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Abstract: A mixed layer-wise (LW) higher-order shear deformation theory (HSDT) is developed for
the thermal buckling analysis of simply-supported, functionally graded (FG) beams subjected to a
uniform temperature change. The material properties of the FG beam are assumed to be dependent
on the thickness and temperature variables, and the effective material properties are estimated using
either the rule of mixtures or the Mori–Tanaka scheme. The results shown in the numerical examples
indicate the mixed LW HSDT solutions for critical temperature change parameters are in excellent
agreement with the accurate solutions available in the literature. A multi-objective optimization of
FG beams is presented to maximize the critical temperature change parameters and to minimize
their total mass using a non-dominated sorting-based genetic algorithm. Some specific forms for the
volume fractions of the constituents of the FG beam are assumed in advance, such as the one- and
three-parameter power-law functions. The former is used in the thermal buckling analysis of the FG
beams for comparison purposes, and the latter is used in their optimal design.

Keywords: functionally graded beams; genetic algorithms; layer-wise beam theories; multi-objective
optimization; non-dominated sorting; thermal buckling

1. Introduction

Functionally graded (FG) beams, plates, and shells are emerging heterogeneous ma-
terial structures, which are formed by mixing two- or multiple-phase materials with a
pre-designed spatial distribution of volume fractions of the constituents [1–4]. Because the
material properties of FG structures gradually and smoothly vary through their domain,
some drawbacks can be prevented, including delamination and stress concentration, which
usually occur at the interfaces between adjacent layers in the case of the laminated com-
posite structures due to the material properties suddenly changing at these locations. On
the other hand, FG structures provide a large optimal design space in engineering practice.
Engineers can design the spatial distributions of the volume fractions of the constituents
according to practice demands to obtain the best structural physical properties. Based on
the above-mentioned advantages of FG structures, they are also becoming increasingly
more popular in various high-end industries, such as aerospace, submarine, automobile,
and nuclear industries, as well as for use in biomedical implants [5,6]. A variety of mechan-
ical analyses of FG structures and single/multi-objective optimization of these structures,
thus, are attracting considerable attention.

Some comprehensive literature surveys with regard to articles examining the mechan-
ical analyses of FG structures can be found in the public literature [7–14]. Among these,
the literature survey in this work focuses on articles investigating the thermal buckling
behavior of FG beams using various beam theories and on articles related to the single-
and multi-objective optimizations of FG beams.

Based on the Euler–Bernoulli theory (EBT), Kiani and Eslami [15] examined the
thermal buckling behavior of FG beams under different boundary conditions, in which
only the bending effects were considered in their analysis, rather than the shear deformation
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effects. The first-order shear deformation theory (FSDT) was used by Tauchert [16] to study
the thermal buckling of simply supported, antisymmetric angle-ply laminates, in which
the shear deformations of the laminates were simply assumed as a constant through their
thickness direction. Reddy [17] developed a refined shear deformation theory (RSDT) to
investigate the various mechanical behaviors of laminated composite (LC) structures. In
Reddy’s formulation, the shear deformations induced in the LC structures were assumed
to be a parabolic function distribution through the thickness direction; the shear correction
factor commonly used in the FSDT was not needed, and the surface conditions regarding
the traction stresses free were satisfied. In order to more precisely capture the shear
deformation effects on the various mechanical behaviors of LC and FG structures, some
advanced shear deformation theories have been proposed, including the third-order shear
deformation theory (TSDT) [18,19], the sinusoidal shear deformation theory (SSDT) [20,21],
the hyperbolic refined shear deformation theory (HRSDT) [22,23], and the exponential
shear deformation theory (ESDT) [24]. Liu et al. [25] investigated the nonlinear response
of FG structures using an iso-geometric continuum shell element method. Liu et al. [26]
presented an analysis of thermo-mechanical snap-through instability of structures using
a hybrid load- and displacement-controlled algorithm. Based on a shear deformation
theory, Refrafi et al. [27] examined the hygro-thermo-mechanical buckling behavior of
simply-supported FG sandwich plates resting on a Winkler–Pasternak foundation. Based
on Carrera’s unified formulation (CUF) [28], the above-mentioned advanced and refined
shear deformation theories can be hierarchically derived and included as special cases [29].
Some comparative studies for different mechanical behavior analyses of FG beams using
assorted advanced and refined shear deformation beam theories have been carried out,
including thermal buckling and post-buckling analyses [30], bending and free vibration
analyses [31], thermal buckling analysis [32], and free vibration analyses [33,34]. The
above-mentioned theories can be summarized as equivalent-single-layered (ESL) theories,
in which a global coordinate system was introduced to describe the displacement field
induced in LC and FG structures.

Because ESL theories are often inadequate for determining the three-dimensional
(3D) stress field induced in loaded LC and FG beams, some layer-wise (LW) theories for
these beams have been presented. Based on Hamilton’s theory, Tahani [35] developed
a displacement-based LW theory for the static bending and free vibration analyses of
LC beams. Lee and Saravanos [36] developed an LW FSDT for coupled thermo-piezo-
electric composite beams under thermal loads. Shimpi and Ainapure [37] and Shimpi and
Ghugal [38] developed an LW trigonometric shear deformation theory for the static analysis
of LC beams. Based on an LW higher-order shear deformation theory (HSDT), Pandey
and Pradyumna [39] developed a finite element method (FEM) for the static and dynamic
analyses of FG sandwich plates. Bayat and Toussi [40] carried out thermal buckling and
thermal postbuckling analyses of LC beams reinforced with shape memory alloy wires
using a displacement-based LW theory. Based on the stationary principle of minimum
potential energy [41,42] combined with the Lagrange multiplier method, Wu and Kuo [43]
and Wu and Chen [44] developed a mixed LW HSDT for the bending, free vibration, and
buckling behavior of LC plates. Wu and Xu [45] extended this approach to develop the
strong and weak formulations of a mixed higher-order shear deformation theory for the
static analysis of FG beams under thermo-mechanical loads. A comprehensive overview
with regard to the development, numerical implementation, and application of LW theories
was undertaken by Liew et al. [46].

Some articles related to the optimal design of LC structures and FG beams have been
presented using different single-and multi-objective optimization algorithms combined
with advanced and refined shear deformation beam theories. Walker et al. [47,48] devel-
oped an optimal procedure to select the best material combinations for minimum weight
and cost of hybrid composite plates and for minimum mass of sandwiched composite
cylindrical shells, respectively. Houmat [49] and Guenanou and Houmat [50] proposed
a layer-wise optimization method to obtain an optimal lay-up design for maximum fun-
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damental frequency of variable stiffness LC plates and symmetrically LC circular plates,
respectively. Cho and Ha [51] presented volume fraction optimization for the purpose
of minimizing thermal stresses induced in Ni-Al2O3 FG beams. Based on the Vlasov
thin-walled theory [52], Nguyen and Lee [53] committed to the optimal design of thin-
walled FG beams for buckling problems, in which an LW cubic interpolation for the
through-thickness distribution of the volume fraction of the constituents was assumed,
and a genetic algorithm (GA) was used as the optimal tool [54,55]. Kamarian et al. [56]
studied the optimization of material compositions of FG beams to maximize their fun-
damental natural frequencies using the firefly algorithm and an adaptive neuro-fuzzy
inference system. Yas et al. [57,58] engaged in the optimization of material compositions
of a three-parameter FG beam in order to maximize its fundamental frequencies using
the imperialist competitive algorithm, an artificial neural network [59], and a generalized
differential quadrature (DQ) method [60–62]. Goupee and Vel [63] proposed a methodol-
ogy to maximize the fundamental frequencies of FG structures by tailoring their material
distributions. Na and Kim [64–66] investigated the volume fraction optimization of FG
plates and panels under thermal loads to minimize the induced thermal stresses and to
maximize the critical temperature parameters, in which a bi-objective optimization was
considered and the optimal tool was a quasi-Newton method. Walker and Smith [67]
presented a multi-objective optimization technique for minimizing the weighted sum of
the mass and deflection of LC structures, in which a GA and an FEM were used. Tornabene
and Ceruti [68] dealt with mixed static and dynamic optimization of four-parameter FG
structures. The FSDT combined with the generalized DQ method was used for the static
and dynamic analyses of the FG structures, and three different optimization schemes were
used as the optimal tools, including the particle swarm optimization, the Monte Carlo, and
the GA approaches.

In this work, the authors aim at investigating the material composition optimization
of an FG beam under a uniform temperature change in order to maximize the critical
temperature change parameter and minimize the total mass of the FG beam. A mixed
LW HSDT [45] is developed for the thermal buckling analysis of the FG beam. The
current solutions for the critical temperature change parameters of the FG beam obtained
through considering the temperature-dependent (TD) and the temperature-independent
(TI) material properties are examined, and solutions obtained using the von Kármán
geometric nonlinear strains (GNS) and the full GNS are also estimated. A non-dominated
sorting-based GA [69,70] is used for the current multi-objective optimization analysis in
the current issue. The through-thickness distribution of the material properties of the FG
beam is assumed to be a three-parameter power-law function of the volume fractions of
the constituents [71,72], the material-property gradient indices of which are, thus, to be
determined for the optimal material profile.

2. Effective Material Properties

In this work, two micromechanics models, the rule of mixtures [73,74] and the Mori–
Tanaka scheme [75], are used to estimate the effective material properties of the FG beam,
as described in the following sections.

2.1. The Rule of Mixtures

According to the rule of mixtures, the through-thickness distributions of the effective
material properties of the FG beam are written in the following form,

Fe f f (z) = Γc(z) Fc + Γm(z) Fm = Fm + (Fc − Fm) Γc(z), (1)

where Γc and Γm represent the volume fractions of the ceramic and metal materials of
the constituents of the FG beam, respectively, such that Γc + Γm = 1. F can be one of the
engineering constants, including Young’s modulus E, Poisson’s ratio υ, thermal expansion
coefficient α, and mass density ρ. The subscripts m and c represent the metal material and
the ceramic material, respectively.
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2.2. The Mori-Tanaka Scheme

Within the frame work of Eshelby’s elastic inclusion theory [73,74] restricted to a
single inclusion in a semi-infinite elastic, homogeneous and isotropic medium, Mori and
Tanaka [75] extended the original theory to more general cases of multiple inclusions
embedded into a finite elastic medium, in which an equivalent inclusion-average stress
method was used.

For a two-phase isotropic material, the effective material properties are written as the
explicit formula [76,77] as follows:

K(z) = Γc (Kc − Km)/[1 + (1− Γc) (Kc − Km)/(Km + (4/3) Gm)] + Km, (2)

G(z) = Γc (Gc − Gm)/[1 + (1− Γc) (Gc − Gm)/(Gm + fm)] + Gm, (3)

α(z) = Γc (αc − αm)/{K(z)[1− (K(z)− Kc)/(K(z)− Km)]}+ αm, (4)

in which fm = Gm(9Km + 8Gm) /[6 (Km + 2Gm)], and K and G represent the volume and
the shear moduli, respectively.

In later sections of this paper, if no specific mention is given the effective material
properties of the FG beam are estimated using the rule of mixtures.

3. The Mixed LW HSDT for FG Beams

In this work, the authors develop a unified formulation of the mixed LW HSDT
for the thermal buckling analysis of simply supported FG beams subjected to a uniform
temperature change, in which the material properties of the FG beam are considered
to be temperature-dependent. The configuration and coordinates of the FG beam are
shown in Figure 1a, in which h and L represent the thickness and the length of the FG
beam, respectively. In the analysis, the FG beam is artificially divided into Nl layers as
shown in Figure 1b, and the thickness of each individual layer constituting the beam is

hm (m = 1 − Nl), such that
Nl
∑

m=1
hm = h.

Figure 1. (a) Configuration and coordinates of a simply-supported functionally graded (FG) beam; (b) cross section of an
Nl-layered FG beam.

3.1. Strong-Form Formulation

In the current LW HSDT, the displacement field for a typical individual layer is given
as follows:

u(m)(x, zm) = u(m)
0 (x) + zm u(m)

1 (x) + z2
m u(m)

2 (x) + z3
m u(m)

3 (x), (5)

w(m)(x, zm) = w(m)
0 (x) + zm w(m)

1 (x) + z2
m w(m)

2 (x) + z3
m w(m)

3 (x), (6)
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where m = 1, 2, . . . , Nl; u(m)
0 and w(m)

0 denote the mid-plane displacements of the layer in the
x and z directions, and their ith-order expansion terms along the local thickness direction
are u(m)

i and w(m)
i (i = 1, 2, and 3). The displacement components in the y direction are

taken to be zero.
According to the perfect bonding assumptions at the interfaces between adjacent

layers, the corresponding displacement continuity conditions at these places are given as

f (k)x =
[
u(k+1)

0 − (hk+1/2) u(k+1)
1 +

(
h 2

k+1/4
)

u(k+1)
2 −

(
h3

k+1/8
)

u(k+1)
3

]
−
[
u(k)

0 + (hk/2) u(k)
1 +

(
h 2

k /4
)

u(k)
2 +

(
h3

k/8
)
u(k)

3

]
= 0,

(7)

f (k)z =
[
w(k+1)

0 − (hk+1/2)w(k+1)
1 +

(
h 2

k+1/4
)

w(k+1)
2 −

(
h3

k+1/8
)

w(k+1)
3

]
−
[
w(k)

0 + (hk/2)w(k)
1 +

(
h 2

k /4
)

w(k)
2 +

(
h3

k/8
)
w(k)

3

]
= 0,

(8)

where k = 1, 2, . . . , (Nl − 1).
The strain-displacement relationship is given as

ε
(m)
x =

(
ε
(m)
x

)
l
+
(

ε
(m)
x

)
nl

=
(

u(m)
0 ,x +zm u(m)

1 ,x +z2
m u(m)

2 ,x +z3
m u(m)

3 ,x
)

+(1/2)
[(

u(m)
0 ,x +zm u(m)

1 ,x +z2
m u(m)

2 ,x +z3
m u(m)

3 ,x
)2

+
(

w(m)
0 ,x +zm w(m)

1 ,x +z2
m w(m)

2 ,x +z3
m w(m)

3 ,x
)2
]

,

(9)

ε
(m)
z = w(m),zm

= w(m)
1 + 2zm w(m)

2 + 3z2
m w(m)

3 ,
(10)

γ
(m)
xz = u(m),zm +w(m),x

=
(

w(m)
0 ,x +u(m)

1

)
+ zm

(
w(m)

1 ,x +2u(m)
2

)
+ z2

m

(
w(m)

2 ,x +3u(m)
3

)
+ z3

m

(
w(m)

3 ,x
)

,
(11)

where the commas denote the derivative of the suffix variable, and remaining strains
are zeroes, including ε

(m)
y , γ

(m)
yz , and γ

(m)
xy .

(
ε
(m)
x

)
nl

denotes the full GNS, and when the von
Kármán GNS is considered, it is reduced as(

ε
(m)
x

)
nl

= (1/2)
(

w(m)
0 , x + zm w(m)

1 , x + z2
m w(m)

2 , x + z3
m w(m)

3 , x

)2
. It is noted that the dis-

placement continuity conditions at the interfaces between adjacent layers are imposed in
this formulation, while the strain continuity conditions at these places are discontinuous.

The stress-strain relationship for an orthotropic material in thermal environment is
given as 

σ
(m)
x

σ
(m)
z

τ
(m)
xz

 =

 Q(m)
11 Q(m)

13 0
Q(m)

13 Q(m)
33 0

0 0 Q(m)
55




ε
(m)
x

ε
(m)
z

γ
(m)
xz

−


Q(m)
1α

Q(m)
3α
0

∆T, (12)

where the symbol ∆T denotes the temperature change, measured from a room temper-
ature of 300K. Q(m)

11 = [(1− υ23υ32)/(E2 E3 ∆)](m), Q(m)
13 = [(υ13 + υ12υ32)/(E1 E2 ∆)](m),

Q(m)
33 = [(1− υ12υ21)/(E1 E2 ∆)](m), Q(m)

55 = G(m)
13 ,

∆ = [(1− υ12υ21 − υ23υ32 − υ31υ13 − 2υ21υ32υ13)/(E1 E2 E3)]
(m),

Q(m)
1α = Q(m)

11 α
(m)
1 + Q(m)

13 α
(m)
3 , Q(m)

3α = Q(m)
13 α

(m)
1 + Q(m)

33 α
(m)
3 , in which the subscripts 1, 2,

and 3 denote the principle axes of the material properties, and that E, υ, and α represent the



J. Compos. Sci. 2021, 5, 92 6 of 27

Young’s modulus, Poisson’s ratio, and the thermal expansion coefficients. For isotropic ma-
terials, these stiffness coefficients will be reduced to
Q(m)

11 = Q(m)
33 = {E (1− υ)/[(1 + υ) (1− 2υ)]}(m), Q(m)

13 = {E υ/[(1 + υ) (1− 2υ)]}(m),

Q(m)
55 = {E /[2(1 + υ)]}(m), and α

(m)
1 = α

(m)
3 = α. Note that these engineering con-

stants E, υ, and α in the analysis are considered to be dependent from the thickness and
the temperature variables, and ∆T is a constant. In addition, other stress components are
zero, including σ

(m)
y , τ

(m)
yz , and τ

(m)
xy , because a two-dimensional beam model is used.

The governing equations and associated boundary conditions are derived using the
stationary principle of minimum potential energy combined with the Lagrange multiplier
method, in which the displacement continuity conditions at the interfaces between adjacent
layers given in Equations (7) and (8) are multiplied by the Lagrange multipliers and then
substituted into the potential energy functional as the constraints, such that the extended
potential energy functional of the Nl-layered FG beam is given, as follows:

Πp =
Nl
∑

m=1

∫ L
0

∫ hm/2
−hm/2

[
(1/2) σ

(m)
x ε

(m)
x + (1/2) σ

(m)
z ε

(m)
z + (1/2) τ

(m)
xz γ

(m)
xz

]
dzm dx

− (∆T)
Nl
∑

m=1

∫ L
0

∫ hm/2
−hm/2 Q(m)

1α

(
ε
(m)
x

)
nl

dzmdx +
(Nl−1)

∑
k=1

∫ L
0

[(
λ
(k)
x

)(
f (k)x

)
+
(

λ
(k)
z

)(
f (k)z

)]
dx,

(13)

where λ
(m)
x and λ

(m)
z are the Lagrange multipliers, which are identical to the transverse

shear and normal stress components (i.e., τ
(m)
xz and σ

(m)
z ) induced at the interfaces between

adjacent layers, respectively.
Applying the stationary principle of minimum potential energy, following a standard

variational process, and integrating the stress variables through the thickness direction, the
authors obtain

δ Πp =
Nl
∑

m=1

∫ L
0

{(
N(m)

x − N(m)
xt

)
δ u(m)

0 ,x +
(

M(m)
x −M(m)

xt

)
δu(m)

1 ,x +
(

P(m)
x − P(m)

xt

)
δu(m)

2 ,x +
(

R(m)
x − R(m)

xt

)
δu(m)

3 ,x

+
(

N(m)
z − N(m)

zt

)
δ w(m)

1 + 2
(

M(m)
z −M(m)

zt

)
δw(m)

2 + 3
(

P(m)
z − P(m)

zt

)
δw(m)

3

+N(m)
xz

(
δ w(m)

0 ,x +δ u(m)
1

)
+ M(m)

xz

(
δ w(m)

1 ,x +2δ u(m)
2

)
+P(m)

xz

(
δ w(m)

2 ,x +3δ u(m)
3

)
+ R(m)

xz

(
δ w(m)

3 ,x
)}

dzm dx

+(∆T)
Nl
∑

m=1

∫ L
0

{
S(m)

1 δu(m)
0 + S(m)

2 δu(m)
1 + S(m)

3 δu(m)
2 + S(m)

4 δu(m)
3 + S(m)

5 δw(m)
0 + S(m)

6 δw(m)
1 + S(m)

7 δw(m)
2 + S(m)

8 δw(m)
3

}
dx

+
(Nl−1)

∑
k=1

∫ L
0

[(
δλ

(k)
x

)(
f (k)x

)
+
(

δλ
(k)
z

)(
f (k)z

)
+
(

λ
(k)
x

)(
δ f (k)x

)
+
(

λ
(k)
z

)(
δ f (k)z

)]
dx + (boundary terms) = 0,

(14)

where N(m)
x N(m)

z N(m)
xz

M(m)
x M(m)

z M(m)
xz

P(m)
x P(m)

z P(m)
xz

 =
∫ hm/2
−hm/2


1

zm
z2

m

{ σ
(m)
x σ

(m)
z τ

(m)
xz

}
dzm,

{
R(m)

x R(m)
xz

}
=
∫ hm/2
−hm/2 z3

m

{
σ
(m)
x τ

(m)
xz

}
dzm,

 N(m)
xt N(m)

zt

M(m)
xt M(m)

zt

P(m)
xt P(m)

zt

 =
∫ hm/2
−hm/2


1

zm
z2

m

{ Q(m)
1α ∆T Q(m)

3α ∆T
}

dzm,R(m)
xt =

∫ hm/2
−hm/2 z3

m

(
Q(m)

1α ∆T
)

d zm ,

S(m)
1 = A(m)

1α u(m)
0 ,xx +B(m)

1α u(m)
1 ,xx +D(m)

1α u(m)
2 ,xx +F(m)

1α u(m)
3 ,xx ,

S(m)
2 = B(m)

1α u(m)
0 ,xx +D(m)

1α u(m)
1 ,xx +F(m)

1α u(m)
2 ,xx +H(m)

1α u(m)
3 ,xx ,

S(m)
3 = D(m)

1α u(m)
0 ,xx +F(m)

1α u(m)
1 ,xx +H(m)

1α u(m)
2 ,xx +J(m)

1α u(m)
3 ,xx ,

S(m)
4 = F(m)

1α u(m)
0 ,xx +H(m)

1α u(m)
1 ,xx +J(m)

1α u(m)
2 ,xx +L(m)

1α u(m)
3 ,xx ,

S(m)
5 = A(m)

1α w(m)
0 ,xx +B(m)

1α w(m)
1 ,xx +D(m)

1α w(m)
2 ,xx +F(m)

1α w(m)
3 ,xx ,

S(m)
6 = B(m)

1α w(m)
0 ,xx +D(m)

1α w(m)
1 ,xx +F(m)

1α w(m)
2 ,xx +H(m)

1α w(m)
3 ,xx ,

S(m)
7 = D(m)

1α w(m)
0 ,xx +F(m)

1α w(m)
1 ,xx +H(m)

1α w(m)
2 ,xx +J(m)

1α w(m)
3 ,xx ,
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S(m)
8 = F(m)

1α w(m)
0 ,xx +H(m)

1α w(m)
1 ,xx +J(m)

1α w(m)
2 ,xx +L(m)

1α w(m)
3 ,xx ,{

A(m)
1α B(m)

1α D(m)
1α F(m)

1α H(m)
1α J(m)

1α L(m)
1α

}
=
∫ hm/2

−hm/2
Q(m)

1α

{
1 zm z2

m z3
m z4

m z5
m z6

m
}

dzm.

Performing Equation (14) the integration by part yields

δΠp =
Nl
∑

m=1

∫ L
0

{
−
(

N(m)
x − N(m)

xt

)
,x δ u(m)

0 −
(

M(m)
x −M(m)

xt

)
,x δu(m)

1 −
(

P(m)
x − P(m)

xt

)
,x δu(m)

2 −
(

R(m)
x − R(m)

xt

)
,x δu(m)

3

+
(

N(m)
z ,−, N(m)

zt

)
δ w(m)

1 + 2
(

M(m)
z −M(m)

zt

)
δw(m)

2 + 3
(

P(m)
z − P(m)

zt

)
δw(m)

3

−N(m)
xz ,x δ w(m)

0 + N(m)
xz δ u(m)

1 −M(m)
xz ,x δ w(m)

1 + 2M(m)
xz δ u(m)

2 −P(m)
xz ,x δ w(m)

2 + 3P(m)
xz δ u(m)

3 − R(m)
xz ,x δ w(m)

3

}
dx

+(∆T)
Nl
∑

m=1

∫ L
0

{
S(m)

1 δu(m)
0 + S(m)

2 δu(m)
1 + S(m)

3 δu(m)
2 + S(m)

4 δu(m)
3 + S(m)

5 δw(m)
0 + S(m)

6 δw(m)
1 + S(m)

7 δw(m)
2 + S(m)

8 δw(m)
3

}
dx

+
(Nl−1)

∑
k=1

∫ L
0

[(
δλ

(k)
x

)(
f (k)x

)
+
(

δλ
(k)
z

)(
f (k)z

)
+
(

λ
(k)
x

)(
δ f (k)x

)
+
(

λ
(k)
z

)(
δ f (k)z

)]
dx + (boundary terms) = 0.

(15)

According to Equation (15), the Euler–Lagrange equations of the mixed LW HSDT can
be obtained as follows:

δ u(m)
0 : −N(m)

x ,x +
(

λ
(m−1)
x − λ

(m)
x

)
= − (∆T)S(m)

1 , (16)

δ u(m)
1 : −M(m)

x ,x +N(m)
xz + (−hm/2)

(
λ
(m−1)
x + λ

(m)
x

)
= −(∆T)S(m)

2 , (17)

δ u(m)
2 : −P(m)

x ,x +2M(m)
xz +

(
h2

m/4
)(

λ
(m−1)
x − λ

(m)
x

)
= −(∆T)S(m)

3 , (18)

δ u(m)
3 : −R(m)

x ,x +3P(m)
xz +

(
−h3

m/8
)(

λ
(m−1)
x + λ

(m)
x

)
= −(∆T)S(m)

4 , (19)

δ w(m)
0 : −N(m)

xz ,x +
(

λ
(m−1)
z − λ

(m)
z

)
= − (∆T)S(m)

5 , (20)

δ w(m)
1 : −M(m)

xz ,x +N(m)
z + (−hm/2)

(
λ
(m−1)
z + λ

(m)
z

)
= −(∆T)S(m)

6 , (21)

δ w(m)
2 : −P(m)

xz ,x +2M(m)
z +

(
h2

m/4
)(

λ
(m−1)
z − λ

(m)
z

)
= −(∆T)S(m)

7 , (22)

δ w(m)
3 : −R(m)

xz ,x +3P(m)
z +

(
−h3

m/8
)(

λ
(m−1)
z + λ

(m)
z

)
= −(∆T)S(m)

8 , (23)

δ λ
(k)
x : f (k)x = 0, (24)

δ λ
(k)
z : f (k)z = 0, (25)

where m = 1, 2, . . . , Nl and k = 1, 2, . . . , (Nl − 1).
The possible boundary conditions are given as

Either N(m)
x = N(m)

xt or u(m)
0 = u(m)

0 (26)

Either M(m)
x = M(m)

xt or u(m)
1 = u(m)

1 , (27)

Either P(m)
x = P(m)

xt or u(m)
2 = u(m)

2 , (28)

Either R(m)
x = R(m)

xt or u(m)
3 = u(m)

3 , (29)

Either N(m)
xz = N(m)

xzt or w(m)
0 = w(m)

0 , (30)

Either M(m)
xz = M(m)

xzt or w(m)
1 = w(m)

1 , (31)

Either P(m)
xz = P(m)

xzt or w(m)
2 = w(m)

2 , (32)

Either R(m)
xz = R(m)

xzt or w(m)
3 = w(m)

3 , (33)
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where u(m)
i and w(m)

i (i = 0, 1, 2, and 3) are the prescribed displacement components on
the edges. The definition of each force resultant component and its relationship with the
displacement components are given in Appendix A.

Substituting Equations (A1)–(A11) into Equations (16)–(25), the authors obtain the
Euler–Lagrange equations of the current mixed LW HSDBT in terms of all displacement
components, and they are given as follows:

δ u(m)
0 : −A(m)

11 u(m)
0 ,xx −B(m)

11 u(m)
1 ,xx −D(m)

11 u(m)
2 ,xx −F(m)

11 u(m)
3 ,xx −A(m)

13 w(m)
1 ,x −2B(m)

13 w(m)
2 ,x

−3D(m)
13 w(m)

3 ,x +
(

λ
(m−1)
x − λ

(m)
x

)
= −(∆T)

(
A(m)

1α u(m)
0 ,xx +B(m)

1α u(m)
1 ,xx +D(m)

1α u(m)
2 ,xx +F(m)

1α u(m)
3 ,xx

)
,

(34)

δu(m)
1 : −B(m)

11 u(m)
0 ,xx −D(m)

11 u(m)
1 ,xx −F(m)

11 u(m)
2 ,xx −H(m)

11 u(m)
3 ,xx −B(m)

13 w(m)
1 ,x −2D(m)

13 w(m)
2 ,x

−3F(m)
13 w(m)

3 ,x +A(m)
55

(
w(m)

0 ,x +u(m)
1

)
+ B(m)

55

(
w(m)

1 ,x +2u(m)
2

)
+ D(m)

55

(
w(m)

2 ,x +3u(m)
3

)
+F(m)

55 w(m)
3 ,x +(−hm/2)

(
λ
(m−1)
x + λ

(m)
x

)
= −(∆T)

(
B(m)

1α u(m)
0 ,xx +D(m)

1α u(m)
1 ,xx +F(m)

1α u(m)
2 ,xx +H(m)

1α u(m)
3 ,xx

)
,

(35)

δu(m)
2 : −D(m)

11 u(m)
0 ,xx −F(m)

11 u(m)
1 ,xx −H(m)

11 u(m)
2 ,xx −J(m)

11 u(m)
3 ,xx −D(m)

13 w(m)
1 ,x −2F(m)

13 w(m)
2 ,x

−3H(m)
13 w(m)

3 ,x +2B(m)
55

(
w(m)

0 ,x +u(m)
1

)
+ 2D(m)

55

(
w(m)

1 ,x +2u(m)
2

)
+ 2F(m)

55

(
w(m)

2 ,x +3u(m)
3

)
+2H(m)

55 w(m)
3 ,x +

(
h2

m/4
)(

λ
(m−1)
x + λ

(m)
x

)
= −(∆T)

(
D(m)

1α u(m)
0 ,xx +F(m)

1α u(m)
1 ,xx +H(m)

1α u(m)
2 ,xx +J(m)

1α u(m)
3 ,xx

)
,

(36)

δ u(m)
3 : −F(m)

11 u(m)
0 ,xx −H(m)

11 u(m)
1 ,xx −J(m)

11 u(m)
2 ,xx −L(m)

11 u(m)
3 ,xx −F(m)

13 w(m)
1 ,x −2H(m)

13 w(m)
2 ,x

−3J(m)
13 w(m)

3 ,x +3D(m)
55

(
w(m)

0 ,x +u(m)
1

)
+ 3F(m)

55

(
w(m)

1 ,x +2u(m)
2

)
+ 3H(m)

55

(
w(m)

2 ,x +3u(m)
3

)
+3J(m)

55 w(m)
3 ,x

+
(
−h3

m/8
)(

λ
(m−1)
x + λ

(m)
x

)
= −(∆T)

(
F(m)

1α u(m)
0 ,xx +H(m)

1α u(m)
1 ,xx +J(m)

1α u(m)
2 ,xx +L(m)

1α u(m)
3 ,xx

)
,

(37)

δ w(m)
0 : −A(m)

55

(
w(m)

0 ,xx +u(m)
1 ,x

)
− B(m)

55

(
w(m)

1 ,xx +2 u(m)
2 ,x

)
− D(m)

55

(
w(m)

2 ,xx +3 u(m)
3 ,x

)
−F(m)

55 w(m)
3 ,xx

+
(

λ
(m−1)
z − λ

(m)
z

)
= −(∆T)

(
A(m)

1α w(m)
0 ,xx +B(m)

1α w(m)
1 ,xx +D(m)

1α w(m)
2 ,xx +F(m)

1α w(m)
3 ,xx

)
,

(38)

δ w(m)
1 : −B(m)

55

(
w(m)

0 ,xx +u(m)
1 ,x

)
− D(m)

55

(
w(m)

1 ,xx +2u(m)
2 ,x

)
− F(m)

55

(
w(m)

2 ,xx +3 u(m)
3 ,x

)
− H(m)

55 w(m)
3 ,xx

+A(m)
13 u(m)

0 ,x +B(m)
13 u(m)

1 ,x +D(m)
13 u(m)

2 ,x +F(m)
13 u(m)

3 ,x +A(m)
33 w(m)

1 + 2B(m)
33 w(m)

2 + 3D(m)
33 w(m)

3

+(−hm/2)
(

λ
(m−1)
z + λ

(m)
z

)
= −(∆T)

(
B(m)

1α w(m)
0 ,xx +D(m)

1α w(m)
1 ,xx +F(m)

1α w(m)
2 ,xx +H(m)

1α w(m)
3 ,xx

)
,

(39)

δ w(m)
2 : −D(m)

55

(
w(m)

0 ,xx +u(m)
1 ,x

)
− F(m)

55

(
w(m)

1 ,xx +2u(m)
2 ,x

)
− H(m)

55

(
w(m)

2 ,xx +3 u(m)
3 ,x

)
− J(m)

55 w(m)
3 ,xx

+2B(m)
13 u(m)

0 ,x +2D(m)
13 u(m)

1 ,x +2F(m)
13 u(m)

2 ,x +2H(m)
13 u(m)

3 ,x +2B(m)
33 w(m)

1 + 4D(m)
33 w(m)

2 + 6F(m)
33 w(m)

3

+
(
h2

m/4
)(

λ
(m−1)
z − λ

(m)
z

)
= −(∆T)

(
D(m)

1α w(m)
0 ,xx +F(m)

1α w(m)
1 ,xx +H(m)

1α w(m)
2 ,xx +J(m)

1α w(m)
3 ,xx

)
,

(40)

δ w(m)
3 : −F(m)

55

(
w(m)

0 ,xx +u(m)
1 ,x

)
− H(m)

55

(
w(m)

1 ,xx +2u(m)
2 ,x

)
− J(m)

55

(
w(m)

2 ,xx +3u(m)
3 ,x

)
− L(m)

55 w(m)
3 ,xx

+3D(m)
13 u(m)

0 ,x +3F(m)
13 u(m)

1 ,x +3H(m)
13 u(m)

2 ,x +3J(m)
13 u(m)

3 ,x +3D(m)
33 w(m)

1 + 6F(m)
33 w(m)

2 + 9H(m)
33 w(m)

3

+
(
−h3

m/8
)(

λ
(m−1)
z + λ

(m)
z

)
= −(∆T)

(
F(m)

1α w(m)
0 ,xx +H(m)

1α w(m)
1 ,xx +J(m)

1α w(m)
2 ,xx +L(m)

1α w(m)
3 ,xx

)
,

(41)

δ λ
(k)
x : f (k)x = 0, (42)

δ λ
(k)
z : f (k)z = 0, (43)

where m = 1, 2, . . . , Nl and k = 1, 2, . . . , (Nl − 1).
The total number of Euler–Lagrange equations, i.e., Equations (34)–(43), is (10Nl − 2),

(8Nl − 2), and (6Nl − 2) for the mixed layer-wise third-order (LW3), second-order (LW2),
and first-order (LW1) shear deformation theories, respectively, are in terms of the same num-
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ber of unknowns as those of the corresponding Euler–Lagrange equations. The strong-form
formulations of the mixed LW HSDT are, thus, obtained, including the Euler–Lagrange
equations (Equations (34)–(43)) and the possible boundary conditions (Equations (26)–(33)).

3.2. Applications

Equations (34)–(43) associated with a set of boundary conditions (i.e.,
Equations (26)–(33)) can be composed as a well-post boundary value problem, and its
Navier-type analytical solutions for the thermal buckling behavior of simply supported,
multi-layered FG beams can be obtained using the Fourier series expansion method.

By satisfying the simply supported boundary conditions, various field variables of
the mth-layer are, thus, expanded as

u(m)
i =

∞

∑̂
m=1

u(m)
im̂ cos(m̂πx/L), (44)

w(m)
i =

∞

∑̂
m=1

w(m)
im̂ sin(m̂πx/L), (45)

λ
(k)
x =

∞

∑̂
m=1

λ
(k)
xm̂ cos(m̂πx/L), (46)

λ
(k)
z =

∞

∑̂
m=1

λ
(k)
zm̂ sin(m̂πx/L), (47)

where the subscript i = 0, 1, 2, and 3; m = 1, 2, . . . , Nl ; k = 1, 2, . . . , (Nl − 1).
Substituting Equations (44)–(47) in the Euler–Lagrange Equations (i.e.,

Equations (34)–(43)), the authors obtain

δ u(m)
0 : m2 A(m)

11 u(m)
0m̂ + m2B(m)

11 u(m)
1m̂ + m2D(m)

11 u(m)
2m̂ + m2F(m)

11 u(m)
3m̂ −mA(m)

13 w(m)
1m̂ − 2mB(m)

13 w(m)
2m̂

−3mD(m)
13 w(m)

3m̂ +
(

λ
(m−1)
xm̂ − λ

(m)
xm̂

)
= (∆T)

(
m2 A(m)

1α u(m)
0m̂ + m2B(m)

1α u(m)
1m̂ + m2D(m)

1α u(m)
2m̂ + m2F(m)

1α u(m)
3m̂

)
,

(48)

δ u(m)
1 : m2B(m)

11 u(m)
0m̂ +

(
m2D(m)

11 + A(m)
55

)
u(m)

1m̂ +
(

m2F(m)
11 + 2B(m)

55

)
u(m)

2m̂ +
(

m2H(m)
11 + 3D(m)

55

)
u(m)

3m̂

+mA(m)
55 w(m)

0m̂ +
(
−mB(m)

13 + mB(m)
55

)
w(m)

1m̂ +
(
−2mD(m)

13 + mD(m)
55

)
w(m)

2m̂ +
(
−3mF(m)

13 + mF(m)
55

)
w(m)

3m̂

+(−hm/2)
(

λ
(m−1)
xm̂ + λ

(m)
xm̂

)
= (∆T)

(
m2B(m)

1α u(m)
0m̂ + m2D(m)

1α u(m)
1m̂ + m2F(m)

1α u(m)
2m̂ + m2H(m)

1α u(m)
3m̂

)
,

(49)

δ u(m)
2 : m2D(m)

11 u(m)
0m̂ +

(
m2F(m)

11 + 2B(m)
55

)
u(m)

1m̂ +
(

m2H(m)
11 + 4D(m)

55

)
u(m)

2m̂ +
(

m2 J(m)
11 + 6F(m)

55

)
u(m)

3m̂

+2mB(m)
55 w(m)

0m̂ +
(
−mD(m)

13 + 2mD(m)
55

)
w(m)

1m̂ +
(
−2mF(m)

13 + 2mF(m)
55

)
w(m)

2m̂ +
(
−3mH(m)

13 + 2mH(m)
55

)
w(m)

3m̂

+
(
h2

m/4
)(

λ
(m−1)
xm̂ − λ

(m)
xm̂

)
= (∆T)

(
m2D(m)

1α u(m)
0m̂ + m2F(m)

1α u(m)
1m̂ + m2H(m)

1α u(m)
2m̂ + m2 J(m)

1α u(m)
3m̂

)
,

(50)

δ u(m)
3 : m2F(m)

11 u(m)
0m̂ +

(
m2H(m)

11 + 3D(m)
55

)
u(m)

1m̂ +
(

m2 J(m)
11 + 6F(m)

55

)
u(m)

2m̂ +
(

m2L(m)
11 + 9H(m)

55

)
u(m)

3m̂

+3mD(m)
55 w(m)

0m̂ +
(
−mF(m)

13 + 3mF(m)
55

)
w(m)

1m̂ +
(
−2mH(m)

13 + 3mH(m)
55

)
w(m)

2m̂ +
(
−3mJ(m)

13 + 3mJ(m)
55

)
w(m)

3m̂

+
(
−h3

m/8
)(

λ
(m−1)
xm̂ + λ

(m)
xm̂

)
= (∆T)

(
m2F(m)

1α u(m)
0m̂ + H2F(m)

1α u(m)
1m̂ + m2 J(m)

1α u(m)
2m̂ + m2L(m)

1α u(m)
3m̂

)
,

(51)

δ w(m)
0 : mA(m)

55 u(m)
1m̂ + 2mB(m)

55 u(m)
2m̂ + 3mD(m)

55 u(m)
3m̂ + m2 A(m)

55 w(m)
0m̂ + m2B(m)

55 w(m)
1m̂ + m2D(m)

55 w(m)
2m̂

+m2F(m)
55 w(m)

3m̂ +
(

λ
(m−1)
zm̂ − λ

(m)
zm̂

)
= (∆T)

(
m2 A(m)

1α w(m)
0m̂ + m2B(m)

1α w(m)
1m̂ + m2D(m)

1α w(m)
2m̂ + m2F(m)

1α w(m)
3m̂

)
,

(52)

δ w(m)
1 : −mA(m)

13 u(m)
0m̂ +

(
−mB(m)

13 + mB(m)
55

)
u(m)

1m̂ +
(
−mD(m)

13 + 2mD(m)
55

)
u(m)

2m̂ +
(
−mF(m)

13 + 3mF(m)
55

)
u(m)

3m̂

+m2B(m)
55 w(m)

0m̂ +
(

A(m)
13 + m2D(m)

55

)
w(m)

1m̂ +
(

2B(m)
33 + m2F(m)

55

)
w(m)

2m̂ +
(

3D(m)
33 + m2H(m)

55

)
w(m)

3m̂

+(−hm/2)
(

λ
(m−1)
xm̂ + λ

(m)
xm̂

)
= (∆T)

(
m2B(m)

1α w(m)
0m̂ + m2D(m)

1α w(m)
1m̂ + m2F(m)

1α w(m)
2m̂ + m2H(m)

1α w(m)
3m̂

)
,

(53)
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δ w(m)
2 : −2mB(m)

13 u(m)
0m̂ +

(
−2mD(m)

13 + mD(m)
55

)
u(m)

1m̂ +
(
−2mF(m)

13 + 2mF(m)
55

)
u(m)

2m̂ +
(
−2mH(m)

13 + 3mH(m)
55

)
u(m)

3m̂

+m2D(m)
55 w(m)

0m̂ +
(

2B(m)
33 + m2F(m)

55

)
w(m)

1m̂ +
(

4D(m)
33 + m2H(m)

55

)
w(m)

2m̂ +
(

6F(m)
33 + m2 J(m)

55

)
w(m)

3m̂

+
(
h2

m/4
)(

λ
(m−1)
zm̂ − λ

(m)
zm̂

)
= (∆T)

(
m2D(m)

1α w(m)
0m̂ + m2F(m)

1α w(m)
1m̂ + m2H(m)

1α w(m)
2m̂ + m2 J(m)

1α w(m)
3m̂

)
,

(54)

δw(m)
3 : −3mD(m)

13 u(m)
0m̂ +

(
−3mF(m)

13 + mF(m)
55

)
u(m)

1m̂ +
(
−3mH(m)

13 + 2mH(m)
55

)
u(m)

2m̂ +
(
−3mJ(m)

13 + 3mJ(m)
55

)
u(m)

3m̂

+m2F(m)
55 w(m)

0m̂ +
(

3D(m)
33 + m2H(m)

55

)
w(m)

1m̂ +
(

6F(m)
33 + m2 J(m)

55

)
w(m)

2m̂ +
(

9H(m)
33 + m2L(m)

55

)
w(m)

3m̂

+
(
−h3

m/8
)(

λ
(m−1)
zm̂ + λ

(m)
zm̂

)
= (∆T)

(
m2F(m)

1α w(m)
0m̂ + m2H(m)

1α w(m)
1m̂ + m2 J(m)

1α w(m)
2m̂ + m2L(m)

1α w(m)
3m̂

)
,

(55)

δλ
(k)
x :

[
u(k+1)

0m̂ − (hk+1/2) u(k+1)
1m̂ +

(
h 2

k+1/4
)

u(k+1)
2m̂ −

(
h3

k+1/8
)

u(k+1)
3m̂

]
−
[
u(k)

0m̂ + (hk/2) u(k)
1m̂ +

(
h 2

k /4
)

u(k)
2m̂ +

(
h3

k/8
)
u(k)

3m̂

]
= 0,

(56)

δλ
(k)
z :

[
w(k+1)

0m̂ − (hk+1/2)w(k+1)
1m̂ +

(
h 2

k+1/4
)

w(k+1)
2m̂ −

(
h3

k+1/8
)

w(k+1)
3m̂

]
−
[
w(k)

0m̂ + (hk/2)w(k)
1m̂ +

(
h 2

k /4
)

w(k)
2m̂ +

(
h3

k/8
)
w(k)

3m̂

]
= 0,

(57)

where m = m̂ π/L, m = 1, 2, . . . , Nl, and k = 1, 2, . . . , (Nl − 1).
Equations (48)–(57) are a system of simultaneously linear algebraic equations repre-

senting a standard eigen-valued problem, in which the eigenvalues are the critical tempera-
ture changes, which can be obtained by letting the determinant of the coefficient matrix of
these simultaneously linear algebraic equations be zero. Once the eigenvalues are obtained,
their corresponding eigen-vectors (i.e., buckling mode shapes) can also be determined.

4. Optimal Design
4.1. Statement of the Optimization Problem

In this work, the authors consider the multi-objective optimization of the volume
fractions of the constituents of FG beams subjected to a uniform temperature change
in order to maximize the critical temperature change parameter of the FG beam and to
minimize its total mass. The FG beam is considered to be formed by mixing a metal
material and a ceramic material according to a three-parameter power-law function of
the volume fractions of the constituents through the thickness coordinate of the FG beam,
which is given as follows:

The three-parameter power-law function,

Γc =

[(
1
2
+

z
h

)
+ κb

(
1
2
− z

h

)κc] κp

and Γc + Γm = 1, (58)

where the symbols κb, κc, and κp denote the material-property gradient indices. The mate-
rial at the top surface of the FG beam (i.e., z = h/2) is ceramic rich, and when κb = 0, the
material at the bottom surface of the FG beam (i.e., z = −h/2) is metal rich. Variations in the
through-thickness distributions of the volume fraction given in Equation (58) with varying
one of κb, κc, and κp and holding the other two indices constants are shown in Figure 2.

In addition, when κb = 0, the three-parameter power-law function is reduced to the
one-parameter power-law function, which is commonly used in the literature and is given
as follows:

One-parameter power-law function,

Γc =

(
1
2
+

z
h

) κp

and Γc + Γm = 1, (59)

which is used in the thermal buckling cases in this work for a comparative study. Variations
in the through-thickness distributions of the volume fraction given in Equation (59) with
varying the κp value are shown in Figure 3.
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Figure 2. Through-thickness distributions of the volume fractions of the ceramic material for a three-parameter power-law
material model when (a) κb = 0.5, κp = 5, and κc = 1, 1.5, 2, and 3; (b) κb = 0.5, κc = 1.5,andκp = 1, 5, 10, and 20; and (c)
κp = 5, κc = 1.5, and κb = 0, 0.025, 0.5, and 1.

Figure 3. Through-thickness distributions of volume fractions of the ceramic material for a one-
parameter power-law material model when κp = 0.2, 0.5, 1, 2, and 5.

In the optimal design, a mass ratio Rm is defined as follows:

Rm =
(

ρ̂ f − ρ̂c

)
/(ρ̂m − ρ̂c), (60)
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where ρ̂ f , ρ̂c, and ρ̂m are the total mass per unit area in x-y plane of the FG beam, the homo-
geneous ceramic material, and the homogeneous metal material, respectively.
ρ̂k =

∫ h/2
−h/2 ρk(z) dz, in which k = f, c, or m.

The critical temperature parameter ∆T̂cr is defined as follows:

∆T̂cr = ∆Tcr αc (L/h)2, (61)

where αc denotes the thermal expansion coefficient of a reference ceramic material.
The objective functions are defined as follows:

Objective function 1 : F1 = Rm, (62)

Objective function 2 : F2 = 1− { [(∆Tcr)− (∆Tcr)c]/[(∆Tcr)m − (∆Tcr)c] }, (63)

where the ranges of F1 and F2 are 0 ≤ F1(or F2) ≤ 1.
Because non-dominated sorting is used in the current GA, the values of these objective

functions given in Equations (62) and (63) are, thus, used to classify each design into its
corresponding non-dominated front, which is also the assigned fitness value used for the
sorting process. Minimization of the fitness function can be accomplished when the critical
temperature change parameters of the FG beam are obtained. The detailed process of the
current non-dominated sorting-based GA is described in the following sections.

4.2. The Non-Dominated Sorting-Based GA

In this work, the non-dominated sorting-based GA [69,70] is used as an optimal tech-
nique, the usual form of which is described as follows: The GA starts with an initial set
of random solutions, which are called a population. Each individual in the population is
called a chromosome, which represents a solution to the problem at hand. The chromo-
somes are made of discrete units called genes (or design variables). Each gene controls
one or more features of the chromosome. The chromosomes evolve through successive
iterations, called generations. Based on some measures of fitness, the chromosomes during
each generation are evaluated. To create the next generation, new chromosomes in the
next generation, called offspring, are formed using two operators, which are the crossover
and mutation operators. In the former, some portions of two chromosomes in the current
generation are merged together, and in the latter, some portions of chromosomes in the
current generation are modified. Thus, the crossover operator leads the population to
converge by means of making the chromosome in the population alike, and the mutation
operator assists the search escaping from local optima by reintroducing genetic diversity
back into the population. A new generation is formed by selecting and rejecting some of
the parents and offspring according to their fitness values so as to keep the population
size of each generation constant. After several generations, the GA converges to the best
chromosome, representing the optimum solution to the problem considered. A flow chart
of the non-dominated sorting-based GA is shown in Figure 4, and its related process is
described as follows:

(a) Initial population
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Figure 4. Flow chart of the non-dominated sorting-based genetic algorithm (GA).

The first population consists of chromosomes (i.e., solutions or designs), which is
taken to be 200 in this work. Each chromosome is formed by several genes (i.e., design
variables), each of which is represented by a randomly generated real number with four
decimal places in a specific range.

(b) Fitness value

As mentioned before, there are two objective functions considered in this work, the
critical temperature change parameter of the FG beam and its total mass, the specific forms
of which (i.e., F1 and F2) are, thus, defined as the fitness values and are used for the sorting
process in the current GA.

(c) Selection
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In this work, the selection process consists of two approaches, the Pareto-ranking
approach [55] and the crowding distance approach [69], which are described as follows:

(c-1) Pareto-ranking approach
The Pareto-ranking approach uses the Pareto dominance concept to evaluate fitness

or assign selection probability to solutions. Each solution in the population of the parents
is ranked according to a dominance rule, and then each solution is assigned a fitness value
based on its rank in the population, rather than its actual objective function value. A
dominance rule proposed by Goldberg [55] is adopted and is described as follows:

Step 1: Set i = 1 and
(
np
)

0= the number of original solutions in the population.
Step 2: Identify non-dominated solutions xj (j = 1~nnd f i) in

(
np
)

i, and assign them set
to NDFi, in which NDFi denotes the ith non-dominated front, and the number of solutions
in NDFi is nnd f i.

Step 3: Set i = i + 1, and then
(
np
)

i+1 =
(
np
)

i−1 −
(
np
)

i. If
(
np
)

i+1 = 0, go to Step 4;
otherwise, go to Step 2.

Step 4: For every solution xk, k = 1 ∼
(
np
)

0 at generation t, assign rank
r(xk, t) = i if xk ∈ NDFi.

In the above process, a solution A dominates the other solution B, which means
both F1(xA) > F1(xB) and F2(xA) > F2(xB) when two objective functions are considered.
Because all objective functions are to be minimized, a lower rank corresponds to a better
solution, such that the population will be classified as several non-dominated fronts, where
the first non-dominated front is also called the Pareto fronts of this population.

(c-2) Crowding distance approach
A crowding distance approach as proposed by Deb [69] is adopted in this work, which

is aimed toward obtaining a uniform spread of solutions along the best-known Pareto front.
The approach is described as follows:

Step 1: Rank the population and identify Pareto fronts as PF1, PF2, . . . , PFR, using
Equations (62) and (63). For each non-dominated front, repeat Steps 2 and 3.

Step 2: For each objective function Fk, sort the solutions in PFj in the ascending order.
If the number of solutions in PFj is l, then the crowding distance of the ith solution is
measured as

cdk(xi) = [Fk(xi+1)− Fk(xi−1)]/
[

Fmax
k − Fmin

k

]
(64)

where i = 2, 3, . . . , (l−1), and cdk(x1) = cdk(xl) = ∞.

Step 3: To obtain the total crowding distance cd(xi) =
2
∑

k=1
cdk(xi).

The selection rule is based on the rank assigned to the solutions, where a lower
rank corresponds to a better solution. When the solutions are in the same rank, a greater
crowding distance corresponds to a better solution.

(d) Crossover

Any two solutions in the population are randomly paired for mating, in which a
simulated binary crossover operator suggested by Deb and Goyal [78] is adopted in this
work and is given as follows:(

xj
)t+1

1 = 0.5
[(

1 + γj
)(

xj
)t

1 +
(
1− γj

)(
xj
)t

2

]
, (65)

(
xj
)t+1

2 = 0.5
[(

1− γj
)(

xj
)t

1 +
(
1 + γj

)(
xj
)t

2

]
, (66)

where γj =
(
2uj
)1/(ηj+1) when uj ≤ 0.5, and γj =

{
1/
[
2
(
1− uj

)]}1/(ηj+1) when uj ≥ 0.5,
in which ui denotes a randomly generated real number between 0 and 1 and η > 0 is a
user-defined index parameter, the value of which is suggested to be ηj = 1.

(e) Mutation
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Mutation occurs in each solution in the population when the randomly generated
number between 0 and 1 for each solution is less than 0.1. A polynomial mutation operator
suggested by Deb and Goyal [78] is adopted in this work and is given as follows:

(xi)
t+1 = (xi)

t + βi, (67)

where βi = (2ui)
1/(ηi+1) − 1when ui ≤ 0.5 and βi = 1− [2(1− ui)]

1/(ηi+1)when ui ≥ 0.5,
in which ui denotes a randomly generated real number between 0 and 1 and ηi is a user-
defined index parameter, for which the value is suggested to be ηi = 20.

(f) Elitist

Performing the above operators, including the non-dominated sorting, crowding
distance, crossover, and mutation approaches, we can obtain the new generation (i.e.,
offspring) with the same number of solutions (i.e., np) as those in the original generation
(i.e., parents). The elitist strategy in this work is as follows:

Step 1: Combine the solutions of parents and offspring to form a population with
2 np solutions.

Step 2: Perform the non-dominated sorting and crowding distance approaches to each
solution of the population generated in Step 1. Then, select the first np solutions with
smaller fitness values in the population to form the offspring.

(g) End criteria

The end criteria of the current non-dominated sorting-based GA is given as
Criteria: when the number of generations reaches an assigned number, which is 100 in

this work.

5. Illustrative Examples
5.1. Thermal Buckling Analysis of Laminated Composite Beams and FG Beams

Because no benchmark solutions for the critical temperature changes for a simply-
supported FG beam can be found in the literature, for comparison purposes, the current
mixed LW HSDT is applied to the thermal buckling analysis of simply-supported, cross-ply
laminated beams under a uniform temperature, in which the material properties are re-
garded as a layer-wise constant distribution varying through the thickness coordinate. The
current solutions for critical temperature change parameters are compared with those ob-
tained using the EBT [79], FSDT [79], TSDT [79], HSDT [80], and HRSDT [22]. The material
properties and geometric parameters are given as L/h= 10 and 50, E1/E2 = 10, 20, and 30,
G12/E2 = G13/E2 = 0.6, υ12 = υ13 = 0.25, α2/α1 = 3, in which the subscript 1 repre-
sents the material properties parallel to the reinforced fiber direction, and the subscripts
2 and 3 represent material properties perpendicular to the reinforced fiber direction. A
dimensionless temperature change parameter is defined as ∆Tcr = (∆Tcr) α1(L/h)2.

Tables 1 and 2 show the convergent study for critical temperature change parameter
solutions of [0◦/90◦/0◦] laminated beams subjected to a uniform temperature change. It
can be seen in Tables 1 and 2 that the current LW1, LW2, and LW3 solutions converge
rapidly. For a moderately thick beam (L/h = 10), the convergent solutions are yielded
when the total number of layers are taken to be 9, 6, and 3 for the LW1, LW2, and LW3
theories, respectively, and these convergent solutions closely agree with one another. The
convergence rate increases when the beam becomes thinner. The current solutions in
Tables 1 and 2 with a superscript a indicate that the von Kármán GNS, rather than the full
GNS, is considered. The results show that the deviations between the solutions considering
the von Kármán GNS and the full GNS are less than 1%, which is very minor, such that
the von Kármán GNS is suitable for the current analysis of moderately thick laminated
composite beams. The current solutions in Tables 1 and 2 with a superscript b indicate that
a narrow beam is considered, in which Poisson’s ratios are taken to be zeroes in the stiffness
coefficients Qij (i, j = 1–3). The results show that the deviations between the solutions
considering and those not-considering the narrow beam effects are significant, where the
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deviations as high as approximately to 5.5% for both a moderately thick (L/h = 10) and a
thin LC beam (L/h = 50). Tables 1 and 2 also show that the current convergent solutions
considering the narrow beam effects closely agree with the HSRDT [22] and TSDT [79]
solutions, and those not considering the narrow beam effects closely agree with the HSDT
solutions [80]. In addition, the EBT solutions for the cases of L/h = 50 are the same as those
for the cases of L/h = 10. In the former, the relative error between the EBT solutions and
the current LW HSDT solutions is 1.2%, while it is 31.2% for the latter, such that the EBT is
suitable for the current analysis of very thin laminated composite beams only.

Table 1. Convergent study of critical temperature parameter solutions of simply supported, laminated
(0◦/90◦/0◦) beams under a uniform temperature change (α2/α1 = 3, E1/E2 = 20).

L/h Theories ∆
¯
Tcr

10 Current LW1 (nl = 1) 0.8315
Current LW1 (nl = 3) 0.8123
Current LW1 (nl = 6) 0.7995
Current LW1 (nl = 9) 0.7970
Current LW2 (nl = 1) 0.8306
Current LW2 (nl = 3) 0.7953
Current LW2 (nl = 6) 0.7950
Current LW3 (nl = 1) 0.8010
Current LW3 (nl = 3) 0.7950
Current LW3 (nl = 6) 0.7950

a Current LW3 (nl = 6) 0.8001
b Current LW3 (nl = 6) 0.8383

a, b Current LW3 (nl = 6) 0.8438
HSDT [80] 0.78912

HRSDT [22] 0.8230
TSDT [79] 0.8229
FSDT [79] 0.8281
EBT [79] 1.1072

50 Current LW1 (nl = 1) 1.0411
Current LW1 (nl = 3) 1.0370
Current LW1 (nl = 6) 1.0359
Current LW1 (nl = 9) 1.0357
Current LW2 (nl = 1) 1.0392
Current LW2 (nl = 3) 1.0355
Current LW2 (nl = 6) 1.0355
Current LW3 (nl = 1) 1.0373
Current LW3 (nl = 3) 1.0355
Current LW3 (nl = 6) 1.0355

a Current LW3 (nl = 6) 1.0360
b Current LW3 (nl = 6) 1.0931

a, b Current LW3 (nl = 6) 1.0936
HSDT [80] 1.04656

HRSDT [22] 1.0921
TSDT [79] 1.0921
FSDT [79] 1.0925
EBT [79] 1.1072

a von Karman geometric nonlinear terms are considered. b The Poisson ratio is considered to be zero in Qij (i = 1
and 3).

The thermal buckling problems of simply-supported FG beams with either the TD or
the TI material properties under a uniform temperature change are considered in Table 3. A
flow chart for the solution process to determine the critical temperature change parameters
of the FG beam is given in Figure 5 where the TD material properties are considered,
in which the golden section method is used. The through-thickness distributions of the
material properties of the FG beam are assumed to obey a single-parameter power-law
function according to the volume fractions of the constituents, as shown in Equation (57).
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The effective material properties are estimated using either the rule of mixtures or the
Mori–Tanaka scheme, which are given in Equations (1) and (2), respectively. Again, it can
be seen in Table 3 that the current LW HSDT solutions converge rapidly. The solutions for
the critical temperature change parameters obtained using the Mori–Tanaka scheme are
approximately no more than 2% greater than those obtained using the rule of mixtures. The
effects of different micromechanics models on the critical temperature change parameters
of the FG beam are minor.

Table 2. Convergent study of critical temperature parameter solutions of simply supported, laminated
(0◦/90◦/0◦) beams under a uniform temperature change (α2/α1 = 3, L/h= 10).

E1/E2 Theories ∆
¯
Tcr

10 Current LW1 (nl = 1) 0.8335
Current LW1 (nl = 3) 0.8162
Current LW1 (nl = 6) 0.8088
Current LW1 (nl = 9) 0.8073
Current LW2 (nl = 1) 0.8302
Current LW2 (nl = 3) 0.8063
Current LW2 (nl = 6) 0.8062
Current LW3 (nl = 1) 0.8134
Current LW3 (nl = 3) 0.8061
Current LW3 (nl = 6) 0.8061

a Current LW3 (nl = 6) 0.8123
b Current LW3 (nl = 6) 0.8896

a, b Current LW3 (nl = 6) 0.8965
HSDT [80] 0.81683

HRSDT [22] 0.8833
TSDT [79] 0.8832
FSDT [79] 0.8868
EBT [79] 1.0370

30 Current LW1 (nl = 1) 0.7828
Current LW1 (nl = 3) 0.7622
Current LW1 (nl = 6) 0.7463
Current LW1 (nl = 9) 0.7432
Current LW2 (nl = 1) 0.7824
Current LW2 (nl = 3) 0.7411
Current LW2 (nl = 6) 0.7407
Current LW3 (nl = 1) 0.7454
Current LW3 (nl = 3) 0.7406
Current LW3 (nl = 6) 0.7406

a Current LW3 (nl = 6) 0.7445
b Current LW3 (nl = 6) 0.7680

a, b Current LW3 (nl = 6) 0.7720
HSDT [80] 0.72608

HRSDT [22] 0.7472
TSDT [79] 0.7471
FSDT [79] 0.7528
EBT [79] 1.1329

a von Karman geometric nonlinear terms are considered. b The Poisson ratio is considered to be zero in Qij (i = 1
and 3).

The results also show that the critical temperature change parameters obtained using
the TI material properties always are greater than those obtained using the TD material
properties. For a moderately thick beam (L/h = 10 and κp = 1), deviations between
the critical temperature change parameters obtained using the TI and the TD material
properties are as high as approximately 36.5%, such that the current analysis using TI
material properties is an unsafe analysis and, thus, is not recommended. The effects of TD
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material properties on the critical temperature change parameters are significant, and these
must be considered for the current issue.

Table 3. Critical temperature parameter solutions for simply supported, FG beams under a uniform
temperature change.

L/h κp
Micromechanical

Models Theories ∆
¯
Tcr(TI) ∆

¯
Tcr(TD)

10 1 Mori–Tanaka Current LW1 (nl = 2) 0.5151 0.3757
Current LW1 (nl = 4) 0.5043 0.3692
Current LW1 (nl = 8) 0.5015 0.3674
Current LW2 (nl = 2) 0.5007 0.3674
Current LW2 (nl = 4) 0.5006 0.3667
Current LW3 (nl = 2) 0.5006 0.3667
Current LW3 (nl = 4) 0.5006 0.3667

10 1 Rule of mixtures Current LW1 (nl = 2) 0.5122 0.3678
Current LW1 (nl = 4) 0.5014 0.3614
Current LW1 (nl = 8) 0.4987 0.3600
Current LW2 (nl = 2) 0.4978 0.3595
Current LW2 (nl = 4) 0.4978 0.3595
Current LW3 (nl = 2) 0.4977 0.3595
Current LW3 (nl = 4) 0.4977 0.3595

10 5 Mori–Tanaka Current LW1 (nl = 2) 0.5315 0.4525
Current LW1 (nl = 4) 0.5202 0.4436
Current LW1 (nl = 8) 0.5172 0.4412
Current LW2 (nl = 2) 0.5164 0.4405
Current LW2 (nl = 4) 0.5163 0.4405
Current LW3 (nl = 2) 0.5163 0.4405
Current LW3 (nl = 4) 0.5163 0.4405

10 5 Rule of mixtures Current LW1 (nl = 2) 0.5307 0.4467
Current LW1 (nl = 4) 0.5193 0.4381
Current LW1 (nl = 8) 0.5164 0.4358
Current LW2 (nl = 2) 0.5155 0.4350
Current LW2 (nl = 4) 0.5154 0.4350
Current LW3 (nl = 2) 0.5154 0.4350
Current LW3 (nl = 4) 0.5154 0.4350

20 5 Mori–Tanaka Current LW1 (nl = 2) 0.5432 0.5194
Current LW1 (nl = 4) 0.5322 0.5081
Current LW1 (nl = 8) 0.5295 0.5066
Current LW2 (nl = 2) 0.5286 0.5042
Current LW2 (nl = 4) 0.5285 0.5042
Current LW3 (nl = 2) 0.5285 0.5042
Current LW3 (nl = 4) 0.5285 0.5042

20 5 Rule of mixtures Current LW1 (nl = 2) 0.5423 0.5170
Current LW1 (nl = 4) 0.5314 0.5066
Current LW1 (nl = 8) 0.5286 0.5042
Current LW2 (nl = 2) 0.5277 0.5026
Current LW2 (nl = 4) 0.5277 0.5026
Current LW3 (nl = 2) 0.5277 0.5026
Current LW3 (nl = 4) 0.5277 0.5026
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Figure 5. Flow chart of the golden section method used for the cases of temperature-dependent (TD)
material properties.

5.2. Optimization of Material Composition of FG beams

In this section, a multiple-objective optimization for material composition of a simply-
supported FG beam subjected to a uniform temperature change is considered in order
to maximize its critical temperature change and minimize its self-weight. In the optimal
design, the FG beam is considered to be a two-phase composite material, where one phase
is the ceramic material (ZrO2) and the other is the metal material (SUS304). The TD material
properties of ZrO2 and SUS304 are given in Table 4 [4]. Variations in the material properties
of ZrO2 and SUS304 with the temperature variable ranging from 300 K to 1100 K are shown
in Figure 6. The material properties of the FG beam are assumed to obey a three-parameter
power-law distribution of volume fractions of the constituents along the thickness of the
FG beam, and the effective material properties are estimated using the rule of mixtures.
The non-dominated sorting-based GA mentioned in Section 4.2 is used to determine some
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sets of Pareto-optimal solutions of the undetermined coefficients κp, κb, and κc, in which
200 initial populations are randomly generated, in which the ranges of κp, κb, and κc are
taken as0 ≤ κp ≤ 50, 0 ≤ κb ≤ 1, and 1 ≤ κc ≤ 3, respectively.

Table 4. Temperature dependent material properties of the metal material (SUS304) and the ceramic material (ZrO2) [4].

Materials P0 P−1 P1 P2 P3 P at 300K

ZrO2
E 244.27 × 109 0 −1.371 × 10−3 1.214 × 10−6 −3.681 × 10−10 168.06 × 109

α 12.766 × 10−6 0 −1.491 × 10−3 1.006 × 10−5 −6.778 × 10−11 18.591 × 10−6

υ 0.2882 0 1.133 × 10−4 0 0 0.298
ρ 3657 0 0 0 0 3657

SUS304
E 201.04 × 109 0 3.079 ×10−4 −6.534 × 10−7 0 207.79 × 109

α 12.330 × 10−6 0 8.086 × 10−4 0 0 15.321 × 10−6

υ 0.3262 0 −2.002 × 10−4 3.797 × 10−7 0 0.318
ρ 8166 0 0 0 0 8166

Figure 6. Variations of material properties of the ceramic and the metal materials with the temperature: (a) Young’s modulus;
(b) Poisson’s ratio; (c) Thermal expansion coefficient.

Figures 7 and 8 show the populations at the initial, first, second, fifth, tenth, and 20th
generations, where the TI and TD material properties are considered, respectively. It can
be seen in Figures 7 and 8 that the non-dominated, sorting-based GA converges rapidly
and that the Poreto-optimal solutions can be yielded after 20 generations. Curve fitting for
these Preto-optimal solutions is performed for the cases of TI and TD material properties,
which is shown in Figure 9 with the solid and dashed lines, respectively, in which

F2 = −1.3303(F1)
4 + 1.1843(F1)

3 + 0.4537 (F1)
2 − 1.3(F1) + 1.0005 for the TI material property cases, (68)

F2 = −1.8376(F1)
4 + 2.4524(F1)

3 − 1.2222 (F1)
2 − 0.3734(F1) + 0.9936for the TD material property cases. (69)

Equations (68) and (69) can then be used to calculate the associated weight numbers
(i.e., w1 and w2) for the objective functions F1 and F2, in which if we let dF2/dF1 = λ, then
w1 = −λ/(1− λ) and w2 = 1/(1− λ).

Tables 5 and 6 show every ten Pareto-optimal solutions sorted by the F2 function values
from the largest to the smallest for the TI and TD material property cases, respectively.
These Pareto-optimal solutions may provide design engineers with valuable information
regarding what set of the material-property gradient indices (κp, κb, and κc) they need
according to the weight number ratio of (w2/w1). In addition, the results also show that the
critical temperature changes of the FG beam for the TD material property cases are much
less than those for the TI material property cases, such that the TD material property effects
must be considered in TD problems.
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Figure 7. Two hundred populations for different generations shown in the objective spaces, in which the temperature-
independent (TI) material properties are considered; (a) initial generation; (b) 1st generation; (c) 2nd generation; (d) 5th
generation; (e) 10th generation; (f) 20th generation.

Figure 8. Two hundred populations for different generations shown in the objective spaces, in which the TD material
properties are considered; (a) initial generation; (b) 1st generation; (c) 2nd generation; (d) 5th generation; (e) 10th generation;
(f) 20th generation.
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Figure 9. Curve fitting for the Pareto-optimal fronts for the cases of TI and TD material properties.

Table 5. Pareto-optimal solutions for simply supported FG beams under a uniform temperature change sorted according to
the F2 function values from the largest to the smallest, in which temperature-independent material properties are considered.

Order Number of
Pareto-

Optimal Solutions
(F1, F2) ^

ρ ∆Tcr (κb,κc,κp) (w1,w2)

1 (0.000, 1.000) 3658.1 300.7326 (0.358, 1.829, 0.000) (0.565, 0.435)
10 (0.037, 0.953) 3820.7 303.1011 (0.000, 1.000, 0.037) (0.558, 0.442)
20 (0.072, 0.910) 3975.6 305.2840 (0.000, 2.392, 0.076) (0.549, 0.451)
30 (0.113, 0.861) 4157.9 307.7473 (0.000, 3.000, 0.125) (0.537, 0.463)
40 (0.154, 0.815) 4337.3 310.0472 (0.000, 2.831, 0.178) (0.523, 0.477)
50 (0.206, 0.760) 4565.6 312.7782 (0.000, 2.759, 0.253) (0.502, 0.498)
60 (0.251, 0.716) 4768.5 315.0162 (0.000, 2.714, 0.328) (0.482, 0.518)
70 (0.309, 0.665) 5023.2 317.5743 (0.000, 3.000, 0.435) (0.456, 0.544)
80 (0.380, 0.610) 5335.0 320.3524 (0.000, 2.967, 0.591) (0.424, 0.576)
90 (0.433, 0.572) 5570.0 322.2288 (0.002, 2.958, 0.736) (0.403, 0.597)
100 (0.496, 0.531) 5851.2 324.2938 (0.001, 2.958, 0.945) (0.385, 0.615)
110 (0.576, 0.482) 6204.6 326.7625 (0.004, 2.820, 1.300) (0.381, 0.619)
120 (0.644, 0.439) 6502.7 328.9122 (0.000, 3.000, 1.723) (0.399, 0.601)
130 (0.695, 0.403) 6731.2 330.7254 (0.000, 2.745, 2.190) (0.428, 0.572)
140 (0.741, 0.367) 6934.5 332.5478 (0.653, 1.122, 7.805) (0.459, 0.541)
150 (0.801, 0.311) 7199.1 335.3457 (0.864, 1.065, 22.95) (0.506, 0.494)
160 (0.844, 0.264) 7387.2 337.7239 (0.864, 1.082, 25.69) (0.545, 0.455)
170 (0.883, 0.213) 7559.9 340.2622 (0.881, 1.179, 24.36) (0.580, 0.420)
180 (0.926, 0.148) 7751.7 343.5581 (0.954, 1.146, 50.00) (0.621, 0.379)
190 (0.967, 0.076) 7930.0 347.1474 (0.537, 1.000, 45.04) (0.661, 0.339)
200 (1.000, 0.008) 8077.5 350.5544 (0.000, 2.005, 50.00) (0.684, 0.316)

Table 6. Pareto-optimal solutions of simply supported FG beams under a uniform temperature change sorted according to
the F2 function values from the largest to the smallest, in which temperature-dependent material properties are considered.

Order Number of
Pareto-

Optimal Solutions
(F1, F2) ^

ρ ∆Tcr (κb,κc,κp) (w1,w2)

1 (0.000, 0.994) 3657.0 172.5 (0.465, 1.620, 0.000) (0.272, 0.728)
10 (0.040, 0.977) 3833.8 174.4 (0.000, 3.000, 0.041) (0.315, 0.685)
20 (0.098, 0.947) 4090.2 177.7 (0.000, 3.000, 0.105) (0.354, 0.646)
30 (0.151, 0.917) 4326.6 181.1 (0.000, 1.799, 0.173) (0.375, 0.625)
40 (0.199, 0.888) 4535.2 184.4 (0.000, 1.787, 0.241) (0.385, 0.615)
50 (0.246, 0.858) 4743.0 187.7 (0.000, 3.000, 0.318) (0.390, 0.610)
60 (0.311, 0.816) 5031.9 192.4 (0.000, 1.000, 0.440) (0.391, 0.609)
70 (0.364, 0.781) 5268.3 196.2 (0.000, 2.613, 0.560) (0.391, 0.609)
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Table 6. Cont.

Order Number of
Pareto-

Optimal Solutions
(F1, F2) ^

ρ ∆Tcr (κb,κc,κp) (w1,w2)

80 (0.424, 0.743) 5532.8 200.6 (0.000, 1.561, 0.716) (0.393, 0.607)
90 (0.483, 0.705) 5791.1 204.8 (0.000, 1.474, 0.901) (0.400, 0.600)
100 (0.531, 0.672) 6002.2 208.5 (0.000, 2.792, 1.086) (0.411, 0.589)
110 (0.585, 0.633) 6242.9 212.9 (0.013, 1.444, 1.364) (0.431, 0.569)
120 (0.651, 0.579) 6533.8 218.8 (0.000, 2.239, 1.746) (0.465, 0.535)
130 (0.697, 0.537) 6736.6 223.6 (0.000, 1.443, 2.132) (0.496, 0.504)
140 (0.746, 0.484) 6956.2 229.5 (0.046, 2.894, 2.754) (0.535, 0.465)
150 (0.793, 0.425) 7164.5 236.1 (0.343, 1.047, 5.655) (0.575, 0.425)
160 (0.836, 0.362) 7353.8 243.1 (0.373, 1.592, 5.894) (0.612, 0.388)
170 (0.884, 0.281) 7562.9 252.1 (0.428, 1.210, 10.03) (0.652, 0.348)
180 (0.915, 0.219) 7703.5 259.1 (0.798, 1.231, 21.23) (0.677, 0.323)
190 (0.965, 0.105) 7924.0 271.9 (0.879, 1.297, 34.51) (0.713, 0.287)
200 (1.000, 0.013) 8077.6 282.1 (0.117, 1.000, 49.74) (0.736, 0.264)

6. Conclusions

In this work, the authors developed a mixed LW HSDT for the thermal buckling
analysis of FG beams subjected to a uniform temperature change, and then they further
developed a non-dominated sorting-based GA for multi-objectives optimization of the
material composition of a three-parameter FG beam, in which the TI and TD material
properties are considered. All of the results in the tables and figures are obtained using the
self-developed MATLAB programs without any commercial toolbox.

In the thermal buckling analysis, the results show that the TD material properties
must be considered in TD physical problems, in which for a moderately thick FG beam, the
deviations in the critical temperature change parameters obtained using the TD material
properties and the TI material properties are as high as approximately 36.5%, and the
analysis based on the TI material materials is an unsafe analysis, due to the fact that it
always overestimates the actual critical temperature change parameters.

In the optimal design cases, the results show the self-developed non-dominated
sorting-based GA converges rapidly, where the Poreto-optimal solutions can be yielded
after the 20th generation. The non-dominated sorting-based GA can also be extended to
other optimal designs of FG beams with multiple objective functions.

Author Contributions: Conceptualization, C.-P.W.; methodology, C.-P.W.; software, K.-W.L.; vali-
dation, C.-P.W. and K.-W.L.; investigation: C.-P.W. and K.-W.L.; resources, C.-P.W.; data curation,
K.-W.L.; writing—original draft preparation, C.-P.W.; writing—review and editing, C.-P.W.; visualiza-
tion, C.-P.W.; supervision, C.-P.W.; project administration, C.-P.W. funding acquisition, C.-P.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant number
MOST 109-2221-E-006-015-MY3.

Institutional Review Board Statement: This study did not involve humans and animals.

Informed Consent Statement: This study did not involve humans and animals.

Data Availability Statement: All of the data for Figures 1–9 can be obtained at https://drive.google.
com/drive/folders/1J2KY29JdaCAhlpuGJdLSz0fb3kU_Z-HP?usp=sharing
(accessed on 30 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://drive.google.com/drive/folders/1J2KY29JdaCAhlpuGJdLSz0fb3kU_Z-HP?usp=sharing
https://drive.google.com/drive/folders/1J2KY29JdaCAhlpuGJdLSz0fb3kU_Z-HP?usp=sharing


J. Compos. Sci. 2021, 5, 92 24 of 27

Appendix A. Relations between the Generalized Force/Moment Resultants and the
Generalized Displacements

The definition of generalized force and moment resultants and their relations with the
displacement components are given as follows:

N(m)
x =

∫ hm/2
−hm/2 σ

(m)
x dzm

= A(m)
11 u(m)

0 ,x +B(m)
11 u(m)

1 ,x +D(m)
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13 w(m)
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13 w(m)
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in which the superscript T refers to the transport of the vector.
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