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Abstract: This study attempted to harness the dual benefit of adsorption and photocatalytic degrada-
tion for efficiently removing a model anionic azo dye, Orange G, from an aqueous solution. For this
purpose, a series of bifunctional nanohybrids containing different proportions of naturally occurring
biopolymer chitosan and ternary photocatalyst made of kaolinite, TiO2, and ZnO were prepared
through the dissolution of chitosan in acid and subsequent deposition on ternary photocatalyst. The
characterization through Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD),
field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrum (EDS)
have confirmed the successful fabrication of nanohybrids from TiO2 and chitosan. The adsorptive
separation of Orange G from the aqueous solution and subsequent degradation under solar irradia-
tion was thoroughly studied by recording the λmax value of dye in the ultraviolet–visible (UV-Vis)
spectrophotometer at various operating conditions of pH, dye concentration, contact time, and com-
positional variation. The nanohybrid (TP0.75CS0.25) fabricated from 75% ternary photocatalyst (w/w)
and 25% chitosan (w/w) removed 97.4% Orange G within 110 min at pH 2.5 and 10 mg/L dye concen-
tration. The relative contribution of chitosan and ternary composite on dye removal was understood
by comparing the experimental results in the dark and sunlight. Recyclability experiments showed
the suitability of the nanohybrid for long-term repeated applications. Equilibrium experimental data
showed a better correlation with the Langmuir isotherm and pseudo-second-order kinetic model. The
rapid and nearly complete removal capacity, long-term reusability, and simple fabrication technique
make this novel nanohybrid a promising advanced material for removing hazardous azo dyes from
industrial effluents.

Keywords: chitosan; adsorbent; photocatalyst; dye removal; wastewater treatment

1. Introduction

The textile and garments industries are recognized as major contributors to the severe
deterioration of surface water quality [1]. Large quantities of dyestuff are used in these
industries due to fabric processing and polishing the final products. These organic dyes
are non-biodegradable and present in the range of 10 to 200 ppm concentration in wastew-
ater. As a result, uptake of these wastewater causes serious health hazards, such as skin
irritation, kidney failure, or even cancer [2]. In addition, this is also a source of threat to the
environment. The natural photosynthetic phenomenon is interrupted by the inhabitation
of sunlight into the stream due to the colored compounds of the dyes. For example, vinyl
sulfone dyes, also known as azo dyes, are a class of reactive dyes effectively used for silk,
cotton, and wool. It is reported in literature that more than 30% of the used dyes remain in
the spent dye bath after the dyeing process [3,4]. Effluents from textile industries contain
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approximately 10–15% of the dyes used in the dyeing process and act as a source of harmful
gases, numerous inorganic and organic compounds, and toxic metals [5]. As a result, the
aquatic and terrestrial lives are adversely affected, and long exposure to these untreated
discharge toxic effluents causes serious health hazards and neurological disorders [6–8].
Since these azo dyes are carcinogenic and mutagenic, it is necessary to remove these dyes
from wastewater. The world is now seriously concerned with its environmental issues and
has adopted several policies associated with ‘green technology’, ‘eco-friendly industry’,
‘green banking’, etc. Polluted wastewater from textile industries are definitely harmful for
human beings and thus warrant us to seek the right initiatives for the remedies.

Environmental pollution is a ramification of the direct disposal of dyes to nearby
water bodies. Wastewater originating from the dyeing and finishing process is considered
high-strength wastewater due to the chemical oxygen demand (COD) concentration level
exceeding 1600 mg/L and a persistent strong dark color [9,10]. These harmful dyes are
taken up through the roots when high-strength wastewater comes in contact with plants
that grow near the industries [8]. Hence, it is a burning issue to find ways to degrade these
dyes from the effluents using simple and inexpensive materials so that they cannot come in
contact with the plants.

Therefore, major attention has been drawn to remedying this environmental problem
in the recent past [11,12]. Several chemicals, physical, and biological methods have been
reported in the literature for the removal of dyes from industrial effluents, such as advanced
oxidation, membrane filtration, coagulation, flocculation, biosorption, filtration, ozonation,
and so on [13–16]. Most of these methods are costly and non-feasible due to high energy
consumption [17]. However, the simplicity of design, effective nature of toxic substances,
and lower cost make the adsorption technique superior to other available methods [18,19].
There are numerous adsorbents available that have been used in this method, such as
activated carbon, biomaterials, chitosan, agro-biopolymers, and so on [18–20]. Activated
carbon has a higher adsorption capacity for the efficient removal of organic contaminants,
but the non-economic aspect of it, such as the difficulty in regeneration and high-cost
operation, led to the consideration of other adsorbents available in nature. For example,
chitosan, a biodegradable and non-toxic material used as an alternative adsorbent for the
removal of anionic dyes as the amino (–NH2) and hydroxyl (–OH) functional groups of
this can serve as the coordination and reaction sites [20–24]. The selective nature and high
effectiveness for the reduction of dye concentration to ppb levels make it a more suitable
adsorbent than any other conventional ion-exchange resins and commercial activated
carbons [25]. Additionally, it can be prepared from waste prawn shells which cause waste
problems and hazard to our environment. Thus, the use of chitosan is an excellent choice
for the adsorption of these stubborn dyes to ensure efficient textile dye removal by using
waste prawn shells to produce chitosan, a valuable material, recycle waste materials, and
reduce environmental pollution.

There are some limitations of chitosan which have been reported in the literature in the
recent past, such as the tendency to form a gel, float in water, and become soft in aqueous
media due to the high hydrophilic nature, higher solubility in acidic medium, low specific
gravity, low mechanical properties, and smaller surface area [26,27]. Therefore, these
limitations needed to be addressed properly, and the formation of composites with chitosan
resolve these issues. In a recent study, Soliman et al. designed a chitosan metal-oxide-based
novel nanocomposite for the elimination of disperse red 60 dye from aqueous solutions
which showed a maximum adsorption capacity of 100 mg/g [18]. In this regard, this study
commenced by preparing a novel nanohybrid containing chitosan and a ternary composite
(TiO2, ZnO, and kaolinite). The ternary composite has been studied and promised to be
used as an efficient adsorbent for the removal of azo dyes from wastewater due to its high
photocatalytic activity, non-toxicity, high photochemical stability, and low cost. Therefore,
we are interested in developing a novel nanohybrid of ternary nanocomposite and chitosan
for the most efficient removal of textile dyes by harnessing the dual nature of adsorption
and photocatalytic degradation.
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2. Materials and Methods
2.1. Materials

Chitosan was extracted from prawn shells obtained from a local prawn hatchery
(Satkhira district, Bangladesh). Lab-grade commercial titanium dioxide (TiO2) and zinc
oxide (ZnO) were purchased from MERCK KGaA (Darmstadt, Germany). Kaolinite is
obtained from locally available Bijoypur clay. Lab-grade Orange G (C16H10N2Na2O7S2)
dye was purchased from Sigma Aldrich, MERCK KGaA (Darmstadt, Germany). Purified
NaOH pellets, hydrochloric acid (35%), and buffer solutions (pH 4 and pH 7) have been
supplied by Active Fine Chemicals Ltd., Dhaka, Bangladesh. Acetic acid, acetone, methanol,
and ethanol were procured from Merck KGaA, Darmstadt, Germany.

2.2. Methodology
2.2.1. Preparation of the Nanohybrids
Preparation of Chitosan from Waste Prawn Shells

Preparation of chitosan from prawn shells involves three main steps: deproteinization,
demineralization, and deacetylation. About 10 gm of the prawn shell was first washed
in a 2 L beaker with distilled water for about 90 min at 80 ◦C with occasional stirring to
increase the rate of cleaning. After cleaning, the raw prawn shells were placed in an oven
at 60 ◦C for about 10 h. The dried shells then underwent deproteinization and were treated
with 3% NaOH (w/w) at a ratio of 1:18 (w/w) for about 3 h at 80 ◦C. Then, the proteins
underwent decantation for removal. To demineralize the shells, 3 M HCl was used at a
ratio of 1:18 (w/w) for about 4 h. In this step, the evolution of CO2 occurred, and chitin was
obtained. Then, the chitin was neutralized by washing with distilled water and was placed
in the oven at 60 ◦C for 10 h. To obtain chitosan from this dried chitin, it was deacetylated
by using 50% NaOH (w/w) for about 4 h at a ratio of 1:18 (v/v). Then, the chitosan was
obtained by filtering the solution and was washed with acid to remove the additional alkali.
The solubility of chitosan was tested using a 1% (v/v) acetic acid solution [28]. Figure 1
shows the images of prawn shells at different steps of chitosan preparation:
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Figure 1. Images of (a) raw prawn shells, (b) prawn shells after sorting, (c) prawn shells after
washing, (d) prawn shells after deproteinization, (e) prawn shells after demineralization, (i.e., chitin)
and (f) chitosan.

Preparation of Ternary Photocatalyst

The ternary photocatalyst was obtained from kaolinite, TiO2, and ZnO. These precur-
sors were mixed at an optimized composition of 50% kaolinite, 45% TiO2, and 5% ZnO in
deionized water. The mixture was then sonicated for about 60 min at 50 ◦C. The solid mass
was then isolated by evaporation in the oven at 100 ◦C for about 60 min. Then, the dried
product was ground to increase the surface area. The obtained powder then underwent
calcination in a muffle furnace at different temperatures. The synthesis was facilitated
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by this high-temperature environment. Then, the calcined product was ground again to
increase its reactivity in the dye removal operation [29]. Figure 2 illustrates the schematic
diagram of the preparation steps of the ternary photocatalyst.
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Figure 2. Scheme of ternary photocatalyst preparation.

Preparation of Nanohybrid Material

Three different nanohybrids with different weight ratios of ternary photocatalyst and
chitosan were prepared. The chitosan flakes were dissolved in 100 mL of 1 M acetic acid
solution. After that, the prepared ternary photocatalyst was added to the solution, and
the final mixture was sonicated for 50 min to obtain a homogenous viscous mixture. Then,
the mixture was added to a solvent mixture (15% NaOH and methanol in a ratio of 4:1
(v/v)) at a constant rate in a drop-wise manner that led to the formation of the composite
as beads. The beads were then washed multiple times to remove the additional NaOH
and placed in the oven at 80 ◦C for about 10 h. The dried product was ground with mortar
and pestle to make it finer and thus increase its surface area and reactivity [30,31]. The
fabrication of the nanohybrid was strongly controlled by the pH of the medium. Three
different nanocomposites were prepared with varying ratios of ternary photocatalyst and
chitosan, as shown in Table 1.

Table 1. Nanocomposites with varying ratio of ternary photocatalyst and chitosan.

Composite’s
Entity

Composite’s
Composition

% Ternary
Photocatalyst (w/w) % Chitosan(w/w)

Composite 1 TP0.25CS0.75 25 75
Composite 2 TP0.50CS0.50 50 50
Composite 3 TP0.75CS0.25 75 25

2.2.2. Characterization of Chitosan, Ternary Photocatalyst, and Nanohybrids
Fourier-Transform Infrared Spectrophotometry (FT-IR) Analysis

To identify the functional groups present in the samples and any chemical interactions
among the components of the nanohybrids, FT-IR spectra of samples were recorded on an
FT-IR 8400S spectrophotometer (Shimadzu Corporation, Japan) in the wavenumber range
of 4000 to 400 cm−1, resolution of 4 cm−1; and scans of 30. Approximately 1 mg of the
samples were ground with 100 mg KBr by agate mortar, and then, the pellet was made
from the mixture by applying pressure.
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X-ray Diffraction (XRD) Analysis

To analyze the phase of the samples, XRD patterns of the samples were recorded by an
X-ray diffractometer (Ultima IV, Rigaku Corporation, Tokyo, Japan) at room temperature.
Prior to XRD analysis, the samples were ground into fine powders using mortar and
pestle. Cu Kα radiation (λ = 0.154 nm) from a broad focus Cu tube operated at 40 kV and
40 mA was applied to the samples for measurement. The XRD patterns of the samples
were measured in the continuous scanning mode with a scan speed of 3◦/min and in
the scan range of 5 to 100◦. Bragg’s law was used to compute the basal spacing of the
crystalline samples.

Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray
Spectrophotometry (EDS)

An analytical scanning electron microscope (JEOL JSM-6490LA, Tokyo, Japan) was
used to analyze the sizes, surface morphologies, and shapes of the particles. The back-
scattered electron mode was operated at 20 kV accelerating voltage. Magnification of the
sample was employed to further investigate the samples in terms of their microstructures
and morphologies. The elemental composition of the prepared composite was determined
by taking its EDS spectra.

2.2.3. Removal of Orange G Dye
Preparation of Standard Solutions of Orange G

A stock solution of 500 ppm of Orange G was prepared by dissolving 0.125 g of Orange
G in distilled water in a 250 mL volumetric flask to reach a total volume of 250 mL. A series
of dilutions were made from this stock solution with concentrations of 5 ppm, 10 ppm,
20 ppm, 30 ppm, 40 ppm, 50 ppm, 60 ppm, 70 ppm, 80 ppm, 90 ppm, 100 ppm, and 150 ppm.
The λmax was determined, and a calibration curve of absorbance versus concentration was
drawn for Orange G. The concentration of Orange G in the aqueous solution was then
determined at its λmax using a UV–visible spectrophotometer (UV-2100PC, Human Lab
Instrument Co., Suwon-city, Korea).

Removal of Orange G Using the Nanohybrid Particles

Batch experiments were performed for the determination of the % removal of dye
using the nanohybrid particles. A total of 25 mL of viscous solutions of Orange G solutions
were taken in different 100 mL beakers. Then, 5 mg of nanohybrid was added to the
beakers. A mechanical shaker was utilized to shake the beakers at 120 rpm at room
temperature. Amounts of 0.1 M NaOH and 0.1 M HCl were introduced to optimize the pH
of the solutions. The Orange G loaded composites were separated from the suspensions
by centrifuging at 3000 rpm for 60 min, and the residual concentration of Orange G in the
solutions was determined by taking absorbance at 478 nm (λmax of Orange G).

The percentage removal of dye was calculated using the following formula (Equation (1)):

% Removal =
(Co − Ce)

Co
× 100% (1)

where Ce = the equilibrium concentration of Orange G (mg/L), and Co = the initial concen-
tration of Orange G (mg/L).

To find the maximum dye removal efficiency for the synthesized nanohybrid material,
several parameters were investigated to observe its behavior in different environments.
These parameters may have lesser or greater effects on the efficiency, and thus, we will
obtain the optimized situation for the nanohybrid to work in industrial applications. There-
fore, we focused on pH, initial dye concentration, compositional variation of nanohybrid,
contact time, degradation in dark and in sunlight, and desorption study while carrying
out the application of the nanohybrid material on the removal of Orange G dye. The
equilibrium adsorption data was tested by plotting in Langmuir and Freundlich adsorp-
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tion isotherm equations. The kinetics of the dye removal process were studied using the
pseudo-first-order and pseudo-second-order kinetic models.

Reusability Experiments

The reusability test was carried out for this nanohybrid and showed excellent removal
efficiency up to four cycles at the optimized conditions (pH: 2.5, nanohybrid: TP0.75CS0.25,
concentration: 10 mg/L, time: 110 min). After the end of each operation, the nanohybrid
was filtered and washed with alkali (with pH ≈12) to remove the adsorbed dye. The treated
dye was then washed with plenty of distilled water to remove extra alkali and finally dried
in the oven again. Then, this recovered nanohybrid was reused for the next operation.

3. Results & Discussion
3.1. Fourier-Transform Infrared (FT-IR) Analysis

The FT-IR spectra of chitosan (Figure S1) and ternary composite (Figure S2) are pre-
sented in the supporting documentation. The characteristic peaks for the corresponding
functional groups were observed in both spectrums. The FT-IR of the ternary composite, chi-
tosan, and their composites of different compositions are compared in Figure 3. The surface
chemistry of the quaternary nanohybrids represented in Table 1 could be well explained
by comparing their FT-IR transmission spectrum with the starting ternary nanocomposite
and chitosan. The comparison also provides valuable information on the interaction at the
interface of the two components.
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The characteristic peaks of kaolinite observed at 1115 and 1004 cm−1 were overlapped
to give a new peak at 1035 cm−1 in the prepared ternary composite. Another two character-
istic peaks of kaolinite at 3640 cm−1 and at 3670 cm−1, respectively, for the O-H stretching
bond and the Al-O-H stretching bond also disappeared. The illustration in geometry and
variation in intensity is shown in Figure 3. The peak of kaolinite that is gone completely in
the ternary composite is due to the high-temperature calcination. However, the characteris-
tic reflection from the (001) plane is visible in the spectra. All the characteristic peaks of
both the chitosan and ternary composite were present in the nanohybrid. This information
confirms the successful fabrication of the nanohybrid. Si-O stretching vibration of kaolinite
in ternary composite at 1041 cm−1 is also present in the nanohybrid which justifies the
presence of ternary composites [32,33]. Moreover, lower absorption intensity was observed
for Ti-O-Ti stretching vibration in the ternary composite.
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3.2. X-ray Diffraction (XRD) Analysis

The XRD pattern of commercial TiO2, ZnO, and ternary composite, as shown in
Figure 4, revealed well-defined reflections at 2θ values of 25.34◦, 37.82◦, 48.07◦, 53.92◦,
55.09◦, 62.71◦, and 68.8◦ [34–36]. These are the typical characteristic peaks of tetragonal
crystalline anatase-TiO2, and their matching (hkl) planes are (101), (004), (200), (105), (211),
(204), and (116), respectively. The appearance of sharp diffraction patterns indicates the
small size, high purity, and crystallinity of the sample [35–37]. The average crystallite size
of titania was calculated by the Debye–Scherrer equation (Equation (2)). The full width at
half maximum (FWHM) was calculated 2θ = 25.34◦. This is the most intense anatase peak
(101) in XRD. The Debye–Scherrer equation is given below:

D =
K λ

β cosθ
(2)

where D is the crystallite size in nanometers, K is a constant known as Scherrer’s constant
(K = 0.89), λ is the wavelength of X-ray for this analysis (λ = 1.54056 Å), β is full width at
half maximum (FWHM) (in radian) of the diffraction peak and can be measured from the
XRD pattern, and θ is the corresponding diffraction angle [34,37,38]. The crystallite size of
the TiO2 was found to be 56.68 nm.
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In Figure 5, sharp peaks reveal that the photocatalyst had high crystallinity, and the
presence of characteristic peaks of starting materials of different intensities justifies their
relative contributions accordingly. Characteristic peaks of kaolinite completely disappeared
in the ternary composite due to high-temperature calcination. Apart from chemical interac-
tions, it is also evident that the precursors underwent significant structural rearrangement
during the formation of the ternary composite.
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Two characteristic broad diffraction peaks were found in the XRD pattern of chitosan
(Figure 5) at 2θ around 9.96◦ and 19.91◦. This can be attributed to two crystalline regions in
the semi-crystalline structure of chitosan. However, some small additional peaks appeared
around 29.44◦, 35.98◦, and 39.44◦ [35,39].

3.3. Energy-Dispersive X-ray Spectroscopy (EDS) Analysis

EDS spectra of nanohybrid were recorded to investigate the elemental composition and
presence of impurities. The EDS spectrum of the nanohybrid is displayed in Figure 6, which
confirms the presence of six different elements (C, Al, Si, Zn, O, and Ti). Therefore, it could
be stated without any doubt that TiO2, ZnO, kaolinite, and chitosan were present in the
nanohybrid. Recording the EDS spectrum at different particles of the nanohybrid revealed
nearly identical elemental composition, which strongly suggests the uniform chemical
combination of ternary nanohybrid with chitosan. Additionally, the elemental composition
found from the EDS analysis was identical to the theoretical calculation (Table 2). EDS
spectrum also indicates that the nanohybrid was free from any impurities. The presence
of impurities is undesirable since they often severely compromise the performance of the
adsorbent/photocatalyst.

Table 2. Elemental composition of the novel nanohybrid confirmed by EDS analysis.

Element (KeV) Mass%

O 0.525 53.06
Al 1.486 5.05
Si 1.739 5.77
C 2.115 1.07
Ti 4.508 35.01
Zn 1.012 0.04

Total 100.00
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3.4. Field Emission Scanning Electron Microscopy (FE-SEM) Analysis

The FE-SEM analysis was performed to investigate the surface morphology and
particle size distribution. As shown in Figure 7, the surface of ternary particles was smooth
with good dispersion. The magnification of a random particle, as displayed in Figure 7a,
clearly demonstrates the flaky nature of the particles. The estimated particle size of TiO2
ranged from 50 to 250 nm, as shown in Figure 7b. It showed the majority of the particles
duel within the 100 to 150 nm range (58.93%).
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However, the FE-SEM images of the nanohybrid showed different morphological
aspects compared to the ternary photocatalyst (Figure 7c). The hexagonal shape of the
particles was achieved through the fabrication of the novel nanohybrid, confirmed by
FE-SEM. The surface also showed no propensity to agglomeration with the majority of
particles (44.68%) staying within 101–150 nm particle size. In general, the approximate sizes
of the particles were found in a range of 50 to 250 nm. From Figure 7b,c, we can see that
about 34% of nanohybrid particle sizes were in the nanoscale range (1–100 nm). However,
in the case of the ternary photocatalyst, only 26% of particles were able to duel in this
range. Therefore, it can be easily concluded that the obtained nanohybrid particles were
at a higher percentage in terms of nanoscale range compared to the ternary photocatalyst.
The uniform wrappings of the ternary nanohybrid by long molecular chains of chitosan
with greater efficiency were able to prevent agglomeration. This phenomenon explains
the lowering of particle size of nanohybrids. The wrapping of the TiO2 surface with soft
and flexible chitosan could also explain the shift in morphology from flaky to hexagonal.
This morphological shift also supports the interfacial interaction of ternary with chitosan.
In addition, it should be stated that no odd structures were detected on the surface of the
nanohybrid, which is highly expected considering the application point of view.

3.5. Application of the Nanocomposite for Removal of Orange G
3.5.1. Fixation of Wavelength of Maximum Absorbance (λmax) and Calibration Curve of
Orange G

For the fixation of the wavelength of maximum absorbance (λmax) of Orange G, UV-
visible spectrum of 5, 10, 20, 40, and 60 ppm standard solutions of dye were taken separately
by UV-visible spectrophotometer (Human Lab instrument Co., Suwon-city, Korea) in the
wavelength range of 200 to 800 nm. The wavelength where the maximum absorbance
occurred was taken as the λmax of Orange G. As shown in Figure 8a, the λmax of Orange G
was found to be 478 nm, and all the absorbances of the Orange G solutions were measured
at this wavelength.
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Figure 8. (a) UV–visible spectrum of standard Orange G solutions at different concentrations and
(b) calibration curve of Orange G.

The calibration curve (Figure 8) was drawn by plotting the data values of absorbance
at 478 nm against various concentrations of Orange G. The curve was then used for the
calculation of the unknown concentration of Orange G solutions.

3.5.2. Effect of Different Parameters on Removal of Orange G

To find out the maximum dye removal efficiency for the synthesized nanohybrid
material, it would be wise to work with several parameters to observe its behavior in
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different environments. These parameters may have a lesser or greater effect on the
efficiency, and thus, we will obtain the optimized situation for the nanohybrid to work
in industrial applications. Therefore, we have focused on several parameters (discussed
below) while carrying out the application of the nanohybrid material on the removal of
Orange G dye.

Effect of Compositional Variation of Nanohybrids

Nanohybrids with three different compositions have been prepared to see how the
efficiency changes with the variation in the composition of the raw material while being
fabricated. The photocatalyst used in this study is an optimized ternary photocatalyst
with a compositional ratio of 50% kaolinite, 45% TiO2, and 5% ZnO and was reported
as highly efficient for low concentration of dye in literature by Hasan et al. [29]. The
major incorporation of low-cost kaolinite without compromising its efficiency makes this
photocatalyst far more viable for industrial application than other photocatalysts available
on the scene. Therefore, it was chosen for this study to fabricate a novel nanohybrid with
chitosan. Here, this photocatalyst was taken at ratios of 3:1, 1:1, and 1:3 with chitosan to
fabricate a series of nanohybrids to demonstrate its relative efficiency, and the results are
shown in Figure 9.
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Figure 9. Effect of compositional variation on the removal of Orange G by nanohybrids.

The nanohybrid (Composite 3) which contains 75% ternary photocatalyst and 25%
chitosan showed maximum efficiency in dye removal. The efficient coating of all photocat-
alysts by the long-chained giant chitosan molecule can be attributed to this phenomenon.
This causes an optimized synergistic effect of adsorption and photodegradation on dye
molecules and a higher percentage of dye are removed. As for the other two nanohybrids
composed of the ratios of 1:1 (TP0.5CS0.5) and 1:3 (TP0.25CS0.75), the adsorption property
dominates more than the synergistic effect due to the lesser amount of photocatalyst coated
by chitosan. Therefore, the dye removal efficiency experiences a regression, as shown
in Figure 9.
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Effect of pH

In Figure 10, the maximum efficiency has been found at pH = 2.5 for Composite 3
(TP0.75CS0.25). The nanohybrid material which has been used for the removal of anionic
Orange G dye contains chitosan and a ternary photocatalyst. Since photocatalysis occurs
on the surface, the performance of the photocatalyst is greatly influenced by the solution
pH, the pollutant type, and the surface’s ability to adsorb the pollutant [30]. At pH = 2.5,
chitosan is protonated at its optimum condition which pulls anionic Orange G dye towards
it due to the electrostatic attraction force and results in maximum adsorption on the surface.
The ternary photocatalyst, on the other hand, similarly shows maximum photocatalytic
efficiency due to the occurrence of a high positive surface charge. As a result of these two
optimum conditions for adsorption and photocatalytic degradation, the prime synergistic
benefit from the nanohybrid has been obtained at pH = 2.5, justified by the peak at pH = 2.5
in Figure 10.
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(TP0.75CS0.25).

At a pH lower than 2.5, dye removal by nanohybrid decreased. Because at pH below
2.5, the dissolution of chitosan is higher due to increased protonation, and the interaction
of protons with azo linkage causes a decrease in electron density at the azo group, resulting
in lower photocatalytic degradation. The right-hand side of the peak also showcases a
regression in dye removal efficiency for the synthesized nanohybrid. The environment
where pH is higher than 2.5 contributes to the reduction of the degree of protonation of
amino functional groups in chitosan. As a result, a lesser number of anionic dyes are
attracted which eventually contributes to the rise of the abundance of negative charges.
Thus, it can be assumed that repulsion forces overweighed the attractive forces as the pH of
the environment increases. As a result, adsorption capability and photocatalytic efficiency
of the nanohybrid compromises accordingly, and a decline in removal efficiency is observed
at pH higher than 2.5.
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Effect of Initial Dye Concentration

The initial dye concentration plays a pivotal role to overcome all the mass transfer
resistance of dyes between the aqueous and solid phases. Therefore, the influence of
different initial dye concentrations on the removal efficiency by Composite 3 (TP0.75CS0.25)
has been examined in this study at pH 2.5 and 0.2 gL−1 adsorbent concentrations for 120
min. It is generally observed in the literature that dye removal efficiency is reported to
increase initially with the increase of initial dye concentration up to a saturation point and
then slowly decreases as a further increase of dye concentration occurred [40,41]. In this
study, there is also an upward curve observed up to 10 mg/L followed by a decline in dye
removal efficiency (Figure 11).
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Figure 11. Effect of solution concentration on the removal of Orange G by nanohybrid Composite 3
(TP0.75CS0.25). The pH was maintained at 2.5, and the amount of adsorbent was 0.2 g/L.

As initial dye concentration increases, the concentration gradient gradually rises
between dye molecules and the nanohybrid surface. This gradient of concentration plays
a pivotal role to draw dye molecules onto the surface of the material. As long as the
saturation of the surface does not occur, the adsorption of the dye molecule continues to
escalate. That is why a sharp upward curve has been found initially with the increase
of dye concentration. The saturation of the material surface has seemingly occurred at
10 mg/L in this study, which can be attributed to the fact all the free active sites on the
surface are covered by dye molecules at this concentration. Therefore, it is obvious that a
decline in dye removal efficiency will happen at any concentration above 10 mg/L for a
fixed dose of material, and it has been observed accordingly in the figure as well. Moreover,
phenomena, such as an increase in intra-particle diffusion as a function of concentration,
can also be responsible for this type of regression in dye removal efficiency.

As the material has photocatalyst activity, we should also carefully discuss this to
find out how this behavior affects the dye removal efficiency along with adsorption. The
photodegradation capability of the synthesized nanohybrid can be attributed to the prob-
ability of the formation of OH radicals (primary oxidants) that react with dye molecules.
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Initially, more dyes are found available for the nanohybrid to react as the concentration
increases, as we discussed earlier. Until 10 mg/L, this process continues. However, the
surface of the material seems to be fully covered by the presence of dye molecule due to
enhanced adsorption brought by chitosan at 10 mg/L, and as a result, the penetration of
light to the surface decreases. Thus, the relative number of available free radicals to attack
the dye molecules decreases for the fixed amount of material dose, and thus, the rate of
dye degradation also decreases. In addition, the adsorbed dye molecules also shield the
UV light to penetrate the catalyst surface and absorb it. This phenomenon leads to lesser
available UV photons to generate free radicals [42,43]. Therefore, the photocatalytic activity
of the nanohybrid drops after 10 mg/L, and a gradual downward curve can be seen in %
removal efficiency versus the initial dye concentration graph, as shown in Figure 11.

Effect of Contact Time

For practical application, it is essential to optimize the contact time for a material to
harness the best possible outcome within a given time. Hence, the removal efficiency of
Orange G dye by the synthesized nanohybrid material (Composite 3 (TP0.75CS0.25)) at an
optimum pH of 2.5, dye concentration of 10 mg/L, and fixed adsorbent dose has been
investigated and is shown as a function of time (0–140 min) in Figure 12.
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(TP0.75CS0.25).

The removal efficiency of the nanohybrid increases during its first 110 min of applica-
tion followed by a steady equilibrium state until the end of the application. For materials
with the dual properties of being an adsorbent as well as a photocatalyst, this initial rise in
removal efficiency can be attributed to the ability of the vacant site of the adsorbent to draw
more dye molecules onto it and the increased number of photogenerated free radicals with
time [42,43]. The equilibrium state, however, can be caused by several reasons, such as the
nearly complete coverage of the vacant site of the adsorbent by dye molecules, inhibition
of the active site of the catalyst by the by-product deposits, and competition between dye
molecules and the intermediate degraded product to reach the catalyst surface [43].



J. Compos. Sci. 2022, 6, 304 15 of 21

3.5.3. Control Experiments

For a better understanding of the dual effect of the nanohybrid (Composite 3,TP0.75CS0.25),
it is important to carry out operations both in daylight and darkness. This will reveal
to what extent the photocatalytic activity can affect the dye removal process along with
the adsorption. The dual benefits were obtained when the process was optimized under
solar irradiation. The blank experiments reveal the total percentage removal, whereas the
experiment in the dark shows how much degradation occurred due to the photocatalytic
activity of the catalyst. The results of the control experiment are displayed in Figure 13.
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Figure 13. Comparison of removal of Orange G in darkness and in presence of sunlight for Composite
3 (TP0.75CS0.25).

In the case of the experiment under direct sunlight with Composite 3 (TP0.75CS0.25),
it is found that the concentration of the dye solution in optimum pH and concentration
remained unchanged when it was irradiated without the catalyst. However, in the presence
of the catalyst, 90% removal of dye was found in the first 15 min. These observations
indicate that without the photocatalyst, the dye solution did not undergo any photodegra-
dation. When the experiment was carried out in dark conditions, about 15% removal was
obtained in the presence of the catalyst. As the dark environment excludes the possibility of
any photodegradation occurrences, this phenomenon can be solely attributed to the ability
of adsorption of the catalyst of the dye molecules. Hence, the rest of the percentage removal
can be concluded due to photocatalytic degradation in the presence of solar radiation. From
the control experiments, it is very clear that neither adsorption nor the photodegradation
alone could lead to the highest achievable limit of dye molecules removal from the aqueous
solution under the optimized conditions. The synergistic effects of both the adsorption and
photocatalytic activities contribute to the almost complete removals of the dye molecules
that strongly justify the fabrication of the quaternary nanohybrid.
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3.5.4. Reusability/Recyclability Experiments

To be a suitable material in industrial application, repeated long-term use with easy
regeneration and without compromising efficiency is essential. This will benefit the process
by making it a cost-effective and more feasible one. In this study, the fabricated nanohybrid
material was investigated for up to four cycles and showed almost the same efficiency in
optimum conditions. The regeneration was done by treating with alkali (with pH ≈12)
followed by the subsequent thorough washing with distilled water and drying after the
end of each cycle. The results of this recyclability experiment are displayed as a bar chart
in Figure 14.
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Figure 14. Demonstration of reusability of the nanohybrid for the removal of Orange G up to
four cycles.

The bar chart showed that the nanohybrid displayed a very satisfactory removal
performance up to four cycles with a gradual decrease. This fall in performance can be
attributed to the poisoning effect of degraded products on the active sites of the catalyst.
This effect causes a blockage of solar radiation on the surface of the catalyst. The loss of
material during the successive washing can also contribute to this deficiency in perfor-
mance [44,45]. Nevertheless, the nanohybrid material showed satisfactory potential for
long-term repeated use for the removal of dyes from wastewater. With the incorporation of
very cheap kaolinite in large amounts and the ability of nearly complete and fast removal
of azo dye with long-term reusability, it is very evident that this nanohybrid is a strong
candidate for industrial scale uses.

3.5.5. Adsorption Isotherm

Adsorption isotherm provides valuable insights into the nature and mechanism of
adsorption. The equilibrium adsorption data in dark was tested by plotting in Langmuir
and Freundlich adsorption isotherm equations (Figure 15).
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Orange G.

The value of the linear regression correlation coefficient (R2) was higher in the Lang-
muir isotherm plot (R2 = 0.98862) than the Freundlich isotherm plot (R2 = 0.95414), i.e., the
experimental adsorption values were better fitted in the Langmuir isotherm model. The
strong correlation of equilibrium adsorption data with Langmuir isotherm is indicative of
homogeneous and monolayer adsorption of anionic Orange G molecules on the protonated
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chitosan part of the quaternary nanohybrid. The isotherms data were analyzed, and the list
of the obtained parameters is provided in Table 3.

Table 3. Parameters for Langmuir and Freundlich adsorption isotherms.

Langmuir Isotherm Freundlich Isotherm

qexp (mg/g) qmax (mg/g) KL R2 KF 1/n R2

48.7 46.4 −2.98 0.98862 24.74 0.16807 0.95414

3.5.6. Kinetic Model Analysis

The kinetics of the dye removal process were studied using the pseudo-first-order and
pseudo-second-order kinetic models. Figures 16 and 17 shows the pseudo-first-order and pseudo-
second-order kinetic plots for the adsorption of Orange G on the nanohybrid, respectively.
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The value of R2 was higher in the pseudo-second-order kinetic plot (R2 = 0.99129) than
the pseudo-first-order kinetic plot (R2 = 0.97576). From the regression analysis, it suggests
that to reach the equilibrium, the removal of Orange G dye followed the pseudo-second-
order kinetics. The higher correlation of experimental data with pseudo-second-order
kinetics indicates the chemisorption of anionic Orange G on the positively charged chitosan
surface through the electrostatic forces of attraction. The adsorption of Orange G on chitosan
is immediately followed by a very fast catalytic degradation by the ternary component in
the nanohybrid under solar radiation [23,46]. The kinetics data were analyzed, and the list
of the obtained parameters is provided in Table 4.

Table 4. Comparison of pseudo-first-order and pseudo-second-order parameters.

Pseudo-First-Order Pseudo-Second-Order

qe.exp (mg/g) qe1 (mg/g) K1 R2 qe2 (mg/g) K2 R2

48.7 58.095 0.03 0.97576 63.61 0.00039 0.99129
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4. Conclusions

This study demonstrates significant insights into the suitability the prepared novel
nanohybrid for removing hazardous dyes from industrial effluents. A very simple and
cost-effective method has been reported in this study for the fabrication of the nanohybrid
at room temperature (25 ◦C). The surface chemistry, crystallinity, morphology, elemental
distribution, and thermal stability of the nanohybrid were thoroughly illustrated using
FTIR, XRD, FE-SEM, EDS, and TGA techniques, respectively. The successful binding of
chitosan with the ternary photocatalyst at the interface was understood from different
physico–chemical characteristics of the nanohybrid from the starting TiO2, ZnO, kaolinite,
and chitosan, which have been elaborately described with the help of the aforementioned
analytical techniques. Very fast and nearly complete removal of Orange G from the aque-
ous solution by the reusable nanohybrid was the fascinating feature of this study. The
quaternary nanohybrid containing 75% ternary photocatalyst (w/w) and 25% chitosan
(w/w) showed better performance in dye removal efficiency of 97.4% compare to either
the ternary photocatalyst [29] or the chitosan [23] alone. The contribution of both ternary
photocatalyst and chitosan in dye removal was understood by carrying out experiments
with the nanohybrid in dark. The degradation process followed the Langmuir isotherm
and pseudo-second-order kinetics. Finally, it can be concluded that this study has shown
tremendous promise for the widespread applications of this novel nanohybrid in removing
hazardous pollutants from industrial effluents.
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