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Abstract: Titanium dioxide nanotubes (TNTs) were fabricated via electrochemical anodization process.
Photocatalytic hydrogen generation from formic acid solution was investigated using TNTs with
simultaneous Rh deposition. The effects of calcination temperature and time for TNTs on hydrogen
generation were studied. The maximum hydrogen generation (54 µmol) was observed when using
TNTs with a 500 ◦C calcination temperature and 10 h calcination time under 5 h of black light
(352 nm) irradiation. The reusability tests indicated that the TNTs with photodeposited Rh metal
(Rh/TNT) had excellent stability up to the fifth cycle for hydrogen generation from formic acid
solution. The TNTs were characterized before and after photodeposition of Rh metal via X-ray
powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and diffuse
reflectance spectroscopy (DRS). XRD revealed the presence of optimal anatase–rutile phase ratios in
TNTs at 500 ◦C and 300 ◦C calcination temperatures. XRD and SEM revealed the deposition of Rh
metal on the TNT surface at 300 ◦C and 500 ◦C calcination temperatures. It was observed that the
light absorption ability of TNTs calcined at 500 ◦C was greater than that of TNTs calcined at 300 ◦C.
The reaction mechanisms for the formation of TNTs and photocatalytic hydrogen production from
formic acid solutions by TNTs with simultaneous Rh deposition were also proposed.

Keywords: nanotube TiO2; H2 production; deposition of Rh; formic acid; calcination

1. Introduction

Today, the energy crisis issue is one of the most important topics around the world.
Hydrogen may be considered a significant energy source for the future, because it has
clean, sustainable, environmentally benign, and renewable properties [1–4]. Compared
to conventional hydrogen production techniques, photocatalytic hydrogen production
from water may be an environmentally friendly and cost-effective method, owing to
the abundance of solar light and the availability of photocatalysts. In this method, the
photocatalyst utilizes the energy of absorbed light from the sun to reduce the protons of
water to hydrogen energy [2,5,6].

The photocatalyst TiO2 is one of most widely used catalysts for hydrogen genera-
tion from water, because of its nontoxicity, commercial availability, chemical stability, and
photostability [7–10]. Since TiO2 has a relatively large band gap with relatively rapid recom-
bination of electron hole pair, only UV light can be utilized for hydrogen production [7–9].
Hence, different approaches have been adopted in order to improve the photocatalytic
hydrogen generation efficiency of TiO2, such as doping with metal and nonmetal ions,
coupling with other semiconductors, supporting metallic or nonmetallic oxides, using
organic sacrificial agents, and varying the size of nanoparticles [8,11–13].

For instance, many research articles have been published on doping of TiO2 with Pt,
Au, Ag, Rh, and Pd noble metals for the improvement of the photocatalytic hydrogen
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generation reaction [14–17]. Various methods such as the chemical reduction method,
sono-chemical reduction method, dispersion method, photochemical deposition method,
deposition–precipitation method, and sol–gel method have been reported for doping metal
onto TiO2 nanoparticles [18]. In the photochemical deposition method, a metal ion can
be reduced to a metal atom by accepting the photogenerated electron in the conduction
band of TiO2 and can be deposited onto the surface of TiO2. Then, another photogenerated
electron can transfer to the deposited metal atom, and the movement of electrons can
decrease the electron hole pair recombination rate [18,19].

Organic sacrificial agents such as formic acid, ethanol, methanol, and glycerol act as
hole scavengers in the valance band of TiO2 by donating electrons [12]. Therefore, organic
sacrificial methods have been widely applied in photochemical hydrogen generation.

Titanium dioxide nanotubes (TNTs) are highly attractive for photocatalytic applica-
tions due to their large surface area, high physical stability, good adsorption ability, superior
electron transport rate, and excellent photoelectrochemical properties. Furthermore, TNTs
can be used more repeatedly and conveniently than TiO2 powder [5,20–24]. Hence, the fab-
rication of TNTs for photochemical generation of hydrogen has recently attracted extensive
research. There are several preparative methods for TNT formation, such as hydrothermal,
sol–gel, template-assisted, and electrochemical anodization methods [25–29]. The electro-
chemical anodization method has several advantages compared to other methods. The
anodization method is simple, and the geometry of the nanotubes can be controlled by
regulating experimental constraints such as oxidation electrode potential, concentration of
the electrolyte, anodization time, and calcination temperature. TNT arrays with a desired
length and thickness can be synthesized using this method [1,30].

Rh-doped TiO2 photocatalysts have high photocatalytic properties [31]. Previously, we
reported on photocatalytic hydrogen production from a formic acid solution with TiO2 with
the aid of simultaneous Rh deposition [32]. It was observed that under optimal conditions,
the photocatalytic hydrogen generation rate with the aid of simultaneous photodeposition
of Rh metal onto TiO2 was about 250 times better than that obtained with bare TiO2.

In the present study, TNTs were fabricated via the electrochemical anodization method,
and photocatalytic hydrogen production from formic acid solution using TNTs was in-
vestigated with the simultaneous photodeposition of Rh metal. The effects of calcination
temperature and time for TNTs on the photocatalytic hydrogen production efficiency from
formic acid solution were evaluated. The reusability of Rh/TNTs for the production of
hydrogen from formic acid was also monitored. The TNTs were characterized before
and after photodeposition of Rh metal using X-ray diffraction (XRD), scanning electron
microscopy (SEM), photoluminescence spectra, and diffuse reflectance spectra.

2. Materials and Methods
2.1. Fabrication of TiO2 Nanotubes (TNTs)

The TNTs were fabricated via anodization of a titanium plate (1.0 × 7.0 cm), according
to a previous research report with minor modifications [33]. In brief, a titanium plate
was connected to the anode and a platinum plate was connected to the cathode of an
electrolytic cell. Hydrofluoric acid aqueous solution (1 wt%) was used as the electrolyte. To
prepare the TNTs, the Ti plate was anodized under ultrasonic treatment with a DC constant
voltage/current power of 20 V for 30 min. After anodization of the Ti plate, the fabricated
electrode was washed with methanol and deionized water. Finally, it was calcined at high
temperatures (300~700 ◦C) for 1~20 h under an air atmosphere using an electric furnace in
order to improve the crystallinity of the TNTs.

2.2. Photocatalytic Hydrogen Production

Hydrogen production with TNTs was performed with simultaneous Rh deposition [19].
The concentration of formic acid, amount of Rh3+, solution pH, and temperature were
chosen based on the optimal conditions identified in our previous work [32]. A Pyrex
column vessel reactor (inner volume 35 mL) was used for the photocatalytic hydrogen
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production from formic acid. Formic acid solution (25 mL) was added to the reactor. Then, a
TNT plate (1.0 × 5.0 cm) was added to the reactor. Next, RhCl3 solution (Rh concentration:
2 mg L−1) was added to the reactor. A 15 W black lamp with about 352 nm emission
(Toshiba Lighting & Technology Corp., Tokyo, Japan) was placed to the side of the Pyrex
vessel reactor as a light source. The light intensity was measured using a UV radio meter
(UIT-201, Ushio Inc., Tokyo, Japan), and the value was 0.25 mW/cm2. The formic acid
solution was continuously stirred in the presence of TNTs by a magnetic stirrer during the
light irradiation. Using a hot stirrer, the reactor temperature was kept constant at 50 ◦C. The
reactor was sealed with a silicon septum. The irradiation time was 1~5 h. The produced
H2 was extracted from the upper part of the reactor with a microsyringe (ITO, Co., Ltd.,
Tokyo, Japan) and measured using a gas chromatograph (GL Sciences, GC-3200, Tokyo,
Japan) with a thermal conductivity detector. A stainless column (4 m long, 2.17 mm i.d.)
packed with Molecular Sieve 5A (mesh 60–80) was used for the separation. The carrier gas
was 99.9% argon gas (Kawase Sangyo Co., Ltd., Kuwana, Mie, Japan). The temperature
conditions of GC were 50 ◦C for the injection, column, and detector. The flow rate of the
carrier gas was 7.0 mL/min.

Analysis time and analysis sample amount were 10 min and 250 µL, respectively. The
reproducibility of H2 generation was investigated, and relative standard deviations (RSDs)
were observed within 10% for more than three runs.

2.3. Characterization of TNTs

Before and after the light irradiation, the characteristics of TNTs fabricated under
different calcination conditions were evaluated by SEM image, X-ray diffraction (XRD),
photoluminescence spectrum (PL), and diffuse reflection spectrum (DRS) measurements.
XRD measurements were performed using a Rigaku RINT Ultima-IV diffractometer with Cu
radiation at a scan rate of 0.04◦/s in a scan range of 10–80◦. In order to monitor the morphol-
ogy of the TiO2 nanotubes, SEM observations were performed using a Hitachi S-4000 SEM
with an accelerating voltage of 25 kV. PL spectra of TNTs were observed using a RF-5300PC
spectrofluorophotometer (SHIMADZU, Kyoto, Japan). The diffuse reflectance spectra of the
TNTs were measured with a UV2450 UV–vis system (SHIMADZU, Kyoto, Japan). BaSO4
was used as a reference material in the diffuse reflectance spectral measurements.

3. Results and Discussion
3.1. Characterization of TNTs

SEM images of TNTs fabricated at different calcination temperatures before and after
light irradiation (TNTs and Rh/TNTs, respectively) are shown in Figure 1. A similar shape
(tube with a 60 nm average diameter) was confirmed before and after light irradiation for
TNTs prepared at 300 ◦C and 500 ◦C calcination temperatures. The phase crystallinities
for TNTs fabricated at less than 500 ◦C could be related to anatase TiO2. The length of the
nanotube arrays was approximately 400 nm. On the other hand, the shape and structure of
the nanotubes prepared at a 700 ◦C calcination temperature were degraded. These results
indicated that the tubular morphology of TNTs was stable at calcination temperatures of up
to 500 ◦C. Although large Rh particles with a diameter of 400~600 nm were deposited on
the TNT surface after the irradiation with light at 300 and 500 ◦C calcination temperatures,
small particles for Rh may be modified onto the inner surface of the TNTs.

The XRD spectra of TNTs prepared at different calcination temperatures were analyzed
before and after light irradiation. The results are illustrated in Figure 2, and the standard
card JCPDS is shown in Figure S1 (Supporting Information) as the reference. A strong rutile
phase peak was observed at 2θ = 27.5◦ for TNTs calcined at 700 ◦C before and after light
irradiation. The peak observed at 2θ = 27.5◦ corresponded to the (110) plane for a rutile
crystalline structure [34]. This peak was not observed for TNTs prepared at 300 ◦C and
500 ◦C calcination temperatures, which indicated different rutile and anatase phase ratios.
Moreover, similar peak positions were observed in the XRD patterns for TNTs prepared at
300 ◦C and 500 ◦C calcination temperatures before and after light irradiation. Since there
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was no Rh peak in the XRD pattern, it seems that the Rh metal was well deposited on the
TNT surface.
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Figure 1. SEM images of TNTs. Calcination temperature: 300 ◦C for (a–c), 500 ◦C for (d–f), and
700 ◦C for (g,h). (a,d,g) before irradiation. (b,c,e,f,h) after irradiation.
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Figure 2. XRD patterns of TNTs. Calcination temperature: 300 ◦C for (a,b), 500 ◦C for (c,d), and
700 ◦C for (e,f). (a,c,e) before irradiation. (b,d,f) after irradiation.
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Generally, the suppression of photogenerated electron hole pair recombination is re-
sponsible for weak fluorescence intensity, because more recombinations of excited electron
hole pairs give more PL emission intensity [35]. As shown in Figure 3, the peak intensities
of the PL spectra for TNTs prepared at 300 ◦C calcination temperatures were lower than
those obtained at 500 ◦C calcination temperatures, although their shapes were almost
the same.
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Figure 3. Photoluminescence spectra for TNTs. Calcination temperature: blue line for 300 ◦C and
red line for 500 ◦C. Since the TNTs were subjected to PL analysis after irradiation, the Rh metal was
modified onto the surface of TNTs.

UV–vis diffuse reflection spectroscopy (DRS) was used to evaluate the absorption
edges and band gaps of TNTs fabricated at different calcination temperatures. Hence,
the TNTs were evaluated using DRS after the photodeposition of Rh metal. Since the
absorption wavelength in a semiconductor is generally correlated to the band gap, the band
gap decreases with red-shifting absorption edges [36]. UV–vis reflectance spectra were
converted to absorbance according to the Kubelka–Munk equation (Figure 4a). Using Tauc
plots (plotting αhν vs hν), as shown in Figure 4b, the band gap energy of photocatalysts
can be determined [37]. As shown in the figure, significant absorptions were scarcely
observed for TNTs fabricated at 700 ◦C. Though the band gap for Rh/TNTs prepared at
500 ◦C calcination temperature was slightly larger than that of those prepared at 300 ◦C, a
greater absorption ability below 380 nm was observed for those prepared at 500 ◦C, relative
to those prepared at 300 ◦C.

3.2. Effect of Calcination Temperature

It was reported in a previous paper [32] that the optimum conditions for photocat-
alytic hydrogen production were 1.0 wt% formic acid concentration, solution pH 2.2, and
reaction temperature 50 ◦C. Therefore, the subsequent experiments with photocatalytic H2
production were performed under these experimental conditions.

The effect of calcination temperature use for the synthesis of TNTs on the photocat-
alytic production of hydrogen using TNTs with simultaneous deposition of Rh metal was
investigated. The results are shown in Figure 5. It can be seen that the amount of hydrogen
production was the highest with the TNTs calcined at 500 ◦C. Generally, a reduction of
recombination frequency of electrons and holes causes the enhancement of photocatalytic
activity. The recombination of electrons and holes seems to be decreased by the coexis-
tence of anatase and rutile phases for efficient charge separation at the phase junction [38].
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Here, the optimal anatase and rutile phase ratio and their crystallinities may have been
responsible for the maximum photocatalytic activity associated with TNTs prepared at a
500 ◦C calcination temperature. The results may be due to the fact that the light absorption
ability of Rh/TNTs prepared at 500 ◦C calcination temperatures was better relative to that
observed at 300 ◦C calcination temperatures. At a 700 ◦C calcination temperature, the
existence of more anatase phase and the collapse of tubular morphology of TNTs could be
the cause of the poor photocatalytic activity.
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Figure 5. Effect of calcination temperature on photocatalytic H2 production from formic acid with
TiO2 nanotubes with the aid of simultaneous Rh deposition. Reaction time: 3 h (blue bar) and 5 h
(red bar); reaction temperature: 50 ◦C; calcination time: 2 h.

3.3. Effect of Calcination Time

The effect of calcination time in the fabrication of TNTs on the photocatalytic hydrogen
production with TNTs was monitored. The results are illustrated in Figure 6. It was
observed that the hydrogen production was highest (54 µmol) after 5 h of black light
irradiation with TNTs fabricated via 10 h calcination at 500 ◦C. Better crystallinity of
TNTs would be formed at 10 h of calcination at 500 ◦C, improving the electron hole pair
formation rate. Hence, the optimum calcination conditions of 500 ◦C for 10 h were selected
for photocatalytic hydrogen production from formic acid solutions.
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3.4. Reusability of TNT Photocatalysts

In order to check the stability and reusability of the Rh/TNT photocatalysts, the
hydrogen production from a formic acid solution was observed for five cycles. The TNTs
prepared under the optimum conditions (500 ◦C for 10 h) were used. The results are shown
in Figure 7. The data showed that the photocatalytic activity for hydrogen production was a
little lower after the five runs, and there was no obvious loss of the photocatalytic hydrogen
production activity in the subsequent run. It was indicated that the high chemical stability
of Rh/TNTs for hydrogen production from formic acid solution could be confirmed by
catalyst lifetime tests.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 9 of 12 
 

 

Figure 6. Effect of calcination time on photocatalytic H2 production from formic acid with TiO2 

nanotubes with the aid of simultaneous Rh deposition. Reaction time: 3 h (blue line) and 5 h (red 

line); reaction temperature: 50 °C: calcination temperature: 500 °C. 

3.4. Reusability of TNT Photocatalysts 

In order to check the stability and reusability of the Rh/TNT photocatalysts, the hy-

drogen production from a formic acid solution was observed for five cycles. The TNTs 

prepared under the optimum conditions (500 °C for 10 h) were used. The results are 

shown in Figure 7. The data showed that the photocatalytic activity for hydrogen produc-

tion was a little lower after the five runs, and there was no obvious loss of the photocata-

lytic hydrogen production activity in the subsequent run. It was indicated that the high 

chemical stability of Rh/TNTs for hydrogen production from formic acid solution could 

be confirmed by catalyst lifetime tests. 

 

Figure 7. Cycled performance of photocatalytic H2 production from formic acid with TiO2 nanotubes 

with the aid of simultaneous Rh deposition. Reaction temperature: 50 °C; calcination temperature: 

500 °C; calcination time: 10 h. 

3.5. Mechanism of Hydrogen Production 

On the basis of the present study and previous literature for the formation of TNTs, 

the possible mechanism of fabrication of TNTs is proposed as follows [39–41]. The reaction 

occurring in the formation of TNTs by anodization of titanium plate is given as follows: 

2H2O           4H+ + O2 + 4e− (1) 

Ti + O2            TiO2 (2) 

0

10

20

30

40

50

60

70

0 5 10 15 20 25

H
2

p
ro

d
u

c
ti
o

n
 (

μ
m

o
l)

Time (h)

Figure 7. Cycled performance of photocatalytic H2 production from formic acid with TiO2 nanotubes
with the aid of simultaneous Rh deposition. Reaction temperature: 50 ◦C; calcination temperature:
500 ◦C; calcination time: 10 h.

3.5. Mechanism of Hydrogen Production

On the basis of the present study and previous literature for the formation of TNTs,
the possible mechanism of fabrication of TNTs is proposed as follows [39–41]. The reaction
occurring in the formation of TNTs by anodization of titanium plate is given as follows:

2H2O→ 4H+ + O2 + 4e− (1)

Ti + O2 → TiO2 (2)

TiO2 + 4H+ + 6F− → [TiF6]2− + 2H2O (3)

(a) A layer of TiO2 is formed on the titanium plate. (b) The layer of TiO2 is cracked,
and pores are formed due to the formation of crystals. (c) A complex is formed by the
reaction of fluorine ions with TiO2, and the pores grow due to the dissolution of TiO2.
(d) Simultaneously, the TiO2 layer also undergoes repassivation. (e) After that, a void is
formed between the pores. (f) As a result, TNTs are formed on the surface of the Ti sheet.

The mechanism for photocatalytic H2 production from formic acid solution using
TNTs with the aid of simultaneous Rh deposition is shown in Equations (4) to (9). An
electron and hole pair is formed after irradiation with light with a wavelength less than
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the band gap on the TNTs. In addition, Rh3+ is reduced to Rh metal, and the Rh metal is
deposited on the surface of TNTs. Then, the photogenerated electrons move from the TNTs
to Rh metal, and the movement of electrons can suppress the recombination of electrons
and holes. It is considered that the formate ions oxidize with photogenerated holes to
generate protons and CO2. The generated protons can be reduced on the surface of the Rh
metal to generate hydrogen gas. The optimum calcination temperature for TNTs for the
photocatalytic H2 production from formic acid with the aid of simultaneous Rh deposition
was 500 ◦C. Because the intensity of PL for TNTs prepared with a calcination temperature
of 500 ◦C was greater compared with that of TNTs prepared at a calcination temperature of
300 ◦C, the optimum calcination temperature could be attributed to better light absorption
ability and the crystallinities of Rh/TNTs prepared at 500 ◦C.

Nanotube TiO2 + hν→ electron + hole (4)

Rh3+ + 3e−(nanotube TiO2)→ Rh/nanotube TiO2 (5)

2H+ + 2e−(Rh/nanotube TiO2)→ H2 (6)

H2O + h+(nanotube TiO2)→ H+ + •OH (7)

HCOO− + •OH→ CO2 + H2O (8)

HCOO− + h+(nanotube TiO2)→ H+ + CO2 (9)

4. Conclusions

TNTs were synthesized via electrochemical anodization method, and the TNTs showed
excellent photocatalytic activity in hydrogen generation from formic acid solution with
the simultaneous deposition of Rh metal. The Rh-doped TNTs had admirable reusability
and were very stable up to the fifth cycle. The optimum calcination conditions were
500 ◦C over 10 h for photocatalytic H2 production from formic acid solution with the aid of
simultaneous Rh deposition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcs6110327/s1, Figure S1: Tetragonal anatase phase (JCPDs file
no. 21-1272, space groupI41 /amd) and the tetragonal rutile phase (JCPDs file no. 21-1276, space
groupP42 /mnm) for TiO2.
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