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Abstract: The present work analyzes the free vibration response of functionally graded (FG) plates
made of Aluminum (Al) and Alumina (Al2O3) with different porosity distributions, as usually
induced by a manufacturing process. The problem is tackled theoretically based on a higher-order
shear deformation plate theory, while proposing a Navier-type approximation to solve the governing
equations for simply-supported plates with different porosity distributions in the thickness direction.
The reliability of the proposed theory is checked successfully by comparing the present results
with predictions available from literature based on further first-order or higher-order theories. A
large parametric study is performed systematically to evaluate the effect of different mechanical
properties, such as the material indexes, porosity volume fractions, porosity distributions, and length-
to-thickness ratios, on the free vibration response of FG plates, as useful for the design purposes of
most engineered materials and composite applications.

Keywords: functionally graded plates; free vibration; higher-order plate theory; porosity effect

1. Introduction

Among novel materials, functionally graded materials (FGMs) have received special at-
tention in many engineering applications, e.g., thermal coatings and electrical devices [1–6],
energy transformation [7,8], biomedical engineering [9,10], optics [11,12], etc., due to their
favorable mechanical properties. They represent sophisticated composite materials fea-
turing a gradual and continuous variation of the volume fractions for each constituent by
simply tuning a metal and ceramic phase, with a beneficial reduction of possible disconti-
nuities at interfaces, while combining the hardness and workability properties of metal
with the thermal, wear and oxidation resistance of the ceramic phase. Due to the large
use of these materials in many shell and plate structural members, several higher-order
formulations have been developed to study their linear and/or nonlinear behavior, in-
cluding vibration and buckling problems. With the exception of classical plate theories
(CPTs), higher-order plate theories (HSDT) are more appropriate for studying complicated
shell geometries, especially with increased thicknesses. Among the available literature,
Vel and Batra [13] proposed a three-dimensional closed-form solution for the study of free
and forced vibrations of simply-supported (SS) FG rectangular plates. In Ref. [14], the
authors analyzed the free vibration response of FG plates based on a third-order shear
deformation plate theory combined with a global collocation solution method. In further
works [15–17], a higher-order shear and normal deformable plate theory was applied to
treat the statics and vibrations of thick rectangular FG elastic plates, accounting for both
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transverse shear and normal deformations, together with the rotatory inertia. Despite the
large attention of the literature on the topic, few works have focused, up to now, on the
mechanical behavior of porous structures. Rezaei and Saidi [18], for example, investigated
the sensitivity of the frequency response of thick porous cellular plates to different porosity
levels and distributions by using the Carrera unified formulation (CUF). In Rezaei et al. [19],
the same authors studied the free vibrations of isotropic elastic rectangular plates with
porosities and undrained conditions, accounting for the fluid-solid coupling interaction.
Kamranfard et al. [20] proposed an analytical approach to investigating the buckling and
vibration behavior of annular sectorial porous plates subjected to a uniformly distributed
in-plane compressive loading. Different eigenvalue problems were solved in closed form
in Refs. [21,22] for FG plates in absence of porosity. In detail, a four variable refined plate
theory was proposed in [21] to study the free vibrations of FG plates with an arbitrary
gradient, whose problem was solved in a closed form and/or numerical form by using a
Navier technique and Ritz methods, respectively. A more extended higher-order theory
was also proposed in [22] to study moderately thick FG plates, involving the so-called
stretching effect, while applying a partitioning procedure to define the transverse displace-
ment field in order to reduce the number of unknowns involved in the problem. Indeed,
it is well known from the literature that HSDTs and quasi-3D theoretical approaches are
usually expensive due to the introduction of some additional unknown factors within the
kinematic field definition throughout the thickness. In such a context, Bîrsan et al. [23,24]
studied the deformation and mechanical behavior of sandwich composite beams of FGMs.
A three-dimensional model based on finite elements was proposed by Vyacheslav et al. [25]
for the free vibration and static analysis of FG sandwich plates. A finite element procedure
was also implemented by Mircea et al. [26] and Vyacheslav et al. [27] to determine the effec-
tive stiffness properties of multilayered composite beams and to study the free vibrations
of FG sandwich flat panels with conventional shell elements.

Starting with the assumptions by Shimpi [28], many shear deformation theories have
been employed, using different shape functions. For example, in Refs. [29,30], the authors
developed a HSDT for FG sandwich members by means of a sinusoidal function. The
same theory was also applied by Tounsi et al. [31] and by Zidi et al. [32] to analyze the
thermoelastic bending response of sandwich plates. A manufacturing and sintering process
of FGMs can yield random porosities within the pertaining structural components with
meaningful effects on their mechanical performances. This is mainly related to the large
difference in the solidification temperature [33]. Among the most relevant works on
the topic, Wattanasakulpong et al. [34] discuss the porosities occurring within FGMs, as
produced by a sequential infiltration technique. Magnucka–Blandzi [35] also studied the
dynamic stability of porous circular plates to determine their critical temperatures and to
describe the influence of unstable regions within Mathieu’s equations. Biot [36] proposed a
poroelastic theory to treat the same problem, while introducing both the kinematic and
dynamic unknowns. Based on the same theory, Detournay and Cheng [37] extended the
constitutive relations for saturated porous structures, as was also used in Ref. [38] for
the buckling study of circular thin plates in saturated porous FGMs. Among the most
recent works, Ait Yahia et al. [39] applied different higher-order theories to explore the
wave propagation in FG porous plates, whereas Mouaici et al. [40] proposed an analytical
solution to the vibration problem of FGM plates with porosities, taking into account the
exact position of the neutral surfaces. Based on results from literature, the importance
of accounting for porosities in the design of FGM structures subjected to static [41–44] or
dynamic loads [45,46] is evident even in a nonlocal sense [47]. In such a context, the present
work aims at studying the free vibration of SS porous FG plates made of Aluminum (Al) and
Alumina (Al2O3), based on a novel HSDT theory, whose material properties are supposed to
vary continuously throughout the thickness according to a “power-law” properly modified
to include the porosity sensitivity. The Hamilton’s principle is here employed to determine
the equations of motion associated to the problem, which are solved theoretically by means
of a Navier-type solution. Starting with the basic idea from [21], we propose a four-variable
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refined plate theory to handle the problem without any use of shear correction factors,
whose accuracy is verified against other higher-order formulations available from literature
involving more variables. The potential of the proposed theoretical formulation for FG
sandwich plates reinforced with carbon nanotubes (CNTs) would be of particular interest
for different plate components, as commonly encountered in many aerospace, marine and
automobile structures [48–63], and can be extended to more complicated shell components
under different boundary conditions.

A preliminary investigation on the topic can be found in [64], but a more extended
sensitivity analysis is performed herein, which includes different material indexes, porosity
volume fractions, porosity distributions and length-to-thickness ratios, with promising
conclusions for the design purposes of plate components. The numerical results could also
serve as useful benchmarks for further computational studies in this field.

2. Theoretical Formulation

In the current work, we consider a thick rectangular plate of length a, width b and
thickness h, as illustrated in Figure 1, along with the Cartesian coordinate system (x, y, z)
centered at the mid-plane. With an FG variation of the Young’s modulus E and density ρ
in the thickness direction in line with the following power-law distribution:

E(z) = (Ec − Em)
(

1
2 + z

h

)p
+ Em − ξ

2 (Ec + Em)
(

1− 2|z|
h

)
ρ(z) = (ρc − ρm)

(
1
2 + z

h

)p
+ ρm − ξ

2 (ρc + ρm)
(

1− 2|z|
h

) (1)

where subscripts c and m refer to the ceramic and metal, respectively; p is the volume frac-
tion index, which accounts for the material variation throughout the thickness; ξ(0 ≤ ξ ≤ 1)
stands for the porosity volume fraction. The reader can refer to Refs. [65,66] for an ex-
panded definition of the mechanical properties (1) for an imperfect FG porous plate. A
similar porosity distribution is supported consistently by experimental observations [66].
Based on the principle of the multi-step sequential infiltration technique, commonly used
to produce FGM samples, the porosities usually localize at the middle zone. At this zone,
indeed, it is difficult to infiltrate the materials completely, while at the top and bottom
zones, the process of material infiltration can be performed easily and leaves less porosity.
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In line with the basic idea from [21,22], the higher-order formulation proposed herein
is based on the following displacement field definition u, v, w for an arbitrary point:

u(x, y, z, t) = u0(x, y, t)− z ∂wb
∂x +

(
5z
4

(
1
5 −

4z2

3h2

))
∂ws
∂x

v(x, y, z, t) = v0(x, y, t)− z ∂wb
∂y +

(
5z
4

(
1
5 −

4z2

3h2

))
∂ws
∂y

w(x, y, z, t) = wb(x, y, t) + ws(x, y, t)

(2)

where t represents the time, u0 and v0 refer to the axial displacement components in the
reference mid-surface of the plate, along the x- and y-directions, respectively, and wb and
ws stand for the bending and shear components of the transverse displacement w. This
partitioning procedure leads to a reduction in the number of unknowns, which makes
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the proposed theory much more amenable to mathematical implementations. The strain
components associated with the kinematic field (2) are defined as:

εx = ∂u0
∂x − z ∂2wb

∂x2 +
(

5z
4

(
1
5 −

4z2

3h2

))
∂2ws
∂x2

εy = ∂v0
∂y − z ∂2wb

∂y2 +
(

5z
4

(
1
5 −

4z2

3h2

))
∂2ws
∂y2

γxy = ∂u0
∂y + ∂v0

∂x − z
(

2 ∂2wb
∂x∂y

)
+
(

5z
4

(
1
5 −

4z2

3h2

))(
2 ∂2ws

∂x∂y

)
γyz =

(
5
4 −

5z2

h2

)
∂ws
∂y

γxz =
(

5
4 −

5z2

h2

)
∂ws
∂x

εz = 0

(3)

whereby the constitutive relations for a linear elastic isotropy are assumed at local points
as follows: 

σx
σy
τxy
τyz
τzx

 =


Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q33 0 0
0 0 0 Q44 0
0 0 0 0 Q55




εx
εy

γxy
γyz
γzx

 (4)

relating the stress components (σx, σy, τxy, τyz, τyx) and the strain components (εx, εy, γxy,
γyz, γyx) by means of the elastic coefficients Qij, defined as:

Q11 = Q22 =

(
E(z)

1− υ2

)
, Q12 = Q21 =

(
ν E(z)
1− υ2

)
, Q33 = Q44 = Q55 = G(z), G(z) =

(
E(z)

2(1 + υ)

)
(5)

The elastic moduli E, G, the Poisson’s ratio υ and the elastic coefficients Qij vary
throughout the thickness, according to Equation (1).

3. Equations of Motion

The governing equations of the problem are computed by means of Hamilton’s
principle, which can be stated in the time interval [0, t], as in Ref. [61]:

t∫
0

(δU − δK)dt = 0 (6)

with δU, δK being the variation of the strain energy and kinetic energy, respectively. More
specifically, the strain energy is defined in variational form as:

δU =
∫

A

[
Nxδ ε0

x + Nyδ ε0
y + Nxyδ ε0

xy + Mb
xδ kb

x + Mb
yδ kb

y + Mb
xyδ kb

xy + Ms
xδ ks

x +Ms
yδ ks

y + Ms
xyδ ks

xy + Ss
yzδ γs

yz + Ss
xzδ γs

xz

]
dA (7)

where:
ε0

x = ∂u0
∂x , ε0

y = ∂v0
∂y , γ0

xy = ∂u0
∂y + ∂v0

∂x

kb
x = − ∂2wb

∂x2 , kb
y = − ∂2wb

∂y2 , kb
xy = −2 ∂2wb

∂x∂y

ks
x = ∂2ws

∂x2 , ks
y = ∂2ws

∂y2 , ks
xy = 2 ∂2ws

∂x∂y

γs
yz =

∂ws
∂y , γs

xz =
∂ws
∂x

(8)

whereas A refers to the top surface. Thus, the stress resultants N, M, and S take the
following form:  Nx, Ny, Nxy

Mb
x, Mb

y, Mb
xy

Ms
x, Ms

y, Ms
xy

 =
h/2∫
−h/2

 σx
σy
τxy

(1 z f (z))dz,

(
Ss

xz, Ss
yz

)
=

h/2∫
−h/2

(
τxz, τyz

)
g(z)dz.

(9)
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being

f (z) =
5z
4

(
1
5
− 4z2

3h2

)
,g(z) =

5
4
− 5z2

h2 (10)

In addition, the kinetic energy can be defined in variational form as:

δK =

h/2∫
−h/2

∫
A

ρ(z)(
..
uδu +

..
vδv +

..
wδw)dAdz (11)

where
..
u,

..
v,

..
w stand for the axial accelerations along the x, y, z directions, and (I1, I2, I3, I4, I5, I6)

are the inertial mass defined as:

(I1, I2, I3, I4, I5, I6) =

h/2∫
−h/2

(
1, z, z2, f (z), z f (z), f 2(z)

)
ρ(z)dz (12)

By substituting δU and δK from Equations (6) and (8) into Equation (5), after integrat-
ing by parts the displacement gradients, and by setting the coefficients of δu, δv, δwb, and
δws equal to zero separately, we determine the following equations of motion:

δ u : ∂Nx
∂x +

∂Nxy
∂y = I1

..
u0 − I2

∂
..
wb
∂x − I4

∂
..
ws
∂x

δ v : ∂Nxy
∂x +

∂Ny
∂y = I1

..
v0 − I2

∂
..
wb
∂y − I4

∂
..
ws
∂y

δ wb : ∂2 Mb
x

∂x2 + 2
∂2 Mb

xy
∂x∂y +

∂2 Mb
y

∂y2 = I1(
..
wb +

..
ws) + I2

(
∂

..
u

∂x + ∂
..
v

∂y

)
− I3

(
∂2 ..

wb
∂x2 + ∂2 ..

wb
∂y2

)
− I5

(
∂2 ..

ws
∂x2 + ∂2 ..

ws
∂y2

)
δ ws : ∂2 Ms

x
∂x2 + 2

∂2 Ms
xy

∂x∂y +
∂2 Ms

y
∂y2 + ∂Ss

xz
∂x +

∂Ss
yz

∂y = I1(
..
wb +

..
ws) + I4

(
∂

..
u

∂x + ∂
..
v

∂y

)
− I5

(
∂2 ..

wb
∂x2 + ∂2 ..

wb
∂y2

)
− I6

(
∂2 ..

ws
∂x2 + ∂2 ..

ws
∂y2

) (13)

Thus, we determine the stress resultants by combining Equations (3) and (4) and by
integrating throughout the thickness direction, namely:

Nx
Ny
Nxy
Mb

x
Mb

y
Mb

xy
Ms

x
Ms

y
Ms

xy


=



 A11 A12 0
A12 A22 0
0 0 A66

  B11 B12 0
B12 B22 0
0 0 B66

  Bs
11 Bs

12 0
Bs

12 Bs
22 0

0 0 Bs
66


 A11 A12 0

A12 A22 0
0 0 A66

  D11 D12 0
D12 D22 0

0 0 D66

  Ds
11 Ds

12 0
Ds

12 Ds
22 0

0 0 Ds
66


 Bs

11 Bs
12 0

Bs
12 Bs

22 0
0 0 Bs

66

  Ds
11 Ds

12 0
Ds

12 Ds
22 0

0 0 Ds
66

  Hs
11 Hs

12 0
Hs

12 Hs
22 0

0 0 Hs
66




x



ε0
x

ε0
y

γ0
xy

kb
x

kb
y

kb
xy

ks
x

ks
y

ks
xy



(14)

and {
Ss

xz
Ss

yz

}
=

[
As

44 0
0 As

55

]
x
{

γxz
γyz

}
(15)

where {
Aij, Bij, Dij

}
=

h/2∫
−h/2

(
1, z, z2)Qijdz (i, j = 1, 2, 3){

Bs
ij, Ds

ij, Hs
ij

}
=

h/2∫
−h/2

(
f (z), z f (z), f 2(z)

)
Qijdz (i, j = 1, 2, 3){

As
ij

}
=

h/2∫
−h/2

(
g2(z)

)
Qijdz, (i, j = 4, 5)

(16)
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4. Analytical Solution

The response of a rectangular plate is well-known to vary with the selected boundary
support. In this paper, we focus on SS FG plates, and we check for the exact Navier-type
solution to the problem. In agreement with the selected boundary conditions, we consider
the following kinematic solution for (u0, v0, wb, ws):

u0
v0
wb
ws

 =
∞

∑
m=1

∞

∑
n=1


Umneiωtcos(λ x)sin(µ y)
Vmneiωtsin(λ x)cos(µ y)

Wbmneiωtsin(λ x)sin(µ y)
Wsmneiωtsin(λ x)sin(µ y)

, (17)

where λ = mπ/a and µ = nπ/b, whereas m and n refer to the mode numbers,
Umn, Vmn, Wbmn, Wsmn, refer to the amplitudes, and ω is the free vibration frequency of
the plate,

√
i = −1 being the imaginary unit. We substitute Equations (12) and (17) into

Equation (13) to obtain the following system of equations:(
K−ω2M

)
∆ = 0, (18)

where K and M stand for the stiffness and mass matrices, respectively, that yield the
following explicit form:


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

−ω2


I1 0 −λI2 −λI4
0 I1 −µI2 −µI4
−λI2 −µI2 I1 + I3

(
λ2 + µ2) I5

(
λ2 + µ2)

−λI4 −µI4 I5
(
λ2 + µ2) I6

(
λ2 + µ2)





Umn
Vmn

Wbmn
Wsmn

 =


0
0
0
0

 (19)

with

a11 = −
(

A11λ2 + A66µ2); a12 = −λ µ (A12 + A66); a13 = λ
(

B11λ2 + (B12 + 2B66) µ2); a14 = λ
(

Bs
11λ2 +

(
Bs

12 + 2Bs
66
)

µ2)
a21 = a12; a22 = −

(
A66λ2 + A22µ2); a23 = µ

(
(B12 + 2B66) λ2 + B22µ2); a24 = µ

((
Bs

12 + 2Bs
66
)

λ2 + Bs
22µ2)

a31 = a13; a32 = a23; a33 = −
(

D11λ4 + 2(D12 + 2D66)λ
2µ2 + D22µ4); a34 = −

(
Ds

11λ4 + 2
(

Ds
12 + 2Ds

66
)
λ2 µ 2 + Ds

22 µ 4)
a41 = a14; a42 = a24; a43 = a34; a44 = −

(
Hs

11λ4 + 2
(

Hs
12 + 2Hs

66
)
λ2µ2 + Hs

22µ4 + As
55λ2 + As

44µ2) (20)

Equation (19) represents the general version of the free vibration problem for FG
plates, which can be reduced to a static problem by neglecting the mass matrix or to a
simple free vibration problem by omitting the in-plane loads.

5. Numerical Examples

We now present some numerical examples in order to test the performance of the
proposed theory for free vibration problems of SS isotropic homogeneous and FG plates.
The following dimensionless quantities are introduced for the study:

ω̃ = ωh
√

ρc/Ec, ω̂= (ωh)
√

ρm/Em, ω= (ωa2/ h)
√

ρc/Ec (21)

Based on the system of equations and the solution procedure discussed in the previous
sections, the numerical results are presented in what follows for an Al/Al2O3 FG plate
made of Aluminum (as metal) and Alumina (as ceramic), whose mechanical properties are
summarized in Table 1.

Table 1. Material properties for an FG plate.

Properties Aluminum (Al) Alumina (Al2O3)

Young’s modulus (N/m2) 70 × 109 38 × 108

Poisson’s ratio 0.3 0.3

Mass density (kg/m3) 2702 3800
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To examine the accuracy of the proposed procedure, the fundamental frequencies of
the square plate, as obtained in the present study, are evaluated comparatively in Table 2
with respect to predictions from the literature (see Benachour et al. [21], Belabed et al. [22],
Rezaei et al. [65] and Askari et al. [66]) for different geometry ratios a/h. The perfect
agreement between our results and the reference ones from the literature, for each selected
parameter a/h and p, confirms the reliability and accuracy of the proposed method to
treat the problem. A decreased value of both a/h and p also gets higher frequencies ω̃,
which corresponds to an overall increase of the structural stiffness. Note that a similar
formulation could be extended in a further work to more complex boundary conditions of
curved structures in line with [67,68].

Table 2. Fundamental frequency ω̃ for SS FG square plates.

a/h Method
p

0 1 4

20

Ref. [21] 0.0148 0.0113 0.0098

Ref. [22] 0.0148 0.0113 0.0098

Ref. [65] 0.0148 0.0113 0.0098

Ref. [66] 0.0148 0.0113 0.0098

Proposed formulation 0.0148 0.0113 0.0098

10

Ref. [21] 0.0576 0.0441 0.0380

Ref. [22] 0.0578 0.0449 0.0389

Ref. [65] 0.0578 0.0442 0.0383

Ref. [66] 0.0577 0.0442 0.0380

Proposed formulation 0.0577 0.0442 0.0381

5

Ref. [21] 0.2112 0.1628 0.1375

Ref. [22] 0.2121 0.1640 0.1383

Ref. [65] 0.2127 0.1630 0.1405

Ref. [66] 0.2112 0.1631 0.1377

Proposed formulation 0.2113 0.1631 0.1378

Below, in Table 3, we summarize the results in terms of four fundamental frequencies,
for the same SS square FG plate, under two different porosity factors (ξ = 0.1 and ξ = 0.2).

Table 3. Fundamental frequency ω̂ for the SS FG square plate (p = 1 and a/h = 20 ).

Porosity Method
Mode (m,n)

(1, 1) (1, 2) (2, 2) (1, 3)

ξ = 0.1

Ref. [65] 0.0224 0.0553 0.0874 0.1085

Ref. [66] 0.0223 0.0552 0.0873 0.1083

Proposed formulation 0.0224 0.0554 0.0874 0.1084

ξ = 0.2

Ref. [65] 0.0225 0.0555 0.0879 0.1091

Ref. [66] 0.0224 0.0554 0.0877 0.1087

Proposed formulation 0.0225 0.0555 0.0879 0.1089
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Our results are successfully compared with findings from Refs. [65,66], based on
a more simplified first-order shear deformation theoretical assumption. A certain sen-
sitivity of each fundamental frequency can be observed for a varying porosity factor ξ,
with a clear reduction in frequency for an increasing porosity level, due to an increased
structural flexibility.

Another comparative evaluation of the proposed theory against the literature is
summarized in Table 4 for a rectangular plate Al/Al2O3 with b/a = 2, for three different
vibration modes, with an excellent agreement between our results and predictions by
Mouaici et al. [56], based on a different hyperbolic shear deformation theory. This confirms
once again the reliability of our model in gaining accurate results, even in the presence of
manufacturing defects such as porosities.

Table 4. Comparison of natural frequencies ω for a rectangular plate with Al/Al2O3 and p = 1.

Mode (m,n) a/h Model
Perfect Imperfect

ξ=0 ξ=0.1 ξ=0.2

(1, 1)

5
Ref. [56] 2.6476 2.5934 2.5150

Proposed formulation 2.6475 2.5930 2.5140

10
Ref. [56] 2.7937 2.7328 2.6452

Proposed formulation 2.7937 2. 7320 2.6448

(1, 2)

5
Ref. [56] 4.0782 3.9982 3.8821

Proposed formulation 4.0781 3.9978 3.8818

10
Ref. [56] 4.4193 4.3243 4.1875

Proposed formulation 4.4192 4.3224 4.1863

(1, 3)

5
Ref. [56] 6.2664 6.1508 6.9033

Proposed formulation 6.2663 6.1502 6.9024

10
Ref. [56] 7.0516 5.9821 6.6891

Proposed formulation 7.0515 5.9818 6.6886

As is also visible in Figure 2, an increased material power index enables a monotonic
reduction of the natural frequencies for both perfect and imperfect FG plates, which is even
more pronounced for an increased porosity level, ξ. In this case, we evaluate only the first
vibration mode of the structure, accounting for both a perfect or imperfect structure with
even distributions of porosities. As expected, a perfect structure features higher frequencies
with respect to an imperfect one, under the same assumptions for the power law index p.

The further parametric investigation accounts for the sensitivity of the first dimen-
sionless frequency ω for an increased geometrical ratio, b/a, a fixed ratio, a/h, while
considering a perfect structure (i.e., ξ = 0) or an imperfect structure with uneven defects,
under the assumptions ξ = 0.1 or ξ = 0.2 (see Figure 3). Additionally, in this case, it is
worth noticing the monotone decrease of the dimensionless frequency for an increasing
geometrical ratio, b/a, but this behavior seems to be slightly affected by uneven defects
within the structure compared to the reference perfect case.
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Figure 3. The dimensionless frequency ω vs. the geometrical ratio b/a for FG plates with different
porosity factors.

In Figure 4, we show the influence of the exponent p and the thickness ratio, a/h,
on the dimensionless frequency ω for FG perfect (ξ = 0) and imperfect (ξ = 0.1 and 0.2)
plates, with a monotone reduction in the frequency response for increasing values of p,
for a given geometry and porosity. Moreover, an increased ratio a/h gets an increased
dimensionless frequency ω for each fixed graduation level p, as is also observable in the
plots of Figure 5. This variation is more remarkable when a/h < 10 for both perfect and
imperfect structures, and it tends to reduce for thickness ratios higher than 10. In any case,
the highest frequency values are expectable in perfect structures, whose predictions could
overestimate the effective results of actual structures in the presence of dislocated defects.
This confirms the importance of developing predictive models including possible defects
or voids within materials, especially when featuring composite microstructural natures
such as FG materials.
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6. Conclusions

This work proposes a four-variable HSDT to analyze the free vibration response of
porous square and rectangular FG plates with a different porosity level, ξ, and applies
the Hamilton’s principle to determine the equations of motion. The problem is tackled
theoretically, where a Navier-type solution is enforced to determine the vibration response,
while checking for its sensitivity to different input mechanical and geometrical parameters,
namely, the power index, the porosity factor, the length-to-thickness ratio and the in-plane
rational geometry. The proposed approach is verified as being very accurate with respect
to other models available in the literature, even when structures are made of complicated
materials including porosities. Based on a systematic investigation, the predictions based
on perfect structures could be inaccurate and tend to overestimate the vibration frequencies.
The vibration response of the structure, indeed, is demonstrated to be significantly affected
by the volume fraction distributions (with a percentage variation of up to 40%), slenderness
ratios (about 10%) and porosities (about 10–20%), whose analytical results could be of great
interest for the design purposes of materials and structural components, as well as for
further computational studies.
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