap increased
to 0.12 eV and the Fermi level shifted to −4.90 eV. The heat of formation ∆E, calculated as
the difference between the energy of the final structure and the energies of the isolated initial
structures (GNM, hydrogen and NH2 groups) was −16.89 eV. The negative value indicated
that the addition of an NH2 group was an energetically favorable process. Further, the
procedure for the NH2 group attachment was performed according to the scheme described
above. At each step, the amino groups were attached in two configurations, cis and trans,
that were energetically favorable. In both cases, the addition of each new amino group led
to a certain degree of the graphene layer deformation. The continuation of the gradual
addition of amine groups from three to eight is shown in Figure 2a. Table 1 shows the
energy parameters reflecting the appearance of each new amine group at the edge atoms
of the GNM hole: heat of formation ∆E, Fermi level EF and the value of the energy gap
Egap for different numbers of the NH2 groups and, accordingly, their concentration CNH2
relative to the number of carbon atoms. Figure 2b shows the top view of the supercells with
the full functionalization of the nanohole by the NH2-groups for the two configurations cis
and trans. It can be seen that nine NH2 groups alternate with nine hydrogen atoms on the
nanoholes’ atoms (Figure 2b shows the top view). The distribution of the electron charge
density over the atoms was also calculated (Figure 2b). The maximum excess charge is
observed on the nitrogen atoms (−0.37 e), the maximum lack of electron density of 0.21 e
corresponds to the hydrogen atoms, and the graphene atoms have a small excess of charge.

Table 1. Energetic parameters of a functionalized GNM.

NH2/H CNH2, %
∆E, eV EF, eV Egap, eV ∆E, eV EF, eV Egap, eV

Cis Trans

2/3 1.07 −11.14 −4.73 0.11 −11.04 −4.75 0.10
3/5 1.61 −16.65 −4.65 0.14 −16.75 −4.67 0.16
4/5 2.15 −5.30 −4.52 0.08 −5.28 −4.53 0.09
5/7 2.69 −16.58 −4.44 0.03 −16.60 −4.45 0.04
6/7 3.22 −5.31 −4.34 0.07 −5.29 −4.34 0.09
7/8 3.76 −10.91 −4.21 0.25 −10.86 −4.23 0.26
8/9 4.30 −10.85 −4.07 0.23 −10.83 −4.07 0.27
9/9 4.84 −5.21 −3.88 0.26 −5.18 −3.88 0.26

Thus, for the considered configuration of GNM with 1.2 nm in diameter, the maximum
concentration of amino groups was equal to 4.84%.
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3.2. In Silico Functionalization of Graphene’s Basal Plane

Further similar studies were performed for the graphene’s basal plane. Unlike the
GNM, a density of electron charge is the same for all atoms, so the one atom in the center of
the graphene was chosen for the landing of a first amino group. A fragment of the structure
obtained after optimization is shown in Figure 3 (marked with the number “1”). The heat of
formation was −0.57 eV; thus, the formation of a covalent bond between the amine group
and the basal plane of graphene is energetically favorable. Therefore, the functionalization
of the graphene by the amine groups is a natural process realized under normal physical
conditions. The next step was to analyze a distribution of an electron charge density
over the atoms of the supercell with one attached amine group. The second amine group
was attached to the atom with an excess charge. As noted in Section 3.1, there are two
configurations, cis and trans, that can be attached. However, unlike the GNM, in this case
only the staggered landing option is energetically favorable—when one amine group is
located above the plane and the other is located below it. This can be seen in Figure 3
(marked with the number “2”). According to the same algorithm based on the detection of
an atom with an excess charge, the following third, fourth, fifth, sixth and seventh amine
groups were attached, as shown in Figure 3. After each new binding, the supercell was
reoptimized, which proved physically justified and as close to real results. Such an in
silico approach allows us to reveal the mechanism of the graphene’s functionalization, in
particular by the amine groups.

The energy parameters of the graphene during functionalization are presented in
Table 2. The heat of formation is negative, as in the case of the GNM, but it is significantly
less in absolute value. This is predetermined by the fact that the atoms of the basal surface
of the graphene are in the state of sp2 hybridization, while the atoms of the GNM are in sp
hybridization. However, the main conclusion at this stage is the fact that covalent binding
of the amine groups to the basal graphene is energetically advantageous, which means
it is quite feasible in practice. At the same time, it should be noted that the addition of
one group already shifts the Fermi level by one tenth of an electron volt in the direction
of zero, and this trend can be traced with further functionalization by the amine groups.
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The addition of only one amino group leads to the opening of an energy gap in the band
structure up to several hundredths of an electron volt. Thus, already at the concentration
of groups less than 0.35%, a small gap opens in the zone structure of the graphene and
increases with the addition of five or more groups.
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Table 2. Energetic parameters of a functionalized graphene.

NH2 CNH2, % ∆E, eV EF, eV Egap, eV NH2 CNH2, % ∆E, eV EF, eV Egap, eV

0 - 0.00 −4.61 - 4 1.39 −1.95 −4.48 0.04
1 0.35 −0.57 −4.51 0.03 5 1.74 −1.48 −4.44 0.04
2 0.70 −2.21 −4.50 0.03 6 2.08 −1.72 −4.45 0.05
3 1.04 −1.35 −4.47 0.03 7 2.43 −1.31 −4.44 0.05

As noted above, the landing of the groups was performed based on the analysis of
the electron charge density distribution over atoms. This approach was implemented for
the first seven groups, after which it was discovered that there are two atoms with excess
charge. In this regard, two options for further graphene functionalization were considered.
Figure 4 shows a fragment of the graphene plane with seven NH2 groups and the following
two variants of an eighth group landing. In one of the landing options 8-2, all subsequent
amine groups land in a zigzag direction that is clearly seen in Figure 4. All the previous
seven groups, as in the case of option 8-2, landed exactly in the zigzag direction and only
when the eighth group landed, two alternative ways of subsequent functionalization arose.
In the option 8-2, the amine groups are equally clearly located on both sides of the graphene.
Option 8-1 demonstrates a deviation from the zigzag “trajectory”. The subsequent landing
of the groups followed two trajectories. Figure 4 shows two options for the attachment of
the 11 groups. The graphene atoms to which the groups are attached are marked in yellow,
the N-atoms of the amine groups located on top are marked in blue, and the N-atoms of
the groups under the graphene plane are marked in green.

The next step was to attach the next 12th group. Figure 5 shows the configurations
before and after optimization for both landing options. As a result of optimization, it was
found that the landing of the 12th amine group led to a break of the graphene atomic mesh
with the formation of a nanohole. In fact, 11 is the maximum possible number of amino
groups that can be attached to the graphene surface; the next landing of the amine group
forms the GNM. In the first option (12-1), the graphene destruction was accompanied by the
elimination of several amine groups and hydrogen atoms with a simultaneous formation
of an ammonia molecule. The carbon atoms to which the amine groups were attached
(marked in yellow) partially lost amino groups, partially eliminated. In the second case
(12-2), the graphene destruction looked like a clear cut in the zigzag direction. Carbon
atoms remained in the graphene, and the amine groups were not eliminated. Table 3 shows
the energy parameters of the landing process for the 8th–12th amino groups. First of all,
there is a tendency to shift from the Fermi level in the direction of the zero electron volts
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as the number of amine groups increases for both variants of their planting. Before the
landing of the 11th group, the heat of the formation was negative and only when the
12th group was planted, the heat of the formation became positive. As noted above, there
was a break in the graphene mesh and an elimination of several amine groups that affected
the energy parameters. However, the second option of the landing was favorable since
∆E < 0, although it led to the cutting of the graphene sheet.
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Table 3. Energetic parameters of functionalized graphene.

CNH2, % NH2 ∆E, eV EF, eV Egap, eV NH2 ∆E, eV EF, eV Egap, eV

2.78 8-1 −1.62 −4.41 0.06 8-2 −1.61 −4.43 0.06
3.13 9-1 −1.37 −4.39 0.06 9-2 −1.29 −4.41 0.06
3.47 10-1 −2.53 −4.38 0.07 10-2 −1.55 −4.37 0.07
3.82 11-1 −0.92 −4.38 0.07 11-2 −1.32 −4.32 0.07
4.17 12-1 1.74 −4.09 0.07 12-2 −0.17 −4.33 0.07

Based on the performed calculations, the dependence of the work function on the
amine group concentration in the graphene and GNM was obtained (Figure 6). In both
cases, with increasing concentration, the work function gradually decreases (in the case of
GNM from 5 eV to 4 eV).
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3.3. Experimental Characterization

The acquired theoretical data on the functionalization limit of the holey and intact
graphene by the amine groups and their effect on the material’s work function are well-
supported by our experimental findings. Using wet-chemistry protocols, the holey and
intact Am graphene were synthesized and examined by core-level techniques to assess the
maximum concentration of the introduced amines in each case. Samples from five con-
secutive syntheses for each type of Am graphene were studied with the acquired data
processed and averaged to acquire statistically relevant results. Figure 7 displays exemplar
X-ray photoelectron spectra of the C-ny graphene prior to and after the applied amination
(Am#1). The C-ny graphene has a perforated structure with a matrice of 2–4 nm holes in
diameter [42], whereas the abundance of the edge-located ketone groups with the negligible
amount of other reactive oxygen groups ensures amination occurs only at the edges of
the nanoscale holes, not on the basal plane. As a net result, aminated C-ny graphene
corresponds well to the simulated holey Am graphene layer.



J. Compos. Sci. 2022, 6, 335 10 of 15

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 11 of 16 
 

 

cally diminishes down to 0.71 at.% with the corresponding peak being hardly distin-

guished. This implies that upon the applied amination, the maximum number of amines 

has been introduced with the retained ketones being just eliminated or substituted by a 

minor number of other nitrogen-containing functionalities. Thus, the acquired experi-

mental data on the holey aminated graphene ratify the theoretically determined threshold 

quantity of the amines introduced to the holey graphene of ca. 4.8 at.% 

 

Figure 7. Characterization of the chemistry in the considered C-ny graphene and Holey Am layer 

(Am#1) via XPS. (a) Survey spectra, (b) high-resolution N 1s spectra, and (c) high-resolution C 1s 

spectra. 

Moving to the threshold quantity of the amines on the intact graphene, which are the 

basal-plane amines, the pristine GO was aminated according to the same procedure as for 

the C-ny graphene. Figure 8 displays the XPS data on the GO prior to and after being 

aminated at two different reaction temperatures of 125 °C (Am#2) and 165 °C (Am#3) in 

otherwise identical conditions. Compared to the C-ny graphene, GO is predominantly 

functionalized by the basal-plane hydroxyls and epoxides as seen from the GO C 1s spec-

trum in Figure 8a, with the corresponding peak at BE of 286.8 eV being dominant [51]. 

The estimated concentration of hydroxyls and epoxides is 38.4 at.%. Upon the applied 

reductive amination, these moieties are substituted with the introduction of the basal-

plane amines or otherwise just eliminated if the amine group cannot be covalently bonded 

to the graphene layer. This fact is signified by the almost complete absence of the C-

OH&C-O-C peak in the C 1s spectra of Am#2 and Am#3 spectra with the appearance of 

the N 1s spectral line in the survey spectra (Figure 8b) of these samples. The derived con-

centrations of the nitrogen-containing functionalities in the Am#2 and Am#3 samples are 

5.36 at.% and 8.74 at.%, respectively, with the second value more than two times exceeding 

the threshold determined from the theoretical calculations. However, the thorough exam-

ination of the N 1s spectra displayed in Figure 8c points out that this fact is related to the 

rise of the relative concentration of pyridines, which ratio increases from 4.28% to 39.94%. 

At the same time, the relative concentration of the amines drops from 87.18% to 56.04% 

with the corresponding values of the atomic concentration of 4.67 at.% and 4.89 at.%, re-

spectively. These results emphasize that the threshold quantity of the amines on the basal 

Figure 7. Characterization of the chemistry in the considered C-ny graphene and Holey Am layer
(Am#1) via XPS. (a) Survey spectra, (b) high-resolution N 1s spectra, and (c) high-resolution C
1s spectra.

According to the acquired survey spectra (Figure 7a), upon the applied amination the
O 1s line with the binding energy (BE) of 532.5 eV substantially diminished, while the N
1s peak with the BE of 400.1 eV appeared [47], pointing out the successful introduction of
the nitrogen-containing functionalities. The concentration of nitrogen was estimated to be
5.73 at.%. To further analyze the composition of nitrogen-containing groups embedded
upon the applied treatment, high-resolution N 1s spectra were acquired and processed,
shown in Figure 7b. Four peaks were discerned in the N 1s spectrum of Am#1 with BEs of
400.1 eV, 398.8 eV, 401.7 eV, 402.8 eV, which are related to amines, pyridines, graphitic nitro-
gen and pyridine-N-oxide moieties introduced into the graphene layer, respectively [47–49].
Amines are demonstrated to be the dominant form of the nitrogen groups with the relative
content estimated to be up to 82.8%. Accordingly, the highest achieved concentration of the
introduced amines is 4.74 at.%, which coincides well with the theoretical data (Table 1).

Notably, this value is several times lower than the concentration of the ketone groups
in the initial C-ny graphene, which are being substituted during the applied amination
process. Prior to the amination, a distinguishable peak with the BE of 288.2 eV related to the
ketone groups is discerned in the C-ny graphene C 1s spectrum [49,50], which is displayed
in Figure 7c. The concentration of ketones derived from the deconvoluted C 1s spectrum is
estimated to be equal to 9.89 at.%, while after the amination this value drastically diminishes
down to 0.71 at.% with the corresponding peak being hardly distinguished. This implies
that upon the applied amination, the maximum number of amines has been introduced
with the retained ketones being just eliminated or substituted by a minor number of other
nitrogen-containing functionalities. Thus, the acquired experimental data on the holey
aminated graphene ratify the theoretically determined threshold quantity of the amines
introduced to the holey graphene of ca. 4.8 at.%

Moving to the threshold quantity of the amines on the intact graphene, which are the
basal-plane amines, the pristine GO was aminated according to the same procedure as
for the C-ny graphene. Figure 8 displays the XPS data on the GO prior to and after being
aminated at two different reaction temperatures of 125 ◦C (Am#2) and 165 ◦C (Am#3) in
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otherwise identical conditions. Compared to the C-ny graphene, GO is predominantly
functionalized by the basal-plane hydroxyls and epoxides as seen from the GO C 1s
spectrum in Figure 8a, with the corresponding peak at BE of 286.8 eV being dominant [51].
The estimated concentration of hydroxyls and epoxides is 38.4 at.%. Upon the applied
reductive amination, these moieties are substituted with the introduction of the basal-plane
amines or otherwise just eliminated if the amine group cannot be covalently bonded to the
graphene layer. This fact is signified by the almost complete absence of the C-OH&C-O-C
peak in the C 1s spectra of Am#2 and Am#3 spectra with the appearance of the N 1s spectral
line in the survey spectra (Figure 8b) of these samples. The derived concentrations of
the nitrogen-containing functionalities in the Am#2 and Am#3 samples are 5.36 at.% and
8.74 at.%, respectively, with the second value more than two times exceeding the threshold
determined from the theoretical calculations. However, the thorough examination of the
N 1s spectra displayed in Figure 8c points out that this fact is related to the rise of the
relative concentration of pyridines, which ratio increases from 4.28% to 39.94%. At the
same time, the relative concentration of the amines drops from 87.18% to 56.04% with the
corresponding values of the atomic concentration of 4.67 at.% and 4.89 at.%, respectively.
These results emphasize that the threshold quantity of the amines on the basal plane of the
graphene is of 4.7–4.9 at.%, which is in good consistency with the performed theoretical
calculations. In turn, the maximization of the nitrogen concentration by varying the
synthesis parameters results not in the boost in the number of amines, but the introduction
of other nitrogen-containing moieties, particularly pyridines.
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The introduction of pyridines and other heterocyclic nitrogen-containing moieties
instead of amines is additionally reflected by the microscopic studies on the morphology
of Am#2 and Am#3 layers. Figure 9a,b display the TEM images and the ED patterns of
the considered GO, Am#2 and Am#3 layers. As can be seen, upon moving from the Am#2
to Am#3 with the increase in the nitrogen concentration, distinguishable nanoscale holes
(black dots indicated by arrows) appear, with the diffraction maxima becoming blurred due
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to the deviations in the angle between the electronic beam and graphene surface [52]. This
is in contrast to the intact Am#2 and GO layers with no observable nanoscale defects and
the preservation of the sharp diffraction maxima in the ED pattern. Thus, the persistent
implementation of nitrogen-containing groups results in the disruption of the graphene
layer, as is demonstrated by the theoretical simulations with the subsequent formation of
the heterocyclic moieties.
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To finally validate the theoretically predicted reduction of the WF value upon the
amination of the graphene layer, the SE spectra of the GO, Am#1 and Am#2 samples were
collected, which are displayed in Figure 9c. The SE spectrum of GO is presented by a single
maximum with the marked cut-off threshold (dashed lines) of 5.37 eV, well-consistent with
the published data on the WF value of GO [53]. In turn, the SE spectra of Am#1 and Am#2
samples exhibit a more complicated nature with two slopes and the corresponding WF
values of 4.72–4.78 eV and 4.35 eV. Such a shape of the SE spectra implies separation of
the graphene layer in two different areas, which can be regarded as areas of the pristine
graphene network and its local areas functionalized with amines. This hint is supported by
the fact that the first WF value coincides with the reported ones for the reduced GO [53,54],
whereas the presence of amines was demonstrated to reduce the WF of the graphene
layer [54]. Thus, collectively with the theoretical calculations, the experimental studies
indicate that the introduction of the amine groups reduces the WF value of graphene,
although this is related to local areas of the material, not the whole layer.

4. Conclusions

With the help of in silico studies, the maximum possible concentration of amine
groups on the graphene nanomesh was established on holes—4.8 at.%. This is exactly the
maximum concentration, since the supercell for research was chosen as the minimum of all
possible options—with a minimum diameter hole of ~1.2 nm and a minimum width neck
of ~1 nm. For the basal surface of graphene, the mechanism of functionalization by the
amine groups was studied. It was found that no more than 11 groups can be deposited and
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covalently bound to graphene in one local area. With further functionalization, the amine
groups break the graphene layer.

The performed experimental studies well-supported our theoretical results on the
threshold quantity of the amines both in the holey and intact graphene, giving a comparable
value of 4.6–4.8 at.% of the introduced amines and indicating that a further increase in the
content of the nitrogen-containing groups is related to the implementation of the hetero-
cyclic moieties due to the disruption of the graphene layer. Furthermore, the predicted
reduction of the WF value is demonstrated experimentally, although with a hint that such a
reduction is of a local nature.
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