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Abstract: During construction works, it is advisable to prevent strong thawing and an increase in the
moisture content of the foundations of engineering structures in the summer. Since the density of
water and ice differ, due to the difference bulging of the foundation sections can occur when it freezes
back in winter. In this work, the effect of fiber-reinforced piles on the thermal field of the surrounding
soil is investigated numerically; that is, the study of the influence of aggregates with high and low
thermal-physical properties on the temperature of frozen soils is conducted. Basalt and steel fiber
reinforcement are compared. The difficulty of this work is that the inclusions inside piles are too
small compared to the pile itself. Therefore, to solve the Stefan problem, a generalized multiscale
finite element method (GMsFEM) was used. In the GMsFEM, the usual conforming partition of the
domain into a coarse grid was used. It allowed reducing problem size and, consequently, accelerating
the calculations. Results of the multiscale solution were compared with fine-scale solution, the
accuracy of GMsFEM was investigated, and the optimal solution parameters were defined. Therefore,
GMsFEM was shown to be well suited for the designated task. Collation of basalt and steel fiber
reinforcement showed a beneficial effect of high thermal conductive material inclusion on freezing of
piles in winter.

Keywords: Stefan problem; multiscale; generalized multiscale finite element method; composite pile;
thermal conduction

1. Introduction

Thermal calculations are important in the construction of engineering geotechnical
structures and buildings in the permafrost zone. The temperature regime (a set of sequential
temperature fields in the soil mass corresponding to any given points in time from the
beginning of the calculation) is calculated as the forecast of the thermal effects on the
upper and lower boundaries of the structure foundation set for the entire calculation
period [1]. The most characteristic feature of these processes is the previously unknown
(“free”) boundaries between various thawed and frozen states of the soil. Due to this
feature, their mathematical models are non-linear and difficult to analyze. The results
of calculations of climatic phenomena, which are critical for geotechnical structures on
permafrost foundations (in the permafrost zone), show a continuous repetition of the same
constant seasonal cycle. This determines periodic harmonic oscillations of all quantities that
determine the state of the foundation of a geotechnical structure, including temperature.
However, cyclic harmonic changes in the foundation state caused by constantly repeating
influences also occur during other processes. The course of temperature change during one
period can have a different character. For example, the temperature can change abruptly,
continuously increase or decrease, etc.

During construction works, it is advisable to prevent strong thawing and an increase
in the moisture content of the foundations of engineering structures in the summer. Since
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the density of water and ice differ, due to the difference bulging of the foundation sections
can occur when it freezes back in winter. Repetition of this phenomenon for many years
causes the destruction of engineering structures and buildings. In the regions of the Far
North, it leads to catastrophic emergencies.

In this work, the effect of fiber-reinforced piles on the thermal field of the surrounding
soil is numerically investigated [2], that is, the study of the influence of aggregates with high
and low thermal-physical properties on the temperature of frozen soils is conducted [3,4].

Basalt fibers are produced from molten basalt rock. They have very low thermal
conductivity, good strength properties and, at the same time, are relatively cheap. Due to
these characteristics, they are used in concrete [5–7]. However, in addition to the chemical
and mechanical properties of basalt fibers, their cost varies, depending on the type and
quality of the raw material and the production process of these fibers [8]. Nevertheless, the
characteristics mentioned above and an environmentally friendly manufacturing process [9]
might determine their application in high performance concrete structures instead of the
most commonly used steel and polypropylene fibers. The length-to-diameter aspect for
basalt fibers is about 1000.

As for steel fiber hybridization, industrial or recycled steel fibers can be used [10–13].
According to results available in the scientific literature [14,15], they show similar me-
chanical responses, both in terms of tensile strength and matrix-to-fiber bond. Recycled
steel fibers are derived from waste tires. Their geometrical characterization can be highly
variable: they are generally characterized by a nominal diameter ranging between 0.1 and
2 mm with a corresponding average aspect ratio (i.e., length-to-diameter ratio) ranging
between 20 and 150. These variations mainly depend on both the original source (i.e., tires
typology) and recycling processes.

The volume concentration of fibers is equal to 10%. In our article, we use the length-
to-diameter ratio for both types of fibers equal to 32 for structured and 10 for random
distribution of fibers for calculation convenience. Fibers’ mechanical properties are pre-
sented in Table 1.

Table 1. Mechanical properties of fibers.

Fiber Type Steel Basalt

Density (kg/m3) 7800 2700
Volume content (kg/m3) 780 270

Elastic modulus (GPa) 200 70
Tensile strength (MPa) >1060 >1700

One of the topical problems of mathematical physics is the Stefan problem, which is
an initial–boundary value problem for a parabolic differential equation with discontinuous
coefficients, and serves as a mathematical model of the change in the phase state of a
substance with unknown interfaces [16,17]. The phase transition boundary is represented
as a smearing zone when the phase transition occurs in a given temperature range [16,18].

The difficulty of this work lies in the pile inclusions that are too small compared to
the solution area. For such geometrically complex problems, reduction techniques such as
multiscale methods are preferred [19,20]. Multiscale methods are becoming very popular at
this time [21–23]. Paper [24] develops a multiscale eigenvalue method based on multiscale
substructure technology for multiscale analysis of periodic composite structures. This
provides a comparative study from a user’s viewpoint for multiscale methods, including the
mathematical homogenization method, heterogeneous multiscale method, and multiscale
finite element method. The article [25] studies the multiscale finite element method for
solving elliptic problems arising from composite materials. The influence of production
porosity, diameter [26], and density of structures on the thermal conductivity of a composite
are considered using multiscale finite element modeling [27]. In [28,29], mathematical
modeling is applied for the thermodynamic analysis and design of composite structures.
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This article is organized as follows. Section 2 presents the formulation of a mathe-
matical model that describes the dynamics of the temperature distribution with the phase
transitions taken into account. In the third, finite element approximation is given. In the
fourth, a generalized multiscale finite element method (GMsFEM) is considered. Section 5
presents the numerical results in a two-dimensional setting.

2. Mathematical Model

Let us consider a mathematical model describing the dynamics of the temperature
distribution, taking into account the phase transitions of pore moisture into ice and back,
at a certain given temperature of the phase transition T∗ in area Ω = Ω− ∪Ω+. Where
Ω+(t) = {x|x ∈ Ω, T(x, t) >T} is the area occupied by the thawed soil, where the tem-
perature exceeds the phase transition temperature and Ω−(t) = {x|x ∈ Ω, T(x, t) < T} is
an area occupied by the frozen ground. A phase transition occurs at the interface between
thawed and frozen soils S = S(t) (Figure 1).
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To simulate heat transfer processes with phase transitions, the Stefan model is used.
It describes thermal processes accompanying phase transformations of the medium with
absorption and release of latent heat:

(cρ(T) + mρl Lδ(T − T∗))
∂T
∂t
− div(λ(T)T) = f , x ∈ Ω, t ∈ (0, tmax], (1)

where L is the specific heat of phase transition, m is a porosity, δ(T − T∗) is Dirac delta function.
For the coefficients of the equation, there are following relations:

cρ(T) =
{

c−ρ−, T < T∗,
c+ρ+, T ≥ T∗,

λ(T) =
{

λ−, T < T∗,
λ+, T ≥ T∗,

where c+, ρ+, λ+ and c−, ρ−, λ− are the specific heat, density, and thermal conductivity of
thawed and frozen soil, respectively.

Since the process of heat propagation is considered in a saturated porous medium,
there are following thermal-physical characteristics:

c−ρ− = (1−m)cscρsc + mciρi, c+ρ+ = (1−m)cscρsc + mcwρw,

where m is a porosity. The subscripts sc, w, i denote the skeleton of the porous medium,
water, and ice, respectively. For the coefficients of the thermal conductivity in the thawed
and frozen zones, there are similar relations:

λ− = (1−m)λsc + mλi, λ+ = (1−m)λsc + mλw,
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In practice, phase transformations do not take place instantly and can proceed in a
small temperature range [T − ∆, T + ∆]. The discontinuous coefficients of Equation (1) are
replaced by sufficiently smooth functions of temperature:

(cρ)∆(T) = c−ρ− + m
(
c+ρ+ − c−ρ−

)1
2

(
1 + erf

(
T − T∗√

2∆2

))
+

1√
2π∆2

e−
(T−T∗)2

2∆2 ,

λ∆(T) = λ− + m
(
λ+ − λ−

)1
2

(
1 + erf

(
T − T∗√

2∆2

))
.

Thus, the following equation for the temperature is obtained:

(cρ)∆(T)
∂T
∂t
− div(λ∆(T)T) = f , x ∈ Ω, t ∈ (0, tmax], (2)

Thus, Equation (2) is a multidimensional quasilinear parabolic equation with smooth
coefficients.

For piles and fibers the following is true: (cρ)∆ = (cρ)p, f and λ∆ = λp,f, where
cp, f , ρp, f , λp,f are specific heat, density, and thermal conductivity of piles and fibers. That is,
there is no phase transition in the pile and fiber areas, respectively.

Equation (2) is supplemented with the initial and boundary conditions

T(x, 0) = T0,

− λ
∂T
∂η

= α(T − Tair), x ∈ Γt,

− λ
∂T
∂η

= 0, x ∈ Γ
Γt

.

Here η—normal vector.

3. Fine-Scale Approximation

The quasilinear parabolic Equation (2) with the corresponding boundary and initial
conditions is approximated using the finite element method in combination with a purely
implicit linearized finite difference approximation in time. This means that during dis-
cretization, the coefficients depending on the desired function are taken from the previous
time layer. Let us write down the variational problem statement for each time layer: find
T ∈ H1 such that:

a
(

Tn+1, v
)
= L(v), ∀ ∈ H1

0 ,

where

a
(
Tn+1, v

)
= 1

τ

∫
Ω(cρ)σ(T

n)Tn+1wdx +
∫

Ω λσ(Tn)Tn+1·wdx +
∫

Γt αTn+1ds,

L(v) = 1
τ

∫
Ω(cρ)σTnwdx +

∫
Γt αTairds.

To solve the problem numerically, it is necessary to pass from a continuous variational
problem to a discrete one. For this, finite-dimensional spaces Vh ∈ H1, V̂h ∈ H1

0 are
introduced and the following problem is defined on them: find Th ∈ Vh such that:

a
(

Tn+1
h , v

)
= L(v), ∀ ∈ V̂h,

where

a
(
Tn+1, v

)
= 1

τ

∫
Ω(cρ)σ(T

n)Tn+1whdx +
∫

Ω λσ(Tn)Tn+1
h ·whdx +

∫
Γt αTn+1ds,

L(v) = 1
τ

∫
Ω(cρ)σTn

h whdx +
∫

Γt αTairds.
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4. Generalized Multiscale Finite Element Method (GMsFEM)

Construction local reduction of a model on the snapshot space is described by solving
several local spectral problems using GMsFEM. In the GMsFEM the usual conforming
partition of domain into finite elements is used. This partition is called the coarse grid TH .
The coarse grid is partitioned into coarse-grid blocks. That is, TH is a coarse grid in domain
Ω, such that TH = ∪Nc

i=1Ki, where Ki is coarse cell. The Th is a fine grid with H ≥ h ≥ 0,
where h is size of fine grid. Each coarse-grid block (Ki) consists of the connected union
of fine-grid blocks. Furthermore, a certain domain for this is constructed and denoted
by Nc the coarse nodes number, by {xi}Nc

i=1 the vertices of the coarse mesh and define the
neighborhood of the node xi:

ωi = ∪
{

Ki ∈ TH ; xi ∈ Ki
}

The following steps need to be implemented for GMsFEM realization:

1. Coarse grid generation TH ;
2. Offline space construction;
3. Construction of snapshot space that will be used to compute an offline space;
4. Construction of a small dimensional offline space by performing dimensional reduc-

tion in the space of local snapshots;
5. Solution of a coarse-grid problem for any force term and boundary condition.

In the first step of GMsFEM (Offline stage), the “snapshots” space must be constructed,
a large dimensional snapshots space of local solutions. In the “snapshots” space, the
following is considered:

− div
(
kα∇ψj

)
= 0, x ∈ ωi,

ψj = δj(x), x ∈ ∂ωi,

where kα are the coefficients of the thermal conductivity, δj(x) are certain set of function
defined on ∂ωi, here j = 1, Jω. The Jω is a number of fine grid edges on ω. Therefore,
following is defined:

Vsnap = span{ψsnap
j : 1 ≤ j ≤ Jω}, and Rsnap =

[
ψ

snap
1 , . . . , ψ

snap
Jω

]
This allow reducing the snapshot space to offline space via some spectral proce-

dure. Offline space is constructed using the following local spectral problems in the
snapshots space:

Aoff Ψoff
k = λkSoff Ψoff

k ,

where Aoff = RsnapART
snap, Soff = RsnapSRT

snap, and

A = [amn] =
∫

ωi

(kα∇ϕm,∇ϕn)dx, S = [smn] =
∫

ωi

(kα ϕm, ϕn)dx.

To generate the offline space, the smallest Mωi
off eigenvalues are chosen and the cor-

responding eigenvectors ψoff
k = ∑

m
Ψoff

mk ϕoff
m are found for k = 1, 2, . . . , Mωi

off. The found

eigenvectors must be multiplied by the partition of unity functions χi:

ϕ
ωi
k = χiψ

off
k for 1 ≤ i ≤ N and 1 ≤ k ≤ Mωi

off,

where Mωi
off denotes the number of eigenvectors that are sampled for each local ωi.
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After this procedure, conforming basis functions can be obtained in the space:

Voff = span
{

ϕ
ωi
k , 1 ≤ k ≤ Mωi , 1 ≤ i ≤ N

}
.

Further, the projection matrix RT =
[

ϕ
ωi
1 , . . . , ϕ

ωi
Mωi

]
is defined.

Using constructed multiscale space, the coarse-scale system is solved:

M
(

∂Tc

∂t

)
+ AcTc = Fc,

where Ac = RA f RT and Fc = RFf .
After solving the coarse-scale solution, a solution on the fine grid Tms = RTTc can

be calculated.

5. Numerical Results

In this section, the effect of fibers in a pile made of different materials on the temperature
field of the soil is calculated. Thus, the melting effect of the pile is numerically simulated.

Conditions for the impact of piles on the temperature regime of the soil:

• Cement-sand mortar for filling the sinuses between the soil and the pile with a tem-
perature of +20

◦
C;

• Piles with a cross section of 40× 40 cm, pile deepening is 10 m from the ground surface.

The computational domain consists of several soil layers; it has one composite pile
(Figure 2).
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There are 4 cases which were considered:

1. Fibers from basalt arranged in a structured manner;
2. Fibers made of steel arranged in a structured manner;
3. Fibers from basalt located randomly;
4. Fibers made of randomly located steel.

Soil temperature is 1.5 ◦C. Thermal-physical characteristics are taken from SP
25.13330.2012 and presented in Table 2. Calculations were performed for 365 days with a
time step τ = 1 day (24 h).

Table 2. Thermal-physical characteristics of soils.

Elements

Volumetric Heat
Capacity

cρ ∗ 10−6 (J/m3/K)

Thermal Conductivity
k (W/m/K)

Phase Transition
Heat

L ∗ 10−3 (J/m3)
Thawed Frozen Thawed Frozen

Clay loam 3.17 2.41 2.67 2.84 101,600
Sand 2.31 2.14 2.15 2.37 114,800
Sand 2.78 2.26 2.26 2.62 101,600

Concrete 2.22 1.86 -
Basalt fiber 1.4 0.033 -
Steel fiber 368.8 53 -

The temperature of the daylight surface of the structure base was set considering
the amplitude of the air temperature fluctuations taken from the data of the Yakutsk
meteorological station. Figure 3 demonstrates the changes in the air temperature. It shows
the distribution of the air temperature during one year.
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Here are the results of numerical calculations. Figures 4 and 5 show the soil tempera-
ture distributions for different points in time. These results were obtained by the GMsFEM
method for eight basis functions.
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For numerical comparison of the fine-scale and multiscale solutions, relative L2 and
energy errors are used.

‖ e ‖L2
=

√√√√∫Ω(Th − Tms)
2dx∫

Ω Th
2dx

,‖ e ‖a =

√
aφ(Th − Tms,Th − Tms)

aφ(Th, Th)
,

where Th and Tms are the fine-scale and multiscale solutions.
Tables 3 and 4 show the relative errors of L2 and energies for different number of

multiscale basis functions and corresponding degrees of freedom (DOF). Degrees of free-
dom for fine scale mesh is denoted as DOFf. Here are the uncertainties for fibers arranged
in structured order. When using basalt fibers, you can limit yourself to using 2 multi-
scale basis functions, and when using steel fibers, you need to use at least 4 multiscale
basis functions.
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Table 3. Relative L2 and energy errors (%) for different number of multiscale basis functions
(DOFf = 172,681). Case 1: structured basalt fibers.

M DOF ‖e‖L2
‖e‖a

t = 50 days

2 744 0.86 7.48
4 1488 0.38 6.04
8 2976 0.15 3.21

t = 200 days

2 744 0.79 8.28
4 1488 0.39 6.63
8 2976 0.12 3.32

t = 250 days

2 744 0.27 5.64
4 1488 0.17 4.93
8 2976 0.05 2.84

t = 365 days

2 744 0.58 12.55
4 1488 0.28 10.35
8 2976 0.11 4.91

Table 4. Relative L2 and energy errors (%) for different number of multiscale basis functions
(DOFf = 172,681). Case 2: structured steel fibers.

M DOF ‖e‖L2
‖e‖a

t = 50 days

2 744 2.86 22.43
4 1488 0.92 9.97
8 2976 0.47 7.28

t = 200 days

2 744 2.89 20.76
4 1488 0.86 9.41
8 2976 0.40 6.64

t = 250 days

2 744 2.16 21.31
4 1488 0.45 7.04
8 2976 0.21 5.34

t = 365 days

2 744 2.95 23.65
4 1488 0.42 13.82
8 2976 0.20 8.77

Tables 5 and 6 show the relative errors of L2 and energies for different number of
multiscale basis functions for case, when fibers are located randomly. It can be seen that
using four multiscale basis functions leads to good accuracy.



J. Compos. Sci. 2021, 5, 167 10 of 13

Table 5. Relative L2 and energy errors (%) for different number of multiscale basis functions
(DOFf = 207,599). Case 3: random distribution of basalt fibers.

M DOF ‖e‖L2
‖e‖a

t = 50 days

2 744 1.56 39.13
4 1488 0.57 12.36
8 2976 0.30 10.05

t = 200 days

2 744 1.66 39.74
4 1488 0.59 12.71
8 2976 0.31 10.27

t = 250 days

2 744 1.06 37.96
4 1488 0.32 10.65
8 2976 0.17 8.79

t = 365 days

2 744 1.07 42.13
4 1488 0.35 16.69
8 2976 0.17 12.96

Table 6. Relative L2 and energy errors (%) for different number of multiscale basis functions
(DOFf = 207,599). Case 4: random distribution of steel fibers.

M DOF ‖e‖L2
‖e‖a

t = 50 days

2 744 2.40 14.64
4 1488 0.81 9.62
8 2976 0.37 6.13

t = 200 days

2 744 2.38 14.28
4 1488 0.80 9.49
8 2976 0.35 5.89

t = 250 days

2 744 1.30 11.41
4 1488 0.48 8.40
8 2976 0.18 4.78

t = 365 days

2 744 1.09 18.42
4 1488 0.49 13.36
8 2976 0.18 7.94

A comparison was also made for different fiber arrangements (Figures 6 and 7). As
the figures show, random arrangement of the fibers is better. However, this may be due to
the fact that they are located horizontally.
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6. Discussion

For the solution of the Stefan problem related to the soil thawing effect of composite
piles, GMsFEM was used. According to results showing the accuracy of the method, the
usage of four basis functions leads to the results with error in L2 norm lower than 1%.
The errors in energy norms are also very respectable. Thus, usage of GMsFEM for such
problems is recommended.

Results show that the process of total freezing of piles with steel fiber inclusion in
winter runs faster. Analysis shows that the length between isoclines of phase change is
about 47 cm for structured and 37 for random distribution of fibers. Freezing of pile with
steel fibers comes on the 239th day, and a pile with basalt inclusion freezes on the 250th
day in the structured case. For random distribution, similar days are 245th and 252nd.
Therefore, there are 11 and 7 days’ delay between freezing of piles with steel and fiber
inclusions, depending on the distribution.

7. Conclusions

In this work, the effect of a composite pile on the temperature field of the surrounding
frozen soil using GMsFEM is considered. Results of calculations using GMsFEM show
good accuracy. It can be said that when using materials with higher thermal conductivity,
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the thermal regime restores faster. In the future, we plan to consider the problems in the
3D statement and work with the piles with more complex compositions.
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