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Abstract: The aim of this work is to investigate the preparation, the optical properties, and the
stability over time of a colloidal organic–inorganic hybrid perovskite (CH3NH3PbBr3)/random
copolymer P(MMA-co-DMAEMA) system. Different ratios of perovskite to copolymer were used
to study its effect on stability and properties. The optical properties were investigated by UV-Vis
and fluorescence spectroscopy. Dynamic light scattering was used to determine the size, and the size
polydispersity of the colloidal hybrid particles; while morphology was investigated by transmission
electron microscopy. Photoluminescence decay studies revealed the interaction of the random
copolymer with the perovskite. Finally, thin-films were prepared, to investigate the optical properties
of the samples in the absence of the solvent. High temporal stability of the optical properties of thin
hybrid films was observed under certain conditions.

Keywords: organic–inorganic hybrid perovskite nanocrystals; random copolymer; hybrid materials;
self-assembly; colloidal stability; thin-films

1. Introduction

Organic–inorganic hybrid perovskites (Hyb-Per) are an emerging class of solution
processable semiconducting materials that combine the favorable properties of the inor-
ganic semiconductor with the flexibility and low-temperature process ability of the organic
material [1,2]. They show excellent optoelectronic properties, such as a high and balanced
carrier mobility [3,4], long carrier diffusion length [5], tunable bandgap [6], high photolumi-
nescence quantum yield, and large light absorption coefficient in the UV–Vis range [7,8]. By
choosing the appropriate amine-metal-halogen combination, the optical band gap, as well
as their emission and absorption spectra, can be controlled throughout the entire visible
range [9–11]. The Hyb-Per can be prepared with quick and easy synthetic procedures
and their thin-films can be produced easily even on an industrial scale, using low-cost
film-deposition techniques that allow the adjustment in morphology, composition, and
crystalline properties. Because of their easy and quick synthesis procedures and their opti-
cal and semiconducting properties, Hyb-Per have already shown a tremendous potential
for use in optoelectronic devices [12] such as light-emitting diodes (LEDs) [13], photode-
tectors [14], lasers [15], and field-effect transistors (FETs) [16]. Especially, their use for
photovoltaic applications took the photovoltaic community by storm with an improvement
of the solar to electric conversion efficiency from 3.8 to 22.1% in just six years [17].

Lately, the expanded use of LEDs for artificial lighting and imaging, due to better
quality and significant energy savings, increase the effort for the preparation of new
materials to replace the expensive inorganic semiconductors prepared with vacuum-based
epitaxial growth on expensive rigid substrates. The high photoluminescence quantum
yield, narrow full width to half-maximum (≈20 nm) [18], and the easiness of Hyb-Per
synthesis and their film preparation has placed them among the strong candidates as
materials for light-emitting diode (PLED) devices and display applications [13].
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The crystal structure of (CH3NH3)PbX3, (X: Cl, Br, I) consists of two different com-
ponents, an inorganic network of corner sharing PbX6 octahedra and organic cations
(CH3NH3

+) in the voids of the network. By mixing and grinding the precursor salts at
room temperature, nanocrystals of the organic–inorganic hybrid perovskites are formed,
characteristic of the easiness with which the organic cations can diffuse into the inorganic
framework. However, the size and quality of the nanocrystals prepared by this method is
suffering from repeatability, due to the lack of precise control of experimental conditions.
The most common synthetic route for the formation of hybrid perovskite nanocrystals is
the ligand-assisted reprecipitation method. Factors such as the size and the dimensionality
of nanocrystals can be adjusted by changing the synthetic procedure resulting in different
optical features [19,20]. The possibility of stable hybrid perovskite nanocrystals dispersed
in solution or in a polymer matrix would enable the preparation of new optoelectronic
devices [21]. The preparation of Hyb-Per in the form of colloidal nanocrystals solutions is
of great scientific and technological interest [22]. One of the main issues that remain to be
solved is their instability towards air, temperature, light irradiation, and water. According
to the ligand-assisted reprecipitation method, the inorganic metal and ammonium, halide
salts were dissolved in a polar solvent and injected into a nonpolar solvent, resulting in
an instantaneous formation of nanocrystals. The presence of a good capping agent is
necessary to stabilize the newly formed nanocrystals. Lately, few attempts have been made
to stabilize them, using amines [23], oleic acid [24], or polymers [25] as protective agents.
These protected colloidal nanocrystals present increased stability over time enhanced
exciton stability and many times greater photoluminescence than the bulk material [25],
also the wavelength of the excitonic absorption and photoluminescence can be tailored by
controlling the size of the nanoparticles [9,26].

Amphiphilic copolymers have been used extensively due to their self-assembling
behavior into nanoparticles when inserted in a selective solvent [27,28]. Different archi-
tectures such as random, diblock, multiblock, star, and graft copolymers can be made by
regulating the synthesis procedures [29]. The copolymer architecture and the suitability
of the solvent determine the nanostructure morphology. For example, block copolymers
form well-controlled and organized nanoparticles, while random copolymers form more
unusual and irregular morphologies [30–32]. Hybrid, well-defined nanostructures can be
accomplished by combining/mixing self-assembling of amphiphilic copolymers with inor-
ganic, semiconducting materials. Therefore, the formed hybrid materials display improved
mechanical, optical, and absorptive properties and greater stability over time [19,33,34].

Here, we report on the synthesis and investigation of the properties of a novel
polymer-perovskite nanoparticles system based on CH3NH3PbBr3 nanocrystals protected
by PDMAEMA-co-PMMA copolymer. The above copolymer offers great potential as protec-
tion factor and nanocarrier because of its ability in self-assembling into organized nanostruc-
tures due to the combination of a hydrophobic/solvophobic and a hydrophilic/solvophilic
part. To the best of our knowledge, it is the first time that an amphiphilic copolymer was
used to protect the Hyb-Per nanocrystals. A colloidal mixture was prepared with the per-
ovskite nanocrystals encapsulated in the polar PDMAEMA core of the hybrid assemblies.
Thin hybrid films were prepared from these solutions. The colloidal solutions and the thin
films were investigated by various characterization techniques.

2. Materials and Methods
2.1. Materials

The monomers MMA (99% pure) and DMAEMA (96% pure) were obtained from
Alfa Aesar. 4-Methoxyphenol was used as inhibitor in both cases. For the purification of
both monomers, a column filled with resins for inhibitor removal was used. 2,2′-Azobis
(isobutyronitrile) (AIBN) was used as after recrystallization from methanol. 1,4-dioxane
(99.8% pure), hexane (98.5% pure), tetrahydrofuran (THF, 99.9% pure), methylamine solu-
tion 40% wt. in H2O, were obtained from Aldrich, lead (II) bromide (puratronic 99.9%) was
obtained from Alfa.
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2.2. Preparation of the Polymer-Perovskite Nanoparticles System
2.2.1. CH3NH3Br Synthesis

The CH3NH3Br (methylammonium bromide) was prepared as follows: 20 mL of a
solution (40% w/v) containing 8 g methylamine (257 mmol) was diluted with 80 mL of
ethanol. To this solution, a hydrobromic acid solution in water (57% w/v) was added
slowly, under stirring, until the pH of solution turns to acidic. The solution was stirred
for 2 h at room temperature and evaporated to dryness. The solid was dispersed into
anhydrous diethylether and filtered. It was washed copiously with anhydrous diethylether
to obtain white crystals.

2.2.2. P(MMA-co-DMAEMA) Random Copolymer Synthesis

P(MMA-co-DMAEMA) random copolymer (Scheme 1) was synthesized via con-
ventional free radical polymerization (CRP). Methyl methacrylate (MMA, 2.5 g) and 2-
(dimethylamino) ethyl methacrylate (DMAEMA, 7.5 g) free of inhibitors, AIBN (0.5 g) and
dioxane (100 mL) were added in a round flask. The mixture was degassed by nitrogen
gas bubbling and then placed in an oil bath and left to polymerize at 70 ◦C for 24 h. After
precipitation in excess of hexane and drying in vacuum oven for 48 h, the PDMAEMA-
co-MMA random copolymer was obtained in dry state. The molecular weight (Mw) was
85.000 g/mol and the polydispersity index (Mw/Mn) 1.4, both values were determined
with size exclusion chromatography (SEC). The weight composition of PMMA is 77% and
of PDMAEMA is 23%. The composition was calculated by the obtained 1H NMR spectra.
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Scheme 1. Chemical structure of P (DMAEMA-co-MMA) random copolymer.

2.2.3. Preparation of the Colloidal Solution

Four different CH3NH3PbBr3 yellow-colored solutions, were prepared by following
the synthetic procedure shown in Scheme 2. Starting CH3NH3PbBr3 DMF solutions: 7.0 mg
(0.0625 mmole) of freshly prepared CH3NH3Br and 23.0 mg (0.0625 mmole) of PbBr2 were
dissolved in 10, 5, 2.50, and 1.25 mL, respectively, of dry DMF and stirred vigorously for
two minutes. The molarities of the prepared solution are of 6.26 mM (Solution a), 12.5 mM
(Solution b), 25.0 mM (Solution c), and 50.0 mM (Solution d), respectively. A total of
0.125 g of the copolymer was dissolved in 40 mL toluene (0.31% w/v). Then, 40 µL from
the solutions a, b, c, d, were added in 5 mL of the copolymer solution under vigorous
stirring to prepare the solutions 1a, 1b, 1c, 1d. Instantly, the color of the solutions turned
yellow. The colloidal solutions were stirred at 500 rpm for 10 min. In order to confirm the
colloidal stability that the addition of the polymer offers to the perovskite nanocrystals,
blank solutions were prepared without the polymer addition. Specifically, 40 µL from the
solutions a, b, c, d, were added into 5 mL of toluene, under vigorous stirring to produce
the solutions 2a, 2b, 2c, 2d.
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2.3. Characterization

The molecular weight and the molecular weight distributions of the copolymer were
calculated by size exclusion chromatography (SEC) using a Waters system. It consists of a
Waters 1515 isocratic pump, a set of three µ-Styragel mixed bed columns (porosity range:
102–106 Å), a Waters 2414 refractive index detector (equilibrated at 40 ◦C), and Breeze
software was utilized for data processing. THF, containing 5% v/v triethylamine was
utilized as the mobile phase. The flow rate of the mobile phase was 1.0 mL/min at 30 ◦C.
The instrument was calibrated by using standard polystyrene samples of narrow molecular
weight distributions and average molecular weights in the range of 1200–929,000 g/mol.
The measured samples were dissolved THF, at concentrations in the range of 2–4 mg/mL.

1H-NMR spectra in CDCl3 were gathered using a Bruker AC 300 FT-NMR spectrometer.
Mid-IR spectra in the region 550–4000 cm−1 were collected using a FTIR spectrometer

(Equinox 55 from Bruker Optics) rigged with a single reflection diamond ATR accessory
(Dura- Samp1IR II by SensIR Technologies).

Optical absorption spectra of both films and solutions were recorded on a Perkin-
Elmer, Lambda 19 spectrophotometer. Steady state emission spectra were obtained by
using a Jobin Yvon-Spex, Fluorolog 3 spectrophotometer with a 350 nm excitation and 2 nm
slits. For the films, the front-face configuration and for the solutions, the right-angle config-
uration was used. Picosecond time-resolved fluorescence spectra were examined by the
time correlated single photon counting (TCSPC) method on a Nano-Log spectrofluorometer
(Horiba JobinYvon), by using a laser diode as an excitation source (NanoLED, 375 nm) and
a UV-Vis detector TBX-PMT series (250–850 nm) by Horiba JobinYvon. Lifetimes were
processed with the DAS6 Fluoroscence- Decay Analysis Software.

Dynamic light scattering measurements were carried out on an ALV/CGS-3 compact
goniometer system (ALVGmbH), rigged with an ALV 5000/EPP multi-τ digital correlator
with 288 channels and an ALV/LSE-5003 light scattering electronics unit for stepper motor
drive and limit switch control. A JDS Uniphase 22 mW He-Ne laser (λ = 632.8 nm) was used
as the light source. Toluene was used as the calibration standard. The instrument is rigged
with a water bath and a thermometer for temperature variations. Autocorrelation functions
were processed with the cumulants method and the CONTIN algorithm. The solutions
were filtered through 0.45 µm hydrophobic TF filters (Whatman) before measurements
in order to remove dust. Subsequently, standard 1 cm width quartz cells were filled with
filtered samples and measurements were carried out at angles 30◦ to 150◦.

Morphological studies of perovskite/copolymer hybrid composite structures were
accomplished by using a Hitachi HT7700 Transmission Electron Microscope, operating at
100 kV. One drop of each sample dispersion was deposited on a carbon-coated grid and the



J. Compos. Sci. 2021, 5, 304 5 of 15

solvent was evaporated at room temperature for 24 h. After drying process was completed,
the samples were studied in transmission mode.

Thin films were prepared using a Laurell WS-400BX-6NPP spin-coater. The film
thickness was measured by an Alpha-Step IQ Surface Profiler.

All measurements were conducted at room temperature.

3. Results and Discussion
3.1. Hybrid Nanoparticle Preparation and Dynamic Light Scattering Measurements

P(MMA-co-DMAEMA) random copolymer was chosen as a colloidal stabilizer since
the MMA segments form glassy nonpolar/hydrophobic nanodomains while the DMAEMA
segments form polar/hydrophilic nanodomains in aqueous or organic solvent solutions of
respective polarity. Both segments can interact with entities of similar polarity and tertiary
amine groups on DMAEMA segments can also exert complexation functions towards
perovskite entities.

When an amphiphilic block or random copolymer is inserted in a nonpolar medium,
the hydrophilic part forms the cores of the obtained self-assembled nanoparticles while
the hydrophobic part surrounds the cores. The reverse phenomenon is observed when
the copolymer is inserted in a polar solvent. Thus, the copolymer matrix functions as a
protective agent in order to avoid the precipitation of the crystalline CH3NH3PbBr3 and
keeps the hybrid perovskite/copolymer stable in solution. Formation of the core allows the
encapsulation of the CH3NH3PbBr3 nanocrystals, while MMA units cover the core in order
to protect from precipitation and stabilize the CH3NH3PbBr3 nanocrystals and the hybrid
ensemble in nonpolar solvents. Specifically, P(MMA-co-DMAEMA) copolymers when
inserted in an organic nonpolar medium such as toluene, they self-organize into nanoparti-
cles where the DMAEMA segment forms the core and the MMA segment encompasses the
polar DMAEMA segments. When the CH3NH3PbBr3 nanocrystals are encapsulated into
the DMAEMA core, intermolecular interactions develop between the DMAEMA part and
the perovskite nanocrystal, while the MMA part offers colloidal stability to the system.

In order to gain information about the size, the size polydispersity, and the stability of
perovskite/copolymer nanoparticles, DLS measurements were performed. The results are
presented in Tables 1 and 2.

Table 1. Dynamic light scattering results for solution 1a, 1b, 1c, 1d, on the day they were prepared.

Sample Cperov in DMF (mM) Ccopol in toluene (g/mL) Rh
a [35] (nm)

1a 6.25 3.125 × 10−3 2.4

1b 12.5 3.125 × 10−3 58

1c 25.0 3.125 × 10−3 46

1d 50.0 3.125 × 10−3 64

2a 6.25 - N/A

2b 12.5 - 150

2c 25.0 - 123

2d 50.0 - 117
a Determined by DLS at measuring angle of 90◦.
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Table 2. Intensity and Rh values of samples 1a, 1b, 1c, 1d on 1st day, and after 7, 20, 30 days.

Sample 1a Sample 1b Sample 1c Sample 1d

Day Intensity a

(kc/s)
Rh a [36]

(nm)
Intensity a

(kc/s)
Rh a [36]

(nm)
Intensity a

(kc/s)
Rh a [36]

(nm)
Intensity a

(kc/s)
Rh a [36]

(nm)

1st 28 2.45 124 58 2994 45.9 18,387 64

7th 37 7.5 99 51 880 46 14,387 64

20th 34 - 53 38 612 47.2 3277 60

30th - - 51 53 385 46.5 2590 57
a Determined by DLS at measuring angle of 90◦.

In all cases, a single peak from CONTIN [36], analysis of the DLS correlation functions
is observed (Figure 1), indicating the homogeneity of the system in each case. Moreover,
by increasing the concentration of the perovskite solution, no precipitation has occurred,
suggesting that colloidal stable nanoparticles can be formed in all cases. It is observed that
the nanoparticles formed, without the presence of polymer, present increased hydrody-
namic radius values, relative to the corresponding ones, to which the copolymer has been
added. The measurements repeated once a week for a period of one month (Figure 2). In
the case of series 1, a single peak from the CONTIN analysis was observed at all times and
no precipitation or significant change in the radius of the nanoparticles occurred, except
for the solution 1a, which contains the lower amount of perovskite, displaying once more
the stability of the system over time. The low Rh value (2.4 nm) at angle of 90 degrees
as well as the low scattering intensity value (28 kc/s) of Sample 1a are attributed to the
fact that the concentration value of the perovskite solution in this case is not adequate in
order for mixed perovskite/random copolymer nanoparticles to be formed. Therefore,
both the Rh and the scattering intensity values are due to the single chain formation of the
random copolymer in toluene. According to UV-Vis spectra (Figure 3), the sample does not
exhibit excitonic absorption and in combination with the low scattering light intensity, it is
possible that the perovskite nanocrystals were retained on the filter. On the seventh day, an
increase in the scattering light intensity value, which is accompanied with an increase in
the Rh value, demonstrates the formation of nanoaggregates. Therefore, it can be assumed
that the self-assembly of the random copolymer and perovskite into nanoparticles is a
slow process that takes about a week long in order to be completed. On the 20th day, the
intensity value has been decreased due to the precipitation of the nanoparticles. The size
distribution analysis is not possible due to the presence of dust. It is possible to suppose
that a certain concentration and ratio of the components is needed in order to form stable
hybrid nanoparticles under the conditions utilized in this study.
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Concerning solution 1b, after the filtration, the solution was discolored and the larger
perovskite particles were retained on the filter. We assume that certain perovskite particles
were not encapsulated in the polymeric nanoparticles and this is the reason why they were
retained on the filter. On the first day, the intensity and Rh values shows the presence of
polydispersed nanoparticles in toluene. The perovskite nanocrystals were encapsulated in
the polymeric nanoaggregates. At longer times, the intensity values decrease due possibly
to particle precipitation.

No change of color was observed for solution 1c after filtration. On the first day, the
intensity value was 2994 kcps (kilophotons per second) and the Rh was 46 nm. Based on
the intensity value and the excitonic absorption, which is displayed in the UV-vis spectrum
(Figure 3 it can be assumed that the encapsulation of the perovskite nanocrystals into the
polymeric nanoparticles was successful. The 1c polymer/perovskite hybrid nanosystem
exhibits high size homogeneity. At latter times, the intensity value decreases due to at
least partial precipitation of the mixed polymer/perovskite nanostructures, while the
hydrodynamic radius appears to be relatively stable. The high intensity value on day 7th,
20th, and 30th is due to the sufficient number of nanoparticles that are still dispersed in the
solution, even though precipitation of certain nanoparticles must have occurred. Sample
1c seems to exhibit greater colloidal stability than Samples 1a and 1b, over time.

No change of color was observed also in the case of Sample 1d. This sample presents
the highest size homogeneity of all. Moreover, Sample 1d exhibits the greatest intensity
value of all, as high-mass mixed nanostructures are presumably formed due to the higher
amount and ratio of the perovskite component in the mixed solutions. The encapsulation
of perovskite nanocrystals into the polymeric nanoparticles appears to be successful. The
sample appears to be stable over time, as long as the hydrodynamic radius is observed,
but the scattering intensity value is partially reduced. The latter may be a sign of partial
precipitation. Although a number of polymer/perovskite mixed nanoparticles precipitated,
the intensity value seems to be high (but decreased compared with day 1) as there are still
a large number of dispersed hybrid nanoparticles in toluene.

To sum up, for Samples 1c and 1d, formation of stable hybrid polymer/perovskite
nanoparticles was observed with significant colloidal stability. The scattering light intensity
is high in both cases, while Sample 1d exhibits the highest value. Both samples present
great stability over time, as hydrodynamic radius measurements indicate. Specifically,
Sample 1c appears to be more stable than 1d in terms of both size and intensity value. Both
samples display high size homogeneity, but Sample 1d has lower polydispersity index,
indicating that Sample 1d is more homogeneous than 1c. Finally, the preparation procedure
was repeated several times. The results from DLS experiments were similar in all the cases,
indicating the repeatability of the synthesis protocol.

For the samples prepared in the absence of copolymer (Samples 2a, 2b, 2c, 2d), for-
mation of large nanoparticles (Rh > 100 nm) was observed, which were not stable and
precipitated after some hours.

3.2. Optical Properties
3.2.1. Perovskite/Polymer Solutions

According to UV-Vis spectra (Figure 3), the sample with the lowest concentration (1a)
does not exhibit excitonic absorption even from the first day. The other three samples (1b, 1c, 1d)
exhibit excitonic absorption with intensities that increase as the concentration of the per-
ovskite is increased. Moreover, a redshift is observed when the concentration of the
perovskite solution is increased. Specifically, the peak of exitonic absorption of Sample 1b
is observed at λmax ~ 508 nm, of Sample 1c at λmax ~ 513 nm and of Sample 1d at λmax ~
516 nm, indicating the formation of larger nanocrystals as the perovskite concentration
increases. The exitonic peaks are slightly red shifted with the time, pointing out that the
size of the nanocrystals is increased as time passes, possibly due to further reorganization
phenomena. Those peaks are blue shifted compared to those of film and single crystal
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CH3NH3PbBr3 [37] (520 [38] and 550 nm [39] respectively) mainly due to the particle-size
quantum confinement effect.

The sample with the lowest concentration (1a) shows a weak excitonic emission peak
at 499 nm that is disappeared after some days (Figure 4). All the other samples (1b, 1c, 1d)
exhibit strong excitonic emission peaks. As in the case of absorbance spectra, all the
emission peaks are red shifted compared to CH3NH3PbBr3 film and single crystal. Also,
a redshift of the emission peaks is observed as the perovskite concentration gets higher,
possibly due to the formation of nanocrystals of larger size. Moreover, Figure 4 suggests
that photoluminescence originated from CH3NH3PbBr3 immediately after the synthesis,
which indicates that the perovskite nanocrystals have been formed. The photoluminescence
intensity of Samples 1b, 1c, and 1d remain strong for the whole 30 days period of study,
although there is a decrease of the intensity. The small Stokes shift of the samples indicate
that the PL emission originates from direct exciton recombination. Similar spectra were
obtained by CH3NH3PbBr3 nanocrystals prepared by different methods.
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Figure 4. Fluorescence emission spectra of solutions (1a), (1b), (1c), and (1d) from 1st (black line), 7th
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To the analogues blank solutions without the polymer addition, precipitation observed
after some hours. Consequently, no absorption peaks and very weak fluorescence peaks
were observed (see Figure S3). Decrease of the absorption and emission values, as time
passes, comprise an indication that the colloidal stability of perovskite/polymer hybrid
system is decreased. The decrease of the colloidal stability is also confirmed by the dynamic
light scattering results, where the value of the hydrodynamic radius is also increased. On
the other hand, for the samples of series 2, precipitation occurs after some hours and do
not exhibit excitonic absorption or PL emission, indicating that no stable nanocrystals were
rated in the absence of copolymer (see Figure S4).

3.2.2. Time-Resolved Photoluminescence Decay Studies

In order to study further the photoluminescence properties of the perovskite/polymer
hybrid solutions, photoluminescence decay studies were performed and compared with
those of the perovskite solution without the presence of the random copolymer dispersed
in toluene (blank experiment).
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Firstly, fresh solutions of Samples 1d and 2d were prepared and the fluorescence
lifetime profiles for both perovskite/polymer hybrid system and free perovskite dispersed
in toluene were obtained immediately and analyzed (Figure 5). The analysis of the time
profile of the fluorescence decay at 375 nm for the free perovskite dispersed in toluene
showed only one component with 1.14 ns lifetime, while two components were detected for
the perovskite/polymer hybrid material; a faster one with 90 ps lifetime (18%), assigned to
perovskite nanocrystals, which probably were not encapsulated into the polymer containing
nanoparticles, and a slower one in a much higher percentage (82%) with 9.8 ns lifetime,
attributed to the hybrid nanomaterial. These values are significantly lower than those of
bulk films (~100 ns) [40,41]. A possible scenario is that the short (90 ps) lifetime corresponds
to a low ratio (18%) of perovskite nanocrystals, which probably were not encapsulated into
the polymer containing nanoparticles, and thus they are not colloidal stable and exhibit
short lifetime properties. The longer lifetime in a much higher percentage (82%) with 9.8 ns
lifetime is assigned to the hybrid nanomaterial possibly due to a reduction of the defect
density that the incorporation of the polymer matrix established. The polymer matrix
probably decreases the defect sites and removes trapped states, a fact that leads to the
elongation of photoluminescence decay time [42].
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Figure 5. Lifetime decays of perovskite solution of C = 50.08 mM dispersed in toluene, without the
presence of the random copolymer, (blue line) and Sample 1d (red line).

As a result, photoluminescence decay assays reinforce the belief that the PMMA-
co- PDMAEMA random copolymer functions as a protective matrix against perovskite
precipitation and also provides colloidal and temporal stability.

3.2.3. Perovskite/Polymer Hybrid Thin-Films

Furthermore, we investigate the photoluminescence intensity of perovskite/polymer
thin films (Samples TFa, TFb, TFc, TFd), which were prepared by homogenous coating
of Samples 1a, 1b, 1c, 1d on a glass surface, respectively. The aim of this experiment is to
investigate if the copolymer/perovskite hybrid system is capable of exhibiting emissions
in absence of toluene and therefore could be applied as active components of an OLED
device. UV-Vis absorption and fluorescence emission were studied at regular time intervals
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in order to determine time stability of the thin-films optical/photophysical properties. The
results are presented in Table 3.

Table 3. Thin-Film samples, their precursor solutions, thickness of the films, and concentration of
perovskite in each sample.

Precursor
Solution

Thin-Film
Sample Code

C Perovskite
in DMF (mM)

Thickness
(µm)

1a TFa 6.26 1500.3

1b TFb 12.52 4900.4

1c TFc 25.04 1700.8

1d TFd 50.08 3400.2

A redshift is observed in both absorbance and emission spectra when the concentration
of the perovskite in the film is increased due to the increase of the nanocrystals size
(Figures 6 and 7). In the case of sample TFa, the UV-Vis absorption spectrum exhibits an
excitonic peak at λ = 505 nm, and an emission peak at 510 nm, both peaks disappeared
at the second measurement (11th day). The same behavior was observed for the TFb
sample, but although the excitonic absorption at ~516 nm has disappeared, on the 11th
day there was still a significant emission signal (Figures 6 and 7). The characteristic peaks
due to exciton appear at the fresh films of the hybrid samples TFa, TFb, TFc, and TFd
(Figures 6 and 8).
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Figure 7. UV-Vis absorption and fluorescence emission spectra of TFc (red line) and TFd (black line), 
after 2 months. 
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Figure 7. UV-Vis absorption and fluorescence emission spectra of TFc (red line) and TFd (black line), 
after 2 months. 
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In the case of sample TFa, the UV-Vis absorption spectrum exhibits an excitonic
peak at λ = 505 nm and an emission peak at 510 nm, both peaks disappeared at the
second measurement (11th day). The same behavior was observed for the TFb sample, but
although the excitonic absorption at ~516 nm disappeared, on the 11th day there was still a
significant emission signal (Figures 6 and 8). The excitonic peaks of the samples TFc and
TFd in both, absorbance and emission spectra, remain strong even after two years (Figure 7
and Figure S6) and can be observed even with naked eye, indicating a strong stability in
the matrix.

4. Conclusions

Perovskite (CH3NH3PbBr3)/P(MMA-co-DMAEMA) random copolymer hybrid nano-
materials were successfully prepared using toluene as the solvent where the hybrid
nanoparticles were dispersed. The self-organization of the P(MMA-co-DMAEMA) random
copolymer in toluene results in the formation of nanoaggregates where the DMAEMA
segments make up the nanoparticle core and the MMA units the corona. Addition of the
perovskite-DMF solution into the colloidal solution of the random copolymer, ends up
in the encapsulation of the perovskite nanocrystal into the DMAEMA domains, while
MMA parts function as the provider of colloidal stability to the hybrid nanosystem. Size
and size polydispersity of the nanoparticles were determined by dynamic light scattering
experiments. The solutions showed increased stability for more than a month in some
cases. Thin-films prepared via spin-coating of the perovskite/polymer solutions, exhibit
great similarity in the optical characteristics with the precursor solutions. They are ca-
pable of emitting light for long time periods (up to two years). As a result, perovskite
(CH3NH3PbBr3)/P(MMA-co-DMAEMA) random copolymer hybrid system constitutes a
new emerging class of hybrid materials, exhibiting great optical properties and they could
be utilized in the development of photovoltaic devices.
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ATR-FTIR spectra of the hybrid material (red line) and polymer matrix (black line), Figure S6: Photo
of solutions 1a, 1b, 1c and 1d under UV light, on the day they were prepared, Figure S7: TEM images
from sample 1b (a) and (b), sample 1c (c) and (d).
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