
Article

Performance Analysis of Embedded
Mechanoluminescence-Perovskite Self-Powered
Pressure Sensor for Structural Health Monitoring

Lucas Braga Carani , Vincent Obiozo Eze, Chetanna Iwuagwu and Okenwa Izeji Okoli *

High-Performance Materials Institute, College of Engineering, Florida A&M University–Florida State University,
2525 Pottsdamer Street, Tallahassee, FL 32310, USA; lb15k@my.fsu.edu (L.B.C.); veze@fsu.edu (V.O.E.);
chetanna1.iwuagwu@famu.edu (C.I.)
* Correspondence: okoli@eng.famu.fsu.edu

Received: 31 October 2020; Accepted: 10 December 2020; Published: 18 December 2020
����������
�������

Abstract: Recent developments in sensing technologies have triggered a lot of research interest
in exploring novel self-powered, inexpensive, compact and flexible pressure sensors with the
potential for structural health monitoring (SHM) applications. Herein, we assessed the performance
of an embedded mechanoluminescent (ML) and perovskite pressure sensor that integrates the
physical principles of mechanoluminescence and perovskite materials. For a continuous in-situ
SHM, it is crucial to evaluate the capabilities of the sensing device when embedded into a composite
structure. An experimental study of how the sensor is affected by the embedment process into a
glass fiber-reinforced composite has been conducted. A series of devices with and without ML were
embedded within a composite laminate, and the signal responses were collected under different
conditions. We also demonstrated a successful encapsulation process in order for the device to
withstand the composite manufacturing conditions. The results show that the sensor exhibits distinct
signals when subjected to different load conditions and can be used for the in-situ SHM of advanced
composite structures.

Keywords: structural health monitoring; mechanoluminescence; sensor; perovskite;
composite material

1. Introduction

Composite materials have been attracting a lot of attention in industrial fields such as aeronautics,
astronautics and automotive due to their improved strength-to-weight ratio and resistance to corrosion
and fatigue [1]. Previous studies have demonstrated that the frequent exposure of composite
structures to harsh conditions can compromise the structural integrity of the material [2–5]. Thus,
there is a great interest in monitoring the health conditions of these structures. The structural
health monitoring (SHM) system refers to techniques to track and evaluate the conditions of the
structure over time using sensors and data analysis [6,7]. A lot of effort has been made in the
development of efficient and reliable methods for the real-time monitoring of the health of structures
for prolonged service. Mechanoluminescence (ML)-based sensors have been developed for damage
sensing in multifunctional composite materials [8–14]. ML is the emission of light as a response
to mechanical actions on a material [15]. ML can be triggered by pressure, crushing, impact load
or wind action [8,11]. These materials can have many applications in stress sensing, dynamic
pressure mapping, light sources or the detection of electric and magnetic fields [15,16]. In addition,
ML materials can also be useful in determining crack propagation and stress distribution [6,8,10–12].
ML-based sensors have many advantages, such as simple device architecture, in-situ and self-power
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sensing and robustness over the conventional sensing technologies used in SHM, such as piezoelectric
devices [17–20]. Recently, Shohag et al. demonstrated a flexible, self-powered ML pressure sensor
by integrating zinc sulfide:copper (ZnS:Cu) embedded in polydimethylsiloxane (PDMS) and a
perovskite light-absorbing layer [8,17]. The light emitted by the ML layer is collected by the perovskite
layer, which then converts light photons into an electrical current, avoiding the need for expensive
equipment such as charge-coupled device (CCD) cameras and photomultipliers to collect ML emissions.
Organic-inorganic perovskites offer a large light absorption coefficient, high and balanced charge carrier
mobility, long carrier diffusion length, and other properties that make them attractive light-absorbing
materials for photodetectors [21–25]. The ML-perovskite pressure sensor exhibits the potential for
SHM applications [17]; however, the performance of the device remains relatively unexplored when
embedded into a composite structure. Embedding the ML-perovskite sensor into composites structures
could be an effective method for real-time and continuous SHM. Moreover, investigating the behavior
of the device under embedment in a composite system is fundamental for future applications in SHM.

In this work, we assessed how the embedment process could affect the performance of the
ML-perovskite sensor. The sensor was fabricated using a simplified structure, consisting of a planar
hole-transporting layer-free structure of ZnS:Cu/polydimethylsiloxane(PDMS)/indium doped tin oxide
(ITO)-Polyethylene terephthalate (PET)/tin (IV) oxide (SnO2)/perovskite/Au. It is worth mentioning
that the performance of perovskite devices is known to be highly susceptible to degradation when
exposed to ambient conditions [26]. Consequently, it is necessary to develop an encapsulation to
protect the perovskite layer from rapid degradation and withstand the embedment process. It was
observed that without encapsulation, the perovskite film could not survive the embedment, degrading
when in contact with a resin matrix [27,28]. We developed a successful encapsulation process using
a well-known commercial encapsulant, ethylene-vinyl acetate (EVA) and the embedment of this
sensing device into a glass fiber-reinforced composite material. This work shows that the study of
the ML-perovskite sensor’s performance after embedment into a composite material creates new
opportunities for future in-situ sensing based on mechanoluminescent sensor systems for SHM.

2. Materials and Methods

2.1. Materials and Reagent

Methylammonium Iodide (CH3NH3I), γ-butyrolactone (γ-GBL), N-methyl-2-pyrrolidone (NMP)
and diethyl Ether (DEE) were purchased from Sigma–Aldrich. Lead iodide (PbI2) was purchased from
Acros Organics. Lead bromide (PbBr2) and SnO2 colloid precursor (15% in H2O colloidal dispersion)
were purchased by Alfa Aesar. ZnS:Cu, GL29/B-C1, was purchased from Phosphor Technologies.

2.2. Device Fabrication

The device fabrication followed the same procedures described in our previously reported
work [17]. Essentially, PET/ITO substrates were cut and patterned by etching with hydrochloric acid
(HCl) and zinc (Zn) powder. The substrates were cleaned consecutively with Hellmanex detergent,
nano pure water, acetone and isopropanol in a sonication bath. The PET substrates were treated with
oxygen plasma for 5 min before the deposition of an electron transport layer (ETL) and perovskite.
The colloidal SnO2 precursor was diluted with deionized water to a 1:6 volume ratio. The ETL layer
was prepared by spin-coating the solution at 3000 rpm for 30 s. The samples were annealed at 120 ◦C
for 80 min in ambient conditions. The perovskite precursor solution was prepared by mixing 380 mg of
CH3NH3I, 91.8 mg of PbBr2 and 826.2 mg of PbI2 into a solution of 1 mL of NMP and 0.2 mL of γ-GBL.
The solution was left stirring on a hot plate at 70 ◦C overnight. Before deposition, the solution was
heated on a hot plate at 70 ◦C for 30 min. The light-absorbing MAPb(Br0.1I0.9)3 perovskite thin films
were coated using a one-step deposition method and antisolvent bath method. The perovskite solution
was spin-coated at 900 rpm for 3 s followed by 4500 rpm for 30 s. The substrates were dipped into
DEE for 2 min and then annealed at 70 ◦C for 5 min followed by 130 ◦C for 15 min. Au electrode back
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contacts were deposited on top of the perovskite via thermal evaporation. ZnS:Cu crystals, PDMS base
and curing agent were mixed to a 20:10:1 weight ratio, respectively, using a planetary centrifugal mixer.
The ZnS:Cu-PDMS blend was spin-coated on the opposite side of the PET substrate. The thin film
was then heated until a complete cure was obtained. The encapsulation process was conducted in the
following order: first, a slightly larger PET substrate was placed underneath the ML-perovskite device;
then, an EVA sheet was placed on the top layer and used as an encapsulant. The device was further
sealed using polyimide tape and laminated.

2.3. Material and Device Characterization

The absorption UV-Vis spectrum was collected using an UV-Vis spectrophotometer (Cary 5000,
Agilent, Santa Clara, CA, USA). Scanning electron microscopy (SEM) images were collected by a
high-resolution field emission scanning electron microscope (FESEM, JEOL 7401F, Tokyo, Japan).
The current-voltage (I-V) measurements were obtained using a Keithley 2400 (Cleveland, OH,
USA) source measure unit (Tektronix, Beaverton, OR, USA). The photovoltage-time measurements
were collected using an NI-6210 data acquisition device and a Hamamatsu C7319 amplifier unit.
An automated impact hammer equipment (AS-1220, Alta Solutions, San Diego, CA, USA) was used
for the impact test.

3. Results and Discussion

3.1. Device Architecture

Figure 1 shows a schematic representation of the sensor device. The ML-perovskite sensor was
fabricated using a simple planar structure consisting of ZnS:Cu-PDMS/ITO-PET/SnO2/perovskite/Au.
Several robust and stable metal oxide-based ETLs have been used in the fabrication of vertical structure
photodetectors. Among the metal oxides, titanium oxide (TiO2) is the most commonly used material.
However, it requires high temperature (>450 ◦C) annealing to form a high-quality compact TiO2 thin
film, which is unattainable for applications in flexible substrates [29]. We introduced low-temperature
processed SnO2 as an alternative ETL, which is suitable for ITO-coated PET substrates with a maximum
operating temperature of 120 ◦C [30–32]. It is worth mentioning that a vertical HTL-free architecture
was adopted for the fabrication of the ML-perovskite pressure sensor to simplify the device architecture
and reduce the fabrication cost. Although the utilization of HTL in perovskite photodetectors have
been demonstrated to be effective in increasing the photodetector performance, most HTL materials,
such as 2,2′,7,7′-Tetrakis[N, N-di(4-Methoxyphenyl) Amino]-9,9′- spirobifluorene (Spiro-OMETAD),
are expensive, which significantly increases the fabrication costs of the device [33–35]. The device
fabrication was completed by thermal evaporation of the Au electrode on the perovskite layer [36–38].
In this structure, the electrical signal output is produced when the incident photons are absorbed by
the perovskite layer, in which electron-hole pairs are produced. The holes are transported from the
perovskite layer to the Au electrode, while the electrons are extracted by the SnO2 layer.
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Figure 1. Schematics of the sensor device.

We conducted an investigation to assess the feasibility of embedding the ML-perovskite sensor
into a composite. Our studies showed that the device could not survive the embedment process without
any type of encapsulation. Immediately after contact with the matrix, the device (Figure 2a) was found
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to show a degradation of the perovskite film (Figure 2b). After curing the resin, the perovskite layer
completely deteriorated. Therefore, a robust and reliable encapsulation system for the device needs to
be developed in order to successfully embed the ML-perovskite sensor into a composite structure.
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Figure 3a shows the schematics of the encapsulated device, and Figure 3b,c shows the final device.
Glass fiber-woven reinforcement was chosen for two main reasons: (i) the transparency of the final
composite allows the conditions of the device to be followed after the manufacturing process; (ii) the
nonconductive characteristics of glass fibers prevent any electric interference between the fibers and
the sensor. Figure 4 depicts the sensor embedment process in the glass fiber composite.
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The sensors were placed between four plies of glass fiber cloth-woven, as shown in Figure 5.
A traditional vacuum-assisted resin transfer molding (VARTM) infusion was used, and vinyl-ester
resin was used as a matrix. VARTM is a common out-of-autoclave manufacturing technique that is
utilized in several industries [39]. The process has a relatively low-cost method and can be used to
fabricate high-quality composite parts. Next, we assessed the performance behavior of the embedded
sensor systems, which will be discussed below.
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3.2. Device Characterization and Embedment

Figure 6a shows the UV-vis absorption spectrum of the MAPb(Br0.1I0.9)3 film on the PET substrate
and the ML emission of ZnS:Cu. The optical band gap (Eg) of the MAPb(Br0.1I0.9)3 perovskite is
1.64 eV, calculated from the Tauc plot, which is lower than the ML light emission Eg from ZnS:Cu
(2.28 eV) [40]. Consequently, the ML emissions from ZnS:Cu can be fully absorbed by the perovskite
material. The light emitted by the ZnS:Cu/PDMS layer as a result of the applied pressure or strain is
responsible for exciting the perovskite layer, generating free electrons and hole pairs in the material,
which are then transported to the cathode (ITO) and anode (Au), respectively. It has been previously
reported that the ZnS:Cu/PDMS composite emits green light when stretched. The green ML emission
was attributed to the deformation of the ZnS:Cu and frictional interactions between the ZnS:Cu and
the PDMS [18,41,42]. The performance of the sensor is fundamentally dependent on the quality of
the perovskite film. Figure 6b shows the SEM image of the high-quality uniform perovskite film,
confirming the lack of pinholes and full crystallization of the material, which is beneficial for efficient
light absorption and transport of photogenerated charge carriers within the bulk of the perovskite film.
It is important to note that, in the absence of HTL the performance of the device is typically lower
when compared with similar architectures with HTL. The choice of not including HTL is due to the
fact that the development of a cheaper and easier to manufacture sensor was prioritized in this article.
Etgar et al. reported that eliminating HTM in a solar cell structure prevented oxidation, reduced costs
and provided better stability and consistent results [43]. It can be observed in Figure 6c that the device
showed a stable and reproducible behavior when subjected to dark and light illumination, indicating
that it could be used for sensing applications. Figure 6d shows the I-V curves of the device under
dark conditions before and after the embedment into a composite structure. After the embedment, the
sensor remained functional, proving that the encapsulation process was successful. We also observed
that the encapsulation or the embedment process affected the sensor electrical properties due to the
noticeable differences in the dark I-V curves. Notably, the dark current value dramatically decreased
after encapsulation, as shown in Figure 6d. The underlying mechanism related to the decreased dark
current is currently under investigation, and further work is in progress in order to gain a better
understanding of the effects of encapsulation and embedment on the I-V curve.
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Figure 6. (a) UV-vis absorption spectrum [17]. (b) SEM image of the MAPb(Br0.1I0.9)3 perovskite
film [17]. (c) On-off cycles of the perovskite photodetector under white light. (d) I-V characteristics of
the devices in the dark.

3.3. Sensor Response with Applied Pressure and Performance

The primary objective of this work was to analyze the performance and feasibility of the
ML-perovskite sensor after embedment in a composite structure. An extensive and detailed
characterization of the sensor response under various conditions has been previously reported [17].

A simple tapping test was conducted to verify the response of the sensor to applied pressure.
Figure 7a shows the schematic representation of the experimental setup for the sensor’s response upon
finger tapping. The pressure was applied to the sensor several times and the tests were performed in
ambient conditions (21 ◦C, 71% RH) and with no bias voltage. For a more standardized experimental
procedure, automated impact hammer equipment was used. In total, 12 impacts with different
magnitudes were executed on the composite panel, with a 2 s interval between the impacts. Figure 7b
shows the impact hammer test result. The applied impact pressure varied from 100 kPa to 200 kPa.

The response of the sensor during the tapping test can be seen in Figure 8a, where ∆I represents
the change in current, and I0 represents the baseline current. The response signal of the sensor showed
a similar pattern to triboelectric nanogenerator (TENG)-based sensors [44,45], resulting in positive
and negative signals after contact with the sensor. It is likely that the ML-perovskite sensor is also
influenced by triboelectric mechanisms from the friction contact between its layers. It is known that
PDMS and ZnS:Cu can be used to fabricate a TENG sensor [44]. More thorough research needs to be
conducted to investigate how this mechanism affects the functionalities of the ML-perovskite sensor.
Table 1 shows a comparison of the performance characteristics of different types of sensing devices [17].
As can be seen, the ML-perovskite pressure sensor does not require any power at the sensing location,
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which is advantageous for SHM applications. The sensitivity of the ML-perovskite sensor is impressive
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Table 1. Comparison of the performance parameters of different types of sensors.

Sensor Type Materials Sensitivity/Min.
Pressure

Power
Consumption/Operating

Voltage
Ref.

Mechanoluminescence/Perovskite ZnS:Cu-PDMS/Perovskite 0.095 kPa−1 Self-powered [17]

Mechanoluminescence ZnS:Mn

0.7 cps kPa−1

(0.6–10 Mpa)
2.2 cps kPa−1

(10–50 Mpa)

Self-powered [46]

Transistor/Mechanoluminescence MoS2
FET/PDMS/ZnS:Cu

1.8 Mpa−1

(<500 kPa)
0.045 Mpa−1

(>500 kPa)

- [47]

Capacitance/Transistor PDMS 8.4 kPa−1 <1 mW [48]

Capacitance Microstructured PDMS <10 kPa 80 V/0.75 mWcm−2 [49]

Resistance Au Nanowires >1.14 kPa−1/13 Pa <30 uW [50]

Resistance
PDMS/Pt-coated

polyurethane
acrylate/PDMS

3 Pa - [51]

Resistance
Nanofibers

(carbon nanotubes
and graphene)

1 kPa - [52]

Piezoresistance
PDMS micro-pyramid

array/Pt-coated
interlocking nanofibers

4.88 kPa−1 0.2 V [53]

Piezoresistance

Elastic microstructured
conducting

polymer/Hollow-sphere
structures of polypyrrole

(Ppy)

133.1 kPa−1

(p < 30 kPa)
0.4 kPa−1

(p > 1 kPa)

- [54]

Piezoresistance Graphene-polyurethane
sponge 0.03–0.26 kPa−1 <1 V/4 mWcm−2 [55]

Piezoresistance SWNT/PDMS 1.8 kPa−1 2 V/0.007 mWcm−2 [56]

Furthermore, to confirm that the ML material was responsible for the signal responses of the
device, a perovskite photodetector was embedded without an ML layer. All other processes were
kept constant. Interestingly, without the ML material, no noticeable light emission occurred from the
mechanical impact on the composite. As a result, no evident signals were observed (Figure 8b). It is
possible to affirm that the light harvested by the perovskite came from the ML layer. Therefore, the
addition of an ML material is fundamental to the performance of the sensor. Figure 8c shows the sensor
response for the impact hammer test. The applied impact pressure varied from 100 kPa to 200 kPa, and
the sensor generated distinct and consistent signals for the impacts, which demonstrated the sensor’s
viability for SHM applications in composite structures. When the most considerable impacts were
taken into consideration, the impact strikes and the sensor signal were highly correlated, as shown in
Figure 8d.

4. Conclusions

In summary, this article investigated how the performance of the ML-perovskite device was
affected by embedment in a glass fiber-reinforced composite. The embedment process was shown to be
detrimental for the sensor, and an encapsulation process was necessary for the device to withstand the
composite manufacturing process. The adoption of a simpler and cheaper HTL-free architecture was
confirmed to be feasible for damage-sensing applications. However, the addition of HTL would increase
the signal-to-noise ratio and the overall performance of the device. The sensor showed well-defined
signals when subjected to different conditions. It was demonstrated that the ML layer was responsible
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for the distinct response output of the sensor. The sensor did not require supplementary power to
function, providing a great advantage over traditional sensors. To conclude, the ML-perovskite sensor
can be embedded in an advanced composite material for in-situ SHM applications. The sensor presents
an excellent potential for developing low-cost damage sensor devices for the SHM of smart composite
materials. Future work is in progress to investigate the performance of the sensor under different
conditions, such as thermal cycling and high-humidity environments.
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