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Abstract: The sensitivity of polymer-bonded explosives (PBXs) can be tuned through adjusting
binder material and its volume fraction, crystal composition and morphology. To obtain a better
understanding of the correlation between grain-level failure and hot-spot generation in this kind of
energetic composites as they undergo mechanical and thermal processes subsequent to impact, a
recently developed interfacial cohesive zone model (ICZM) was used to study the dynamic response
of polymer-bonded explosives. The ICZM can capture the contributions of deformation and fracture
of the binder phase as well as interfacial debonding and subsequent friction on hot-spot generation.
In this study, a two-dimensional (2D) finite element (FE) computational model of energetic composite
was developed. The proposed computational model has been applied to simulate hot-spot generation
in polymer-bonded explosives with different grain volume fraction under dynamic loading. Our
simulation showed that the increase of binder phase material volume fraction will decrease the local
heat generation, resulting in a lower temperature in the specimen.

Keywords: polymer-bonded explosive composite; interfacial zone model; finite element simulation;
crack propagation; hot-spot generation

1. Introduction

Polymer-bonded explosives, also called PBXs, are composite systems in which small
explosive crystals are bonded by a polymer. PBXs are developed in military affairs, aero-
nautics and the space industry. PBXs have many potential advantages. Polymer matrix is
an elastomer and tends to absorb shocks, making the PBX very insensitive to accidental
detonation. Hard polymers can produce PBX that is very rigid and maintains a precise
engineering shape even under severe stress. The binder also allows PBXs to be pressed
and machined to desired shapes and sizes [1]. To understand the behavior/performance
of PBXs, an extensive amount of research work has been carried out in terms of both
experiment and numerical simulation. Palmer et al. [2,3] investigated and analyzed the
distribution of stress, failure strength and fracture behavior of PBXs with different composi-
tions. It is important to keep a low sensitivity and high explosiveness when optimizing the
mechanical properties. In their experiment, compositions based on microsized crystals were
the strongest. Other studies focused on the characterization of heterogeneous microstruc-
tures [4,5], fracture and deformation [6–9], the effects of temperature and strain-rate [10]
and the correlation between microstructure and fracture behavior [11].

Microcrack evolution inside PBXs was considered to be the most important phe-
nomenon during impact [12,13], and the friction between microcrack surfaces was consid-
ered to govern the ignition. Bennett et al. [14] proposed a viscoelastic cracking constitutive
model (visco-SCRAM) and which was widely used. Liu and Chen applied the visco-
SCRAM to non-shock impacts to relate the impact velocity to ignition time, sample size and
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the influence of the projectile shape [15,16]. Reaugh et al. [17] developed a high explosive
response to the mechanical stimulus model (HERMES) by simultaneously considering
the yield strength, the equation of state, particle fractures and also built up the relation-
ship between cracks and ignition. Barua and Zhou [1,18,19] developed a Lagrangian
framework based on the cohesive finite-element model to analyze the crack evolution
of the interface between the explosive crystal and polymer and to further investigate
the ignition induced by the shock wave generated from the high-velocity impact. The
obtained microstructure-response relationship can be used to evaluate the initiation sen-
sitivity of energetic composites [20]. Xiao et al. [16] implemented the model in ABAQUS
to predict the damage responses of PBX under impact loading. The computational results
were verified by experiments. He et al. [21] used the two-dimensional (2D) graphene
nanoplatelets (GNPs) to enhance the thermal conductivity of PBX. Banerjee et al. [22]
applied the Lagrangian formula to study the effect of particle/binder debonding on the
elastic modulus of the glass-Estane PBX simulant. Wu et al. [23] used the rate-dependent
viscoelastic cohesion zone model of the adhesive and the continuous damage model of the
HMX grains to simulate the response of the PBX 9501 in the Brazilian compression test.
These findings indicate that grain fracture and grain/binder debonding play an important
role in the failure of PBX. The behavior of the adhesive is extremely important because it
will affect the mechanical response of the polymer composite. The stiffness of the adhesive
is five orders of magnitude lower than the stiffness of the explosive crystal [24]. Parker et
al. [25] find that there is some safety benefit for having binders in HMX, especially when
the binder is thermally stable.

As we know, the material interface plays an important role in the material damage
process in this kind of composite materials. We applied the recently developed generalized
interfacial zone model to investigate the damage process in energetic composite materials.
A computational model and simulation tool has been developed for more advanced study
since different interface behaviors can be modeled. In this research, we built a 2D com-
putational model and developed custom-designed simulation software to obtain a better
understanding of the correlation between grain-level failure and hot-spot generation in
energetic composites as they undergo mechanical and thermal processes subsequent to
impact. The interfacial cohesive zone model (ICZM) was used to model different interfaces
in the model and to simulate hot-spot generation in polymer-bonded explosives with
different grain volume fraction under dynamic loading. Our simulation results showed
that the volume fraction of binder phase material play an important role on the local
heat generation.

2. Computation Model
2.1. Geometric Model and Boundary Conditions

In this study, we develop a 2D computational model of energetic composite. The
proposed computational model contains grain, a binder phase and an interface between
grain and binder. To create the geometry of this computational model, we generate
randomly distributed mineral tablets via Voronoi tessellation [26]. Then, we recess the
edges of each original polycrystalline grain in parallel towards the centroid of the grains
with a designated distance to generate a thin layer binder phase between adjacent grains.
After that, we embedded interfaces between the binder phase and grain to govern the
interface behavior. To simulate crack initiation and propagation of the model material,
cohesive zones are also built in grain and binder phase. The geometry structure is shown
in Figure 1. The dimension of the 2D model is Lx × Ly = 3 mm× 3 mm with 144 grains.
As shown in Figure 1, a velocity boundary condition with a boundary velocity 2500 m/s is
applied on the top and bottom edges of the specimen and the left and right edges of the
specimen are set as free boundary conditions.
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Figure 1. Geometric model with interface and boundary conditions.

2.2. Interfacial Zone Model

Polymer-bonded explosives contain grain and binder. To describe the interface de-
formation behavior, an interfacial zone model was proposed to mimic various interfacial
behaviors. The interfacial zone is widely used to study composite material failure pro-
cess [27–35]. The proposed interfacial zone model provides a numerical tool to study
material response through defining different material interface behaviors [35,36]. Figure 2
shows the traction–separation relations in surface normal and tangential directions, which
were used to govern the interfacial behaviors. The relationship includes four deforma-
tion stages in normal direction: compressive contact stage (0 ∼ δ0), elastic stage (δ0 ∼ δc),
damage stage

(
δc ∼ δ f

)
and complete failure stage

(
δ f ∼ +∞

)
. In the shear traction–

separation law, it has similar deformation stages: elastic stage (0 ∼ δc), damage stage(
δc ∼ δ f

)
and complete failure stage

(
δ f ∼ ∞

)
with symmetry in both directions. The

interface toughness is the area under the traction–separation curve and the normal and
shear interface toughness are respectively defined as:

∅n =
∫ δfn

δ0

Tdδ (1)

∅t =
∫ δft

0
Tdδ (2)

Figure 2. Traction–separation relations used to describe interfacial behaviors: (a) normal direction;
(b) tangential direction.
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The interfacial traction–separation laws take the following form:

Tn =


σc

(
∆n−δ0
δdn−δ0

)
exp(1) exp

(
− ∆n−δ0

δdn−δ0

)
∆n ≤ δdn

σc

(
δ f n−∆n
δ f n−δn

)pn
δdn < ∆n < δ f n

0 ∆n ≥ δ f n

(3)

Tt =


τc
√

exp(1)
(

∆t
δdt

)
exp

(
− ∆2

t
2δ2

dt

)
0 ≤ |∆t| ≤ δdt

τc
∆t
|∆t |

(
δ f t−|∆t |
δ f t−δdt

)pt
δdt < |∆t| < δ f t

0 ∆n ≥ δ f t

(4)

where σc and τc are cohesive strength in the normal and tangential direction, respectively;
δdn and δdt are critical separation. The δ f n and δ f t are normal and tangential failure
separation. The δ0 is the equilibrium position and exp(1) = 2.71828. The variables n
and t represent normal and tangential direction, respectively. In this study, we applied
zero-thickness cohesive interfacial zone to model the interface, which was governed by the
traction–separation law.

2.3. Heat Generation in the Model

The frictional work produces a hot spot, releases heat and then temperature is in-
creased around the crack. The rate at which heat is generated at the frictional contact
is [37]:

h = t · [v] (5)

where t is the contact traction and [v] is the jump in velocity across the contact.
The generation of heat increases the heat at the nodes on the contact surfaces.

h1

h2
=

√
k1ρ1c1√
k2ρ2c2

(6)

where hi represents the heat rate, ki, ρi and ci represent the thermal conductivities, mass
densities and the heat capacity of the two contacting materials (i = 1, 2).

To evaluate the temperature rise at the node pair, a thermal energy averaging scheme
is used [1]

∆T =
∑n

i=1 hi

∑n
j=1 mjcj

(7)

where n represents the number of the node pair, mj is the lumped mass and cj is the lumped
thermal capacitance of the j th node at the junction.

2.4. Finite Element (FE) Implementations

Following standard procedures and neglecting the body force, the principle of virtual
work of finite element formulation can be written as:∫

Ω
ρü · δudΩ =

∫
Γext

T · δudS +
∫

Γinter

Tinter • δ∆dS−
∫

Ω
P : δFdΩ (8)

where Ω, Γinter , Γext are the volume, interface boundary and external traction boundary
of element in the reference configuration, respectively; P is the first Piola–Kirchhoff stress
tensor; F is the deformation gradient; ∆ denotes the interfacial displacement jump across
the interfaces; T denotes the external traction vector and Tinter is the interfacial bonding
traction vector; ρ represents the material density in the reference configuration.

2.5. Material Properties

In our study, the material models of grain and binder phase are elastic. The material
properties for grain and binder phase are listed in Table 1. The binder is a common
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polymer known as ESATNE 5703 and used in explosive PBX 9501. The grain material is
HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). The parameters of different interface
property are listed in Table 2.

Table 1. Material properties [1].

Material Property HMX Estane

Young’s modulus 25,325.0 MPa 0.77 MPa (Loading modulus)
Density 1.58 g cm−3 0.90 g cm−3

Specific heat 1254.0 J kg−1 K−1 1500.0 J kg−1 K−1

Poisson’s ratio 0.250 0.499

Table 2. Parameters of interface property [1].

Parameters of Interface Grain/Grain Binder/Binder Grain/Binder

σn( MPa ) 100 38.4 35
(δdn − δ0) (µm) 5.0 10.0 4.62(
δ f n − δ0

)
(µm) 5.0 10.0 4.62

pn 0.0 0.0 0.0
τt (MPa) 100 38.4 35
δdt (µm) 5.0 10.0 4.62
δ f t (µm) 5.0 10.0 4.62

pt 0.0 0.0 0.0

3. Simulation Results

In material science and solid mechanics, material deformation and failure are very
important to the determination of the integrity of the structure. Knowing the material
failure modes can help us to improve the material’s structure and protect it against potential
failure. Numerical simulations were performed to investigate the failure process in the
composite material. All simulations were conducted by using a custom-designed finite
element package, which was developed by Zeng and his co-workers [30,31,35,36,38,39]
by using the Fortran computer language. The verification of the code and convergence
study on specimen size and mesh size were conducted in our previous studies in composite
materials with similar structures [27,29,32].

In cohesive finite element modeling, when the separation at the interface reaches its
critical separation (δc), the crack will initiate. As more cracks initiate and nucleate, they
will coalesce to form big cracks. Through analysis of the fracture pattern in the specimen,
we found that the cracks initiated at the interface between grain and binder. As loading
increases, intergranular cracks propagated along an inclined angle via relative sliding
between grain and blinder (Figure 3).

As the loading keeps increasing, we observed that some hot spots were generated
at the damaged interface between grain and binder as shown in Figure 4. When the
intergranular cracks grows, the specimen releases energy near the crack. In the stress
concentration area, more likely the interfaces will reach their critical separation. Then crack
will initiate and propagate as loading keeps increasing. When damage happens at a specific
location, the stress will be released and a hot spot will be generated. The temperature
increase is due to interface damage as shown in Figure 4.
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Figure 3. Snapshots of stress distribution (σ22) under impact loading: (a) initial stage; (b) stress
concentration; (c) crack initiation; (d) crack coalescence.

Figure 4. Snapshots of temperature distribution in specimen:(a) initial stage; (b) crack initiation;
(c) crack propagation; (d) final stage. As loading increases, the hot-spot was generated at the damaged
interface between grain and binder.
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In this study, we used an interfacial zone model to study the dynamic response
of polymer-bonded explosives. The volume fraction of grain and binder phase play an
important role on the material response. We chose three different grain volume fractions of
64%, 75% and 82% to determine the stress–strain curves at different grain volume fraction.
Correspondingly, the binder phase volume fractions are 36%, 25% and 18%. From the
simulation results, we found that both strength and stiffness increase as grain volume
fraction increases within the tested range. Further, the strain corresponding to the peak
stress is dependent on binder material volume fraction. As the binder content increases,
this strain also increased as shown in Figure 5, which is in good agreement with other
studies [1].

Figure 5. Stress–strain curves at different grain volume fraction. The results indicate that ultimate
stress will increase as the grain volume fraction increases.

From Figure 6, we observed that the higher volume fraction of grain will generate
a hot spot with higher temperature. This is because more damage will take place at the
interface between grain and blinder. The possible reason is that as the grain volume fraction
increases, the grain and binder interface area will increase, so more cracks may happen
along the interface, more cracks will release more energy so the temperature will be higher
as shown in Figure 6.

Figure 6. Hot-spot generation with different grain volume fraction under compressive loading
(a) Vol = 64%; (b) Vol = 82%.
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4. Discussion and Conclusions

A 2D computational model of energetic composite was developed. The proposed
computational model has been applied to simulate hot-spots generation in polymer-bonded
explosives with different grain volume fraction under dynamic loading. The failure modes
were closely coincided with the result from experiment. Our simulation results showed
that as the grain volume fraction increases in the tested range, both stiffness and ultimate
stress will increase, also the temperature will increase at the hot-spot generation region.
The current work is a primitive study of local heat generation in energetic composites
due to cracks. In our future study, we will consider fully thermal–mechanical coupling in
this material. The current study provides a numerical tool and may open a door for more
advanced study of energetic composites through adjusting binder material and volume
fraction, crystal composition and morphology, e.g., using carbon nanotube reinforced
composite materials can provide additional dissipation pathways for impact energy as well
as conduct heat away from energy localizations.
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