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Abstract: Bismuth based quaternary glasses with compositions BiBLM: 50Bi2O3–20B2O3–15Li2O–
15MO (where MO = ZnO, CdO, BaO, and PbO) were processed by conventional melt quenching.
The effectiveness of various modifier oxides on the optical and structural properties of the developed
glasses was studied systematically by XRD, DSC, FTIR, Raman, and optical absorption (OA) measure-
ments. The synthesized glass specimens were characterized by XRD and the patterns demonstrated
an amorphous nature. The physical characteristics such as molar mass, density, and OPD values
were found to increase with an increase in the molar mass of the modifier oxides, while there was a
decrement in oxygen molar volume, thus resulting in decrement of complete molar volume of the
prepared glasses. From DSC analysis, incorrigible reduction and enhancement of Tg and thermal
stability among various modifier oxides in the glass network was noticed. Optical absorption data
for glass specimens have confirmed the decrease in both direct and indirect optical band gap values
among various modifier oxides incorporation. These investigations support the obtained Urbach
energy (UE) and metallization criteria of synthesized glasses. The ionic characteristic for the glass
specimens were confirmed by the values of electronic polarizability and electronegativity. The Raman
and FT-IR spectra of the glass specimens displayed the existence of BiO3, BiO6, ZnO4, CdO4, BaO4,
BO3, PbO4, and BO4 structural units within the glass matrix. These structural results can support the
applications of as-developed glasses in the area of photonics.

Keywords: bismuth glasses; modifier oxides; structural study; optical absorption; DSC; FTIR-
Raman spectroscopy

Highlights

• Structural and Optical properties of the glasses were explored.
• The absence of crystallization peak in DSC clearly showed high thermal stability

of glasses.
• The ionic nature of the glasses was identified from electronic polarizability

and electronegativity.
• BiO6, BiO3, ZnO4, CdO4, BaO4, PbO4, BO4, and BO3 structural units were identified.

1. Introduction

Glasses, being amorphous in nature, exhibit optical isotropy. These transparent
materials have received ample attention in the fields of science and technology [1]. For
as far back as decade, many researchers have explored bismuth-contained glasses due
to their remarkable advantages in the field of photonics and their application in optical
isolators, infrared transmission components, optoelectronics, optical fiber amplifiers, laser
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systems, ultrafast switches, and various photonic devices [2–5]. When borate is added
to the bismuth glass network, it leads to larger optical basicity, a high refractive index,
longer IR (infrared) cut-off, and second and third order non-linear optical susceptibility.
These properties haveengrossed significant attention for their photonic and optoelectronic
applications [6–8]. In addition, bismuth glasses containing alkali oxides (such as Li2O,
Na2O etc.) possess high conductivity and act as ionic conductors compared to the other
types of glasses [9]. Consequently, lithium bismuthate glasses are subject to a large edge-
sharing BiOn polyhedral. On the one hand, it is similar to a Bi2O4 crystal. On the other
hand, BiO6 polyhedra are found in the major construction units in these glasses. At the
same time, the inclusion of small amountof Li2O in bismuth glasses and lithium ions moves
to structural interstates to replace the surplus of BiO6 octahedral negative charge.

Borate, being the one of the strongest and main glass network formers among the other
glass formers, has been paid great attention due to its exciting technological applications.
In general, the B atoms coordinate with tri and tetra oxygen atoms in borate containing
glasses, creating structural units of [BO4] or [BO3]. These structural units constitute (B–O–B)
boran-oxygen-boran linkages that help to enhance the optical equities of the different
glasses through prompting the bonds of M–O (metal-oxygen bonds) and NBOs (non-
bridging oxygen atoms) [10,11]. Asmall field strength of about 0.53 of Bi3+ in B2O3 improves
the optical and glass-forming ability. However, the addition of MO to the network system
leads to a more compositional change, which results in increasing the refractive index of
the NBOs [12–14]. Particularly, the addition of B2O3 can enhance the optical properties
and glass-forming ability of bismuthate glass materials. Moreover, the refractive index of
the bismuth-borate glasses is observed to be higher than quite a few other bismuth-based
glasses. Hazra et al. investigated the structure of the Bi2O3 glass network (octahedral units
of BiO6 and pyramidal units of BiO3) by IR and Raman techniques [15]. Fu and Yatsuda
have studied the formation of glass and their optical followed by thermal properties of
Bi2O3–MO and Bi2O3–Li2O–MO glasses. Nitta et al. have reported the glass formation and
thermal properties of Bi2O3–B2O3–Li2O–MO glass systems. A bismuth-borate-based glass
system was deliberated widely by many authors, who attempted to estimate their thermal,
structural, and optical properties [16,17]. The incorporating of divalent ions such as Zn2+,
Cd2+, Ba2+, and Pb2+ to the high mole content of a bismuth oxide glass system played
a significant role in improving its optical, structural, and physical properties [8–10,17].
Further, the addition of MO oxide to the Bi2O3–B2O3–Li2O glass enhances the stability and
polarizability of the ions in the network of glass. The analysis of the ternary glass system
Bi2O3–B2O3–Li2O–MO is of explicit interest due to the presence of more polarizability of
bismuth and boron and, along with lithium and MO, could increase the nonlinear optical
properties by increasing the refractive index of the glasses. It would also be significant to
evaluate the structural deviation of the glass system due to the various modifier ions added
to the bismuth glasses and to study the interaction behavior of the MO ions. MO contributes
to the system of glasses through borate and bismuth, the initiation of oxygen three corners,
and the lone electrons of borate (bismuth Bi3+ at the fourth corner restricts the third central
way of the Bi atom). There might be a chance of borate ions within a B3+ state being
devoted to a glass network starting with BO4 accompanied with BiO3 structural groups
in glass systems. This could lead to the improvement of its the NLO (nonlinear optical)
properties [12,15,18,19]. As of now, limited research is available regarding the optical and
structural studies of different MO mixed bismuth borate lithium glasses. Moreover, the
chosen host glass system contains more (50) % heavy metal oxide Bi2O3. When various
MO (MO = ZnO, CdO, BaO, and PbO) are added to the HMO glass system, it can enhance
the optical properties suitable for the development of photonic devices. The incorporation
of HMO to the borate network along with the different modifier oxides are predicted
to enhance and to reduce the multi phonon relaxation compared to other doped glass
systems. Further, to the best of our knowledge, comprehensive and exhaustive studies on
the structural and optical studies of HMO containing borate lithium glasses are marginally
available in literature.
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In the present work, we are dedicated in investigating the optical, thermal, and
structural properties of the Bi2O3–B2O3–Li2O–MO (MO = ZnO, CdO, BaO, and PbO) glass
system with different modifier oxides by various characterization techniques to probe the
suitability of these glasses as potential photonic materials.

2. Experimental Techniques

Glasses with a composition consisting of 50Bi2O3–20B2O3–15Li2O–15MO (MO = ZnO,
CdO, BaO, and PbO) were synthesized by traditional melting and quenching techniques.
High immaculateness of chemicals B2O3, Bi2O3, BaO, Li2O, CdO, ZnO, and PbO, were
procured from Sigma Aldrich to prepare the glasses. The requisite molecular % of the
compounds have been taken and carefully grounded until the homogeneity is achieved.
Then, the mixture is taken into a platinum crucible which is placed in muffle furnace
to melt at 1000–1050 ◦C for one hour. The melt form of composition was then poured
onto a pre-heated steel mold. The prepared glasses specimens were annealed at 300 ◦C
about 3 h to relieve the internal stresses. These glasses are labelled as BiBLM glasses
(BiBLM1(M1 = ZnO), BiBLM2 (M2 = CdO), BiBLM3 (M3 = BaO), and BiBLM4 (M4 = PbO))
and are visually transparent. The prepared BiBML glasses were initially characterized
by XRD by Philips diffractometer (PANalytical X-pert-pro model, Malvern Panalytical,
Malvern, UK) with radiation source Cu Kα (1.54 Å) and diffraction through an angle
2θ in the range 10◦ to 80◦ with a scan rate of 4◦/min and step size of 0.02◦. The DSC
investigations were carried for all the specimens on DSC Q-20 instrument in the range of
100 ◦C to 700 ◦C temperatures at 10 ◦C/min rate.

The density of the BiBLM glasses were measured using Archimedes method, the cap-
tivation liquid as xylene (ρ = 0.86 g/cc). By using density values some physical parameters
like molar volume (Vm) and Vm of oxygen followed by oxygen packing density (OPD) for
the BiBLM glasses were evaluated. The optical absorption (OA) spectra of polished glasses
specimens were noted within the wavelength range of 400–900 nm using a spectrometer
(LABINDIA Instruments Pvt. Ltd., Mumbai, India) with 0.5 nm resolution. FTIR spectra of
the glass samples were documented within the wavenumber range of 400–1600 cm−1 with
1 cm−1 resolution by Bruker ALPHA-II FTIR spectrometer (Bruker, Billerica, MA, USA)
with the KBr pellet technique. Micro Raman Spectrometer (Renishaw Invia Reflex, Ren-
ishaw, Wotton-under-Edge, UK) measured Raman spectra for the BiBLM glass materials
with 514.5 nm of Argon ion laser in the wavenumber between 100–1000 cm−1 under a
backscattering arrangement.

3. Results and Discussion
3.1. Physical Parameters

Physical properties such as density (ρ), molar volume (Vm), and oxygen molar volume
(Vo) followed by oxygen packing density (OPD) were evaluated for all glasses. The values
are given in Table 1. The density of BiBLM glasses were evaluated from the Archimedes
equation, and with an accuracy of 0.001 mg, using the formula below

ρg = ρxylene ×
Wair

Wair −Wxylene
(1)

where Wair is the weight in an air medium, Wxylene is the weight of glass in a xylene
medium, and ρxylene is the density of xylene.

The Vm, Vo and OPD values of BiBLMglasses were assessed from the density from the
following equations,

Vm =
∑ xi Mi

ρg
(2)

Vo =
Vm

nixi
(3)
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OPD = 1000× C×
( ρ

M

)
(4)

where ρ is the glass density, (Mi or M) is molecular weight, xi is molar fraction, ni is oxygen
atom number in each oxide constituent, and C is the oxygen atoms number per formula of
the BiBLM glasses.

Table 1. Physical parameters of BiBLM glasses.

S.No Parameter BiBLM1 BiBLM2 BiBLM3 BiBLM4

1 Molar Mass, M (g/mol) 263.602 270.655 274.394 286.374
2 Density, ρ (g/cm3) ±0.001 5.848 6.282 6.491 6.816
3 Molar volume, Vm(cm3/mol) (±0.1) 45.076 43.084 42.272 42.015
4 Oxygen molar volume VO (cm3/mol) 18.782 17.951 17.613 17.506
5 Oxygen packing density (OPD) (g-atom/1) 53.243 55.705 56.775 57.122

The density values for BiBLM glasses increased within in the range 5.848 to 6.516 g cm−3

with various MO oxides in the network of glasses. The density of glasses specifies the
compactness of the network of glasses. These values of density increasing due to increasing
atomic radii and molecular weights of ingredient elements leads to a larger density of
MO oxides in the BiBLM glasses [3,13,20]. The deliberate values of density of the glass
specimens are reliable with analytical density values. On the other hand, there was inverse
relation between values of molar volume and density of the glasses. The estimations of
the Vo of the BiBLM glasses are originated to be decreasing due to the incorporation of
different oxides in the present network, leading the highly packed local network to be
loosened. This contrary behavior of OPD with oxygen molar volume is found as a result of
the lower field intensity of different incorporation of MO oxides and is due ultimately to
non-bridging oxygen atoms [13,20].

The organization between density and molar volume are displayed in Figure 1a. It is
evident from the Figure 1a and Table 1, that density is increasing while molar volume is
decreasing due to various modifier oxides in the composition of the present synthesized
BiBLM glasses. At the same time from Figure 1b, the Vo and OPD follow the similar
pattern i.e., BiBLM1 > BiBLM2 > BiBLM3 > BiBLM4. This may be due to the creation of
non-bridging and bridging oxygen atoms which sit in the glass network.
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3.2. Thermal Analysis

The investigation of the thermal behavior of the glass accords significant evidence of
structural features such as connectivity of local environment and steadiness of the glass.
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The traces from the differential scanning calorimetry are used to evaluate the thermal
properties of the as-prepared glasses.

The thermal behavior of BiBLM glasses is analyzed by DSC in the range of 100–700 ◦C
and the results are presented in Figure 2a. The Tg (glass transition temperature), To (glass
crystallization temperature), Tp (peak crystallization), and ∆T (thermal stability) values
are noted in Table 2. It can be inferred from Table 2 that the glass transition temperature
varies with the incorporation of different MO in BiBLM glasses. The Tg of glasses also
depends on the density, as the density of the BiBLM glasses increases with the various
modifier oxides by formation of Bi-O-MO linkages inside the glass matrix. It is noticed that
the crystallization temperature of BiBLM3 glass system is nearly 420 ◦C and, except for
the BiBLM3 glass, the DSC plots all other glasses (BiBLM1, BiBLM2 and BiBLM4) possess
an exceptionally low tendency towards crystallization and trend more towards thermal
stability [21]. From Table 2, it can be noticed that the value of Tg drops from 414 ◦C to 343 ◦C
and then increases to 418 ◦C. This is mainly depending on the bond strengths between
the atoms involved in the glass formation. The bond strength of B−O (498 kJ/mol) is
hostile comparative to the bond strength of Bi−O bonds (102 kJ/mol). The bond strengths
of Li–O (150 KJ/mol), Zn–O (151 kJ/mol), Ba–O (138 kJ/mol), Cd-O (84 kJ/mol) and
Pb–O (101 kJ/mol) are responsible for decreasing in Tg values [22,23]. Further, the Tg of
glasses also depends on the OPD of the glass system. With the addition of MO to the
glass network, there is a change in OPD that leads to reduction in the glass transition
temperature (Tg) [24,25]. In another way, the change occurred in Tg might be replacement
of high strength of the metal-oxygen bond with low strength of metal-oxygen bond in the
glass system. Furthermore, the increase in transition temperature Tg (418 ◦C) of BiBML4
is ascribed to the raise in density with MO constituent in the BiBML4 glass and also the
bond energy of Ba–O (2.836 eV) is more than the Zn–O (2.714 eV). The strength of glass
changes with the various MO in BiBML glasses is concluded and with the knowledge
of Zn2+ (0.83 Å) which is lower cation radius is replaced with a higher cation radius of
Cd2+ (1.03 Å), Pb2+ (1.35 Å) and Ba2+ (1.43 Å) [26]. The ∆T (T0–Tg) is thermal stability,
the ∆T value of BiBML1, BiBML2, BiBML3 and BiBML4 is found to be more than 100 ◦C,
so the glasses formed are more rigid, highly cross-linked, and are very tightly packed
in the network of the glasses. The increase in the thermal stability (as evidenced from
OPD) of the BiBLM glasses is useful for the development of photonic devices like optical
amplifiers, non-linear optical devices, etc. At the same time BiBLM4 glass has maximum Tg
and thermal stability. So far, these are the best for analysis of luminance properties [27,28].
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Table 2. DSC parameters of BiBLM glasses.

Property BiBLM1 BiBLM2 BiBLM3 BiBLM4

Glass transition temperature (Tg) (±1) 414 412 343 418
Glass Crystallization temperature (To) (±1) 592 552 420 590
Peak crystallization (Tp) (±1) 621 646 443 699
Thermal stability ∆T (To–Tg) (±1) 168 140 77 172

3.3. X-ray Diffraction

XRD studies as displayed in Figure 3, indicates the spectra of the amorphous nature
of the synthesized BiBLM glass specimen. The traces of recorded XRD are contained a
broad peak around 30◦ and missing of sharp peaks confirming the amorphous character of
BiBLM1, BiBLM2, BiBLM3 and BiBLM4 glasses.
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Figure 3. X-ray diffraction of BiBLM glass system.

3.4. FTIR Studies

FTIR analysis is apowerful technique forstudying the essential structural unit ar-
rangement and functional groups presented in the materials. The spectra for the glass
composition 50Bi2O3–20B2O3–15Li2O–15MO (MO= ZnO, CdO, BaO, and PbO) was dis-
played within the range of 400–1600 cm−1 at room temperature and are depicted in Figure 4.
FTIR spectra disclosed the most significant structural studies of the glasses which tabulated
in Table 3. Condrate et al., [29] described the structure of Bi2O3 based glasses as like
that of crystalline α-Bi2O3. Although, the network of α-Bi2O3 is created by the continual
linking of octahedral [BiO6] and polyhedra [BiO3] primary units by sharing corresponding
vertices [23,30]. Consequently, the design of Bi2O3 primarily based glasses was developed
by octahedral BiO6 units related to collective corners. The Bi2O3 units were implicated
that two oxygen along through a single pair of electrons. The equatorial position of Bi2O3
units in the bond length of the Bi–O bonds is slightly shorter than that of Bi–O axial
bonds. The modes of vibrations borate are studied and categorized into three IR regions.
The structure of borate glasses consists of di, tri, penta, pyro, metaborate, boroxol rings,
and various modes of BO3 and BO4 groups. Generally, trigonal [BO3] groups are ascribed
to asymmetrical stretching vibrational modes of B–O bonds related to the first region
at 1200–1600 cm−1.
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Table 3. Assignment of FT-IR bands of BiBLM glasses.

Band Positions Assignment

∼400–440 Bi−O bonds in distorted [BiO6] octahedral units and a specific vibration of Li−O bonds.

∼440–460 Vibrations of Zn−O bonds from ZnO4 tetrahedral, Vibrations of Cd-O bonds from CdO4 tetrahedral vibration,
Pb−O bonds from PbO4 tetrahedral and bending vibrations of B−O−B linkages in BO3 units.

∼560–592 Bi−O bending vibrations in the [BiO6] octahedral units.
∼590–650 Stretching induced vibrations due to Bi−O−1 bonds which are mainly NBO’s.

∼710–730 Chain-type metaborate, bending vibrations of B–O–B linkages in borate superposition of Bi−O bonds in the
[BiO3] pyramidal units to the B−O−B bending vibrations

∼750–770 Bending vibrations due to O3B−O−BO4 linkages.
∼850–870&
∼880–890 Characteristic vibrational bands of [BiO3] polyhedral, symmetrical stretching induced vibrations in [BiO3] units.

∼910 Stretching B−O vibrations in [BO4] units from diborate groups
~1200–1270&
~1370, ~1380 Asymmetric stretching induced vibrations of B–O bond of trigonal [BO3] units

∼1200–1300&
∼1500–1600

B−O stretching induced vibrations and overlapping of vibrations in [BO] units due to tri, tetra and penta
borate groups and stretching induced vibrations in B−O bond in the [BO3] units from boroxol rings.

Tetragonal [BO4] groups are ascribed information of B–O band vibrations are stretch-
ing in the second region at 800–1200 cm−1 and other borate groups in B–O–B vibrations
are bending in trigonal [BO3] and tetrahedral [BO4] group units in the third region at
400–800 cm−1 [2,21]. From the available literature, it is predicted that the vibrations in-
duced bending in the range 400–600 cm−1 are octahedral [BiO6] units due to Bi−O bands.
Occasionally there occurs aconfusionon the inclusion of different MO and B2O3towards the
Bismuth network, as these distinctive bands for bismuthate are essentially relative to B2O3.
Appropriately, there might be few inclusions of the Bi−O groups with bending vibration of
BO3 units [9]. The prominent bands approximately at ∼406, ∼440, ∼445, ∼532, ∼541,
and ∼597 cm−1 are credited to the broadening conveyed by vibrations induced bending
of bands such as like Bi−O−1 and these are primarily presented as NBO (non-connecting
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oxygen) atoms in polyhedral [BiO6] units [31,32]. Also, a band at ∼440 cm−1 is ascribed
to Bi−O bonds in octahedral units of bismuth [BiO6], which are superposed by an IR
bands because of specific vibrations of Li−O bonds [27,32]. The absorption bands at
∼620, ∼665, ∼710, ∼845, ∼867, and ∼878 cm−1 of the non-intricate data are often
ascribed to assorted vibrations due to bending emerging in B−O−B bonds of the borate
glass matrix [29] and Bi−O bonds in BiO3 units [2,33]. There are various prominent peaks
approximately at ∼705,∼710, and ∼725 cm−1, and altogether the specimens that may
be credited to the superstition of bands Bi−O and B in pyramidal [BiO3] units of bending
vibrations (O3B−O−BO3) [13,22]. The positioned peaks around ∼865 and ∼870 cm−1

are acknowledged as characteristic vibration bands due to Bi−O bonds in [BiO3] polyhe-
dral [22,34]. The peaks inferred in the range 860–1220 cm−1 are accredited to the induced
stretching vibrations of B−O and extending of various arrangements in [BO4] units due to
the presence of various (tri, tetra, and penta) borate groups. A small deviation in wavenum-
ber with chemical composition has been seen because of an increment in the [BO4] units
in the glass network [35,36]. The peak at 910 cm−1 is recognized as the fundamental peak
promising due to induced stretching vibrations in B−O bonds of [BO4] from diborate
groups [4,30]. The peak prominent at around 1190 cm−1 can be intuited to asymmetric
stretching induced vibrations due to B−O bonds of [BO4] units from pyro and ortho borate
groups [4]. The absorption peaks in the range of 1200–1600 cm−1 are ascribed to B−O the
stretching induced vibrations which are developing in the [BO3] units from the boroxol
rings. The existence of boroxol rings have been accounted in borate containing binary,
ternary, and quaternary glass networks. Moreover, these bands (B−O) are related to the
vibrational modes inside the different borate rings and B−O−1 bonds that are basically
NBO atoms in nature. This may be attributed to enhance in the NBO atoms in borate
rings [2].

3.5. Raman Spectra

Raman spectra of the BiBLM: 50Bi2O3–20B2O3–15Li2O–15MO (MO= ZnO, CdO, BaO
and PbO) glasses were displayed in Figure 5 and the allotments of various bands are
provided in Table 4. The vibrational Raman bands associated withthe various structural
units for the present glass system are dominated by the heaviest cation bismuth (Bi3+).
Generally, the Raman bands due to Bi2O3 can be classified into four regions, i.e., low wave
number Raman modes (<100 cm−1), heavy metal ion vibrations (70–160 cm−1), bridged
anion modes in intermediate (300–600 cm−1), and non-bridging anion modes at larger
wave numbers [23,24]. The peaks within the range of 210 cm−1 to 240 cm−1 are endorsed
to the vibrational modes of Bi−O in [BiO3] as well as [BiO6] units of glass network,
andthe modes of Bi ions cause thesymmetry in stretching induced vibrations of Bi−O
bonds [1,3,13,34]. The vibrational modes detected from 605 to 640 cm−1 are accredited to
the Bi−O−1 stretching induced vibrations in the units of [BiO6] and also the vibration of
meta-borate structural groups of ring nature structure. These vibrations also confirmed
from the FTIR analysis that, as a shift of the bands from 400–600 cm−1, which is due to
the change of local symmetry in polyhedral [BiO6]units as the MO into the system [1,13].
The presence of a Raman peak nearly about 260 cm−1 and FTIR bands in between 450 and
650 cm−1 are due to the presence of M−O tetrahedral bending vibrations in the BiBLM
system [13,34,35]. Further, the peaks that are visible in the range between 940 cm−1 to
985 cm−1 may be licensed to the existence of modes of vibrations crediting to the B−O
and B−O−B bonds present in the orthoborate and pyroborate group of [BO3] triangular
units [1,13,17,21,36–38]. In addition, the peaks ascribing to the band ranges from 1280 cm−1

to 1305 cm−1 are attributed to response of stretching induced vibrations of the Bi−O−1

bonds, also at near 1320–1408 cm−1 shows the stretching vibrations of Bi−O−1 bondsdue
to the formation of NBOs, this is confirmed from the FTIR spectra which is ascribed by
B−O−B [2,35,36]. Moreover, these bonds comprise of pyroborate groups and an ingredient
of associated Bi−O−1 groups. Also, many of the peaks were because of the vibrational
bond modes taking in light of the vibrations in the B−O bonds in [BO3] as well as [BO4]
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units [1,2,13,21,35,36]. The strong bands demonstrated near about 1280–1325 cm−1 are
due to Bi−O−1 stretching vibrations of [BiO3] units. The bands observed in FTIR spectra
nearly at 850–890 cm−1 are due to symmetric stretching vibrations of [BiO3] and [BiO6]
units and B−O−B bending vibrations of [BO3] units [2,13,35,36]. From this analysis, it has
been concluded that on the incorporation of various modifiers in the glass network system
causes the Raman shift of peaks from its present location, and the shifting may take place
as an underlying variation to present glass system. The intensities of peaks are occurred
due to the incorporating different oxides in the network. These are shown in Figure 5. A
concise depiction of the assigning peaks of Raman is presented in Table 4.
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Table 4. Raman band assignment of BiBLM glasses.

Band Positions Assignment

210–240 Vibrational modes of Bi−O in the [BiO3] and [BiO6] units

215–260 Modes of Bismuth ions due to symmetric stretching induced vibrations of Bi−O−Bi linkages in
[BiO6] octahedral units

600–640 Bi−O−stretching induced vibrations in [BiO6] units and due to metaborate groups in ring structure
and also due to B−O in [BO4] units or due to the linkages of M-O units

930–985 Vibrational modes occurring in the bonds like B−O and B−O−B in pyroborate groups of [BO3] units.

1280–1305 Stretching induced vibrations occurring in Bi−O−1 bonds which are mainly considered as non
bridging oxygen atoms.

1320–1408 Stretching induced vibrations occurring in Bi−O−1 bonds which are mainly considered as non
bridging oxygen atoms.

3.6. Optical Absorption (OA) Spectra

The estimation of OA recovers significant opto-structural studies of glasses. The OA
spectra of BiBLM glasses are considered at room temperature and recorded the spectra
within the range of 400–900 nm displayed in Figure 6. The chemical composition of the
constituents in glass impacts the most part of the absorption edge and intensity. From
Figure 6, the edges of the absorption for present glasses are absorbed in 417, 426, 435, and
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449 nm for BiBLM1, BiBLM2, BiBLM3, and BiBLM4, respectively. The cut-off wavelengths
(maximum intensity value in the absorption) of these glasses are estimated and given in
Table 5. Cut-off wavelengths shifted towards higher wavelengths for the sample with
different modifier oxides. It is also observed that the BiBLM1 glass has less cut-off wave-
length value, whereas BiBLM4 has a high cut-off wavelength value compared to other
glass specimens. The coefficient of absorption of prepared glasses is measured by using
the equations mentioned in the reference [37].
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Table 5. Optical parameters of BiBLM glasses.

S.No Parameter BiBLM1 BiBLM2 BiBLM3 BiBLM4

1 Cut-off wavelength λc(nm) (±0.1) 417 426 435 449
2 Indirect band gap Eind(eV) (±0.001) 1.931 1.7469 1.605 1.415
3 Direct band gap Ed(eV) (±0.001) 2.131 1.971 1.763 1.545
4 Urbach Energy ∆E(meV) (±0.001) 428 438 448 460
5 Molar refractivity Rm(cm3) 23.951 22.946 22.630 22.581
6 Reflection losses R (%) 0.475 0.532 0.535 0.537
7 Metallization factor Mt 0.882 0.878 0.868 0.861
8 Refractive index n 2.098 2.102 2.111 2.118
9 Electronegativity (χ) 0.519 0.469 0.431 0.380

10 Electronic polarizability αe (Å3) 3.033 3.078 3.112 3.158
11 Molar polarizability αm (Å3) 9.504 9.105 8.980 8.961
12 Optical basicity (Λ) 1.441 1.465 1.484 1.509
13 Dielectric constant 4.402 4.412 4.456 4.486

3.6.1. Optical Band Gap and UrbachEnergy

The energy gap also referred to as bandgap energy (direct and indirect transition
bandgaps) values of Bi2O3–B2O3–Li2O–MO glasses can be calculated from the Mott and
Davis relation [38] by using absorption coefficient α (υ) and photon energy (hυ).

α(υ) = B(
hυ− Eg

hυ
)

n

(5)

where hυ indicates photon energy, Eg stands for optical energy gap, B is the band tailing
parameter and ‘n’, the constant to evaluate the configuration of the optical transition.
The values of ‘n’ equal to1/2 and 2 are direct and indirect allowed transitions, respec-

tively. Tauc’s calibrations [39] were sketched for (αhυ)
1
n against energy of photon (hυ)
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by substituting the n values i.e., n = 1/2, 2 (direct and indirect allowed) electronic tran-
sition correspondingly. The respective plots are depicted in Figure 7a,b. The direct and
indirect energy band gaps of BiBLM glasses were with (αhυ)2 = 0 on X-axis for direct

transition and (αhυ)
1
2 = 0 for indirect transition correspondingly, and these are obtained

from extrapolating the linear proportional part of the calibration. The values of indirect
and direct optical band gaps of BiBLM glasses are displayed in Table 5. The obtained
indirect and direct band gap values of BiBLM glasses are consistent with the other different
bismuth borate glass [40]. From Figure 7a, the indirect band gap energy decreases from
BiBLM1 to BiBLM4 (1.931 to 1.415 eV). Also absorbed from Figure 7b, direct energy band
decreases from BiBLM1 to BiBLM4 (2.131 to 1.545 eV) due to different MO into the present
glasses. This type of decrement in the values of energy band gaps suggests that rise in the
number of NBO’s in the present glasses with the addition of different modifier oxides [40].
From the FTIR analysis (in Section 3.4) it was confined that BiBLM glass comprises of
the NBO’s in the form of Bi–O, B–O, B–O–B, Bi–O–Bi, and B–O–B. As the inclusion of
different MO (modifier oxides), the bridging oxygens are retrieved with NBOs because
of higher basicity and polarizability of Bi2O3 [41]. Also, the values of bandgap energy
of Bi-containing glasses (2.180–1.672 eV) are found to be smaller than different reported
glasses i.e., Bi2O3–BaO–B2O3–Na2O (4.41 to 4.68 eV) [42], alkali borate (3.11–3.21 eV) [43],
and phospho-tellurite (3.232–3.343 eV) [44] glasses that suggested their impendency for
the production of photonic devices.
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Materials (amorphous), for instance, glasses incorporate a band stalking in the con-
strained energy band gap, these values implicate the minimal defects and disorderliness in
the glasses, and these are evaluated using the Urbach rule [45,46].

α (υ) = α0exp
hυ

∆E
(6)

where α0 is a constant and ∆E represents the width of the band tails of an electron in
different states in the forbidden band gap and these are known as the UE. The above
Equation (6), also may be redrafted as

ln α(υ) =
hυ

∆E
+ constant (7)

The plots of ln α are drawn across the hυ (photon energy), these are known as Urbach
plots. The UE values are accomplished by the reciprocal inverse of the slope of the linear
curve of the plots as displayed in Figure 8, these values are given in Table 5. The UE of the
BiBLM glasses is smaller than that of other Bismuthate containing glasses. UE of glasses
increases from BiBLM1 to BiBLM4 (i.e., 428 to 460 meV), so that it suggests the presence of
less disorderliness, minimum defects, and maybe in glasses system compositional changes
take place in present glasses [47–50]. From Table 5 it is noticed that both indirect and direct
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values follow the trend BiBLM1 > BiBLM2 > BiBLM3 > BiBLM4, also UE follows the reverse
trend BiBLM4 > BiBLM3 > BiBLM2 > BiBLM1. This is due to band edge shifts towards the
higher wavelength sides [47,50].

J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 14 of 20 
 

 

lnα(υ) = hυ∆𝐸 ൅ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (7)

The plots of lnαare drawn across thehυ(photon energy), these are known as Urbach 
plots. The UE values are accomplished by the reciprocal inverse of the slope of the linear 
curve of the plots as displayed in Figure 8, these values are given in Table 5. The UE of 
the BiBLM glasses is smaller than that of other Bismuthate containing glasses. UE of 
glasses increases from BiBLM1 to BiBLM4 (i.e., 428 to 460 meV), so that it suggests the 
presence of less disorderliness, minimum defects, and maybe in glasses system composi-
tional changes take place in present glasses [47–50]. From Table 5 it is noticed that both 
indirect and direct values follow the trend BiBLM1> BiBLM2> BiBLM3> BiBLM4, also UE 
follows the reverse trend BiBLM4> BiBLM3> BiBLM2> BiBLM1. This is due to band edge 
shifts towards the higher wavelength sides [47, 50]. 

 
Figure 8. Urbach energy of BiBLM glasses. 

3.6.2. Optical Properties 
The molar refractivity (Rm) of the specimens was estimated with the help of the rela-

tion presented in Equation (8) [1,21,50]. 

𝑅௠ = 𝑉௠ ቎1 − ඨ𝐸௚20቏ (8)

The molar refractivity (Rm) follows a linearly proportional relation with the molar 
polarizability (αm) of the glass specimen material through the Lorentz-Lorentz equation 
as demonstrated in Equation (9) [21,51]. It signifies the number of electrons identified with 
an applied electrical field. 𝛼௠ = ൬ 34πN୅൰ 𝑅௠                             (9)

Where NA is Avogadro’s number. In Table 5, it is observed that there is a decrease in the 
molar refractivity (Rm) and also a decrease in the molar polarizability (αm) with various 
MO. It is also graphically illustrated in Figure 9a. In general, both (Rm) and (αm) follow the 
same trend. For the present glasses, Rm decreases from BiBLM1 to BiBLM4 (23.951 to 

Figure 8. Urbach energy of BiBLM glasses.

3.6.2. Optical Properties

The molar refractivity (Rm) of the specimens was estimated with the help of the
relation presented in Equation (8) [1,21,50].

Rm = Vm

[
1−

√
Eg

20

]
(8)

The molar refractivity (Rm) follows a linearly proportional relation with the molar
polarizability (αm) of the glass specimen material through the Lorentz-Lorentz equation as
demonstrated in Equation (9) [21,51]. It signifies the number of electrons identified with an
applied electrical field.

αm =

(
3

4πNA

)
Rm (9)

where NA is Avogadro’s number. In Table 5, it is observed that there is a decrease in the
molar refractivity (Rm) and also a decrease in the molar polarizability (αm) with various
MO. It is also graphically illustrated in Figure 9a. In general, both (Rm) and (αm) follow
the same trend. For the present glasses, Rm decreases from BiBLM1 to BiBLM4 (23.951 to
22.581) and also αm decreases from BiBLM1 to BiBLM4 (9.504 to 8.961) due to different MOs
in the present glasses. This type of decrement in the values of Rm and αm suggests that
rise in the number of NBO’s in the present glasses with the addition of different modifier
oxides. Reflection loss (RL) is derived from the ratio of molar volume and molar refractivity
as displayed in Equation (10).

RL =
VM
RM

(10)
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From the above formula, we have calculated the values of reflection loss and are
increasing from 0.475 to 0.537 due to different MO incorporating in the glass system.
The non-metallic nature of the materials can be characterized by metallization criteria [1,21].
These values depend onthe reflection loss values of the material. The metallization criterion
can be calculated by following Equation (11),

M = 1− VM
RM

(11)

The Herzfeld theory explained about the metallization of condensed matter elucidates
the fundamental state that non-metallic nature the materials possess (solid). For the
Reflection loss (RL) values approaching near to 1, then the material behaves has metal
i.e., ( VM

RM
> 1), while the (RL) values decrease and become smaller than 1 act as nonmetal

i.e., ( VM
RM

< 1). In the current glass system, the values towards one (i.e., the reflection
loss) has been found to linear with different MO in the network. The obtained values
of metallization in the range of 0.882–0.861, so that these values are in harmony with
optical non-linear performance and proposing the applications in various fields i.e., optical
amplifiers and nonlinear devices [1,21]. From the table we noticed that values of RL%
increasing and Mt decreasing, which also displayed graphically in Figure 9b. From Figure
9b and Table 5, RL follows BiBLM4 > BiBLM3 > BiBLM2 > BiBLM1 trend and Mt follows
BiBLM1 > BiBLM2 > BiBLM3 > BiBLM4 trend due to creation of NBO atoms in the present
network of the glass.
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The refractive index (n) is evaluated with the help of reflection loss in Fresnel’s formula
using following Equation (12) (

n2 − 1
)

(n2 + 2)
= 1−

√
Eopt

20
(12)

The refractive index is measured to examine the suitability of glass materials for the
optical device. The refractive index of present synthesized glasses increases from BiBLM1
to BiBLM4 (i.e., 2.098 to 2.118) with different MO in the glasses. This also a result of the
creation of new NBOs due to different polarizability of cations between M2+ (Zn2+ (0.28 Å3),
Cd2+ (1.05 Å3), Ba2+ (1.59 Å3) and Pb2+ (3.62 Å3)) and Bi3+ (1.51 Å3). The polarizability of
the NBO atoms over the BO (bridging oxygen) atoms is useful for the more refractive index
of the glasses. An ion’s electronegativity is the intensity withwhich it absorbs electrons
from the oxide ions bound to it. In this way, if the electronegativity of ion is bigger, it will
incitethe fortified oxide ion so that it radiatesin close bonding between the network ions.
By using the bandgap (Eg) values, the electronegative (χ) values of prepared glasses can be
calculated. The following formula is used for the determination of optical electronegativity:

χ = 0.2688Eg (13)

The electronic polarizability (αe) and optical basicity (Λ) are two significant factors,
whichdepends on the electronegativity. These are estimated in accordance with the Dim-
itrov, Sakka, and Komatsu [32,33,52–56] stated correlations of electronegativity with the
polarizability of cations and oxide optical basicity. The following two equations are useful
for calculation of the electronic polarizability (αe) and optical basicity (Λ) of the glasses.

αe = −0.9χ+ 3.5 (14)

Λ = −0.5 χ+ 1.7 (15)

Both values of electronic polarizability (αe) and optical basicity (Λ) are always
greaterthan the opposite trend of electronegativity. The above-calculated values demonstrat-
edthedecreasing of electronegativity due to different MO into glass network and at the same
time increasing of the values of the electronic polarizability (αe) and optical basicity (Λ). The cal-
culated optical parameters are given in Table 5 and the related plots between electronegative(χ)
and optical basicity (Λ) are illustrated in Figure 9c. From the Table 5 and Figure 9c, we per-
ceived that (χ) follows the trend BiBLM1 > BiBLM2 > BiBLM3 > BiBLM4 and (Λ) shows the
reverse trend (i.e., BiBLM4 > BiBLM3 > BiBLM2 > BiBLM1) due tothecreation of non-
bridging oxygen sites. As suggested by Zhao et al. [53,56], Bi3+ cation possess very high
polarizability, which is due to its large ionic radii and small cation unit field strength. Thus,
the increasing the electron polarizability (α0) and optical basicity (Λ) values of the present
glasses on a molar basis can be attributed to the replacement of low polarizability of differ-
ent MOs into the glass system. Hence, oxide ions are held tightly by Bi3+. Consequently,
a great overlapping arises among the O(2p) and Bi2O3 valence metal orbitals that aids
theincrease of the covalent character very strongly between the Bi–O bond. In such instance
of MO, the covering has occurred in the middle of O(2p) and valance metal orbits are
smaller in composition to Bi2O3, this prompts less bond strength and impliesthat an ionic
character can be exhibited among the chemical bonds. These outcomes are consistentwith
the research findings of AXinyu Zhao, Dimitrov, Sakka, and P. Kaur [50,53,56–58]. Metal
ions havemore humble electronegativity(χ) followed by bigger electron polarizability(αe)
with respect to bismuth ions, and thusthey can substitute B3+ ions with M2+ ions in present
BiBLM glasses, which assists in expanding the ionic characteristic as a result of the more
modest capability of M2+ ions, oxide ions clung to the tests. It is clear that for ionic chemical
bond ages, at the expense of the covalent bonds, it is helpful to build the optical basicity
for the current glasses with different MOs. Optical density is fundamentally the inclination
of an oxide ion to add to the electron density of encompassing metal ions in the present
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arranged glass system. It varies in an opposite way to deal with the metal-oxide bond
strength. Likewise, upgrading the optical basicity among the aggregation of the MO in
the glass is closely related to an evident lesser in the metal-oxide bond strength, and is
therefore related to the decreased covalent nature and subordinate improved ionic nature.
Its ionic nature proposes the formation of NBOs in the current glass matrix. This ionic
nature and creation of NBOs in the glasses consistent with the reduction in the both direct
and indirect band gaps investigation [27–29,57,58]. From the Table 5, also we noticed that
Mt follows the BiBLM1 > BiBLM2 > BiBLM3 > BiBLM4 trend, at the same time reverse
trend of dielectric constant of present glasses (i.e., BiBLM4 > BiBLM3 > BiBLM2 > BiBLM1
trend). It follow these trends due to the creation of the non-bridging oxygen atoms in the
present synthesized glass system and the association between metallization factor (Mt) and
dielectric constant, which are graphically illustrated in Figure 9d.

4. Conclusions

Bismuth borolithium glasses containing different modifier oxides were prepared
successfully by the conventional melt quenching technique and their various structural
properties were assessed to know the influence of modifier oxides on the host glass struc-
ture. Different physical parameters such as molar mass, density, and OPD values increased
while the molar volume and oxygen molar volume of glasses decreased with different
modifiers inclusion. The absence of crystallization peaks in the DSC curves represented
the exceptionally high thermal stability of BiBLM glasses against crystallization. Among
all modifiers, PbO mixed glasses (BiBLM4) showed the higher Tg and thermal stability.
The amorphous nature is confirmed by XRD. FTIR and Raman analysis results revealed the
transformation of structural units from BiO3→BiO6 in the glass system with the addition of
various MO (modifier oxides). This transformation confirms that the character of bismuth
with modifier oxides revealed the effective structural modifier of the glass system and
employs the octahedral sites of the glass network. The different optical parameters such
as optical band gaps, Urbach energy, metallization criterion, refractive index, electronic
polarizability etc., follows either BiBLM4 > BiBLM3 > BiBLM2 > BiBLM1 or the reverse
trend due to the formation of NBOs with the inclusion of various modifier oxides. In
terms of physical, structural, and optical properties, the creation of NBOs in the glass
network with addition of modifier oxides suggested the reduction in structural stability of
the developed glass systems. These features of the glasses can be suitable for the generation
of various photonic devices such as optical amplifiers, visible, and infrared up-converters,
non-linear optical materials etc., used in the field of science and engineering.
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