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Abstract: Fiber reinforced polymers are key materials across different industries. The manufacturing
processes of those materials have typically strong impact on their final microstructure,
which at the same time controls the mechanical performance of the part. A reliable virtual
engineering design of fiber-reinforced polymers requires therefore considering the simulation of the
process-induced microstructure. One relevant microstructure descriptor in fiber-reinforced polymers is the
fiber orientation. This work focuses on the modeling of the fiber orientation phenomenon and presents
a historical review of the different modelling approaches. In this context, the article describes different
macroscopic fiber orientation models such as the Folgar-Tucker, nematic, reduced strain closure
(RSC), retarding principal rate (RPR), anisotropic rotary diffusion (ARD), principal anisotropic rotary
diffusion (pARD), and Moldflow rotary diffusion (MRD) model. We discuss briefly about closure
approximations, which are a common mathematical element of those macroscopic fiber orientation
models. In the last section, we introduce some micro-scale numerical methods for simulating the
fiber orientation phenomenon, such as the discrete element method (DEM), the smoothed particle
hydrodynamics (SPH) method and the moving particle semi-implicit (MPS) method.

Keywords: fiber orientation; fiber reinforced thermoplastics; modeling

1. Introduction

Fiber reinforced polymers are key materials across different industries. For example short
fiber reinforced thermoplastics are wildly used in the automotive industry to reduce weight.
The manufacturing processes of those materials have typically strong impact on their final
microstructure, which at the same time controls the mechanical performance of the part. A reliable
virtual engineering design of fiber-reinforced polymers therefore requires considering the simulation
of the process-induced microstructure.

One relevant microstructure descriptor in fiber-reinforced polymers is the fiber orientation.
This work focuses on the modeling of the fiber orientation phenomenon and presents a historical
review of the different modeling approaches. In this context, the article describes different modeling
approaches such as the addition of a scalar diffusion by Folgar and Tucker [1], the nematic
potential approach [2], the modeling of a retarding rate in the reduced strain closure (RSC) [3] and the
retarding principle rate (RPR) model [4], and lastly the anisotropic rotary diffusion approach (ARD)
by Phelps et al. [5]. Additionally, reduced parameters models like the improved anisotropic rotatory
diffusion (iARD) [4], principal anisotropic rotary diffusion (pARD) [6], and Moldflow rotary diffusion
(MRD) [7] will be introduced. The mentioned models are provided in commercial injection molding
software such as Autodesk Moldflow R©, Moldex 3D R©, Sigmasoft R© and Cadmould R©. For example,
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Autodesk Moldflow R© provides the Folgar-Tucker, RSC and ARD-RSC model and Moldex 3D R© the
Folgar-Tucker, ARD, and iARD-RPR model.

Furthermore, we briefly discuss closure approximations, which are a common mathematical
element of those macroscopic fiber orientation models. Simple closure approximation like the linear,
quadratic, and hybrid closure [8,9] will be introduced. Then, we focus on exact closure approximations
and fitted closure approximations. In the field of fitted closures we distinguish between orthotropic
and invariant based closures.

Afterwards, we introduce micro-scale numerical methods for simulating the fiber orientation
phenomenon, such as the discrete element method (DEM), smoothed particle hydrodynamics
(SPH) and moving particle semi- implicit MPS. The focus will be on DEM based method and
existing approaches will be looked at under the points of fiber discretization, imposed flow fields,
fluid-fiber interaction, and fiber-fiber interaction.

The last section focuses on combining the advantages of both scales, for example through
parameter fitting or machine learning approaches.

2. Fiber Orientation

The orientation of a single fiber can be characterized by a unit vector p ∈ S3 := {p ∈ R3 : ||p|| = 1}
along the fiber axis. All p ∈ S3 can be defined by two angles (φ, θ) (Figure 1)

p1 = sin θ cos φ (1)

p2 = sin θ sin φ (2)

p3 = cos θ (3)

Figure 1. Orientation of a single rigid fiber p.

To describe the orientation of many fibers statistical methods are useful. The probability density
function (PDF) ψ() [1] is defined, such that ψ(p, t)dp is the probability that a fiber is directed between
p and p + dp at time t. The PDF has the following distinct properties.

B(ψ) = [0, 1] (4)∮
ψ(p, t)dp = 1 (5)

ψ(p) = ψ(−p) (6)
Dψ

Dt
= −∇s · (ψṗ). (7)

Equation (6) is valid under the assumption that the fibers are cylindrical and have no preferred end.
Equation (7) is called the continuity equation. The operator ∇s represent the gradient operator on the
surface of the unit sphere.
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Since the PDF is defined on the unit sphere, computation is expensive and numerically
difficult. For that reason, moments of the PDF are commonly used for computational efficiency [8].
The orientation tensors are defined by

aij =
∫

pi pjψ(p)dp (8)

aijkl =
∫

pi pj pk plψ(p)dp. (9)

ai...n =
∫

pi · · · pnψ(p)dp. (10)

Since the PDF is even (Equation (6)) all odd-ordered orientation tensors are zero. To simplify
notation we introduce A = aij,A = aijkl . The orientation tensors have important properties [8],
which are described here for the second and fourth moment only. The second order tensor is symmetric
and has a unit trace.

Aij = Aji (11)

trA = 1. (12)

The fourth order tensor is symmetric with respect to any pair of indices.

Aijkl = Ajikl = Aijkl = Akjil = Al jki = Aikjl = Ailkj (13)

and all information of the second order orientation tensor can be retrieved from the fourth order tensor

Aij = Aijkk. (14)

The use of orientation tensors simplifies the computation because no discretization of the unit
sphere is necessary, but it is impossible to distinguish between certain orientations. For example,

the orientation tensor for a bipolar and planar random orientation is identical with A =

0.5 0 0
0 0.5 0
0 0 0

.

An advantage is the objectivity, that means the equation is independent of the coordinate system.

3. Macroscopic Fiber Orientation Models

Macroscopic fiber orientation models are used to predict fiber orientation in parts.
The models are integrated in commercial software such as Autodesk Moldflow R©, Moldex 3D R©,
Sigmasoft R© and Cadmould R©. Additionally open source software such as OpenFoam can be used to
implement the models.

3.1. Macroscopic Fiber Orientation Models in the Dilute Regime

The first description of the motion of a single fiber was developed by Jeffrey [10]. This description
is based on the following assumptions: The fluid is Newtonian and has no turbulences (rotu = 0).
The particle is an ellipsoid and perfectly rigid, such that no bending or breaking occurs. The velocity
field of the fluid is not influenced by the particle and there exists a perfect contact between the particle
and the fluid. Under these assumptions the model is accurate up to order two. This has been proven in
a more general way by Junk and Illner [11] under the same assumptions. Jeffrey’s model has the form:

ṗ = W · p + ξ(D · p−D : ppp), (15)

where W = 1
2 ((∇u)T −∇u) is the vorticity tensor, D = 1

2 ((∇u)T +∇u) the rate of strain tensor,

ξ = r2
e−1

r2
e+1

the particle shape function and ∇ the nabla operator. Applying it to injection molding
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simulation, it has to be highlighted that the polymer melt is non-Newtonian and fibers are not perfectly
rigid. In fact they can break and bend. Furthermore for highly filled polymers, the fluid is influenced
by the fiber [2]. Coupling between fluid and fiber orientation will not be considered in this review.

3.2. Macroscopic Fiber Orientation Models in the Concentrated Regime

In the concentrated regime fiber interaction is dominant for fiber orientation. All macroscopic
modeling approaches published up to today, accounting for interaction, are phenomenological.

Folgar and Tucker [1] added a diffusion term to account for fiber interaction to predict the
orientation in semi-dilute and concentrated solutions. The model is valid under the following
additional assumptions: The fibers are rigid cylinders, uniform in length and diameter. Moreover,
they are sufficient large such that Brownian motion is negligible. The matrix is incompressible and
sufficient viscous, such that particle inertia and buoyancy is negligible. The center of mass of the fibers
are randomly distributed and no external forces or torques act on the suspension.

The fiber motion of a single fiber can then be described by

ṗ = W · p + ξ(D · p−D : ppp) + CI γ̇ · ∇sψ, (16)

where CI describes the interaction coefficient and γ̇ =
√

2D : D the scalar magnitude of the rate of
strain tensor. The equation is, in contrast to Jeffrey’s equation (15), not reversible. The interaction
coefficient CI is empirically determined and describes the rate of interaction. Setting CI = 0 retrieves
Jeffrey’s equation (15). Interactions of fibers cause random orientation. The Fokker-Planck equation (17)
[1] expresses the rate of change for the PDF, using the Folgar-Tucker equation for a single fiber (16)
and the continuity equation (7). Fibers are modeled as independent, identically distributed, random
variables with zero mean. Each interaction causes an orientation change in both fibers

Dψ
Dt = −∇s · (ψ(W · p + ξ(D · p−D : ppp) + CI γ̇ · ∇sψ)

= −∇s · (ψ(W · p + ξ(D · p−D : ppp))) + CI γ̇ · ∇2
s ψ.

(17)

The concept introduced by Folgar and Tucker offers advantages in the prediction of fiber
orientation but is difficult to solve numerically and can only be solved with high computational effort.
Based on the Fokker-Planck equation (17), Advani and Tucker [8] developed an equation for the rate
of change of the second order orientation tensor

DA
Dt

= Ȧ = Ȧh + Ȧd (18)

Ȧh = (W ·A−A ·W) + ξ(D ·A + A ·D− 2A : D) (19)

Ȧd = 2CI γ̇(I− 3A).. (20)

The influence of the phenomenological parameter CI is displayed in Figure 2. With decreasing
diffusion (small CI) fibers are more aligned.

Evolution equations of the second order orientation tensor A contain the fourth order fiber
orientation tensor A. It is possible to derive an equation for the fourth order orientation tensor, but it
will contain the sixth order orientation tensor. This leads to an infinite series of evolution equations.
Therefore, it is common to truncate the series at the level of the second order orientation tensor. Since
the fourth order orientation tensor is then not explicitly computed, a so-called closure approximation
is necessary for calculating the fourth order fiber orientation tensor. In Section 3.3 different closure
approximations will be introduced.
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Figure 2. Influence of the phenomenological parameter CI on fiber orientation evolution.

Three model enhancements have been made since the simulated fiber orientation shows deviation
to fiber orientation determined experimentally.

To slow down the evolution speed, Huynh [12] introduced the strain reduction factor (SRF) 1
α by

multiplying equation (18) with α ∈ [0, 1]

Ȧ = α(Ȧh + Ȧd). (21)

The SRF model violates the material objectivity, so Wang et al. [3] developed the reduced strain
closure (RSC), based on the eigenvalue λ and eigenvector e decomposition, that is, A = ∑3

i=1 λieiei
with orthonormal eigenvectors. The modified growth rate has the following form

λ̇RSC
i = κλ̇i (22)

ėRSCi = ėi, (23)

with the constant κ ∈ [0, 1]. In the differential equation form, this equals

Ȧ = ȦRSC + κȦd (24)

ȦRSC = W ·A−A ·W + ξ[D ·A + A ·D− 2(A+ (1− κ)(L−M : A)) : D] (25)

L =
3

∑
i=1

λieieieiei (26)

M =
3

∑
i=1

eieieiei. (27)

Figure 3 displays the influence of the phenomenological constant κ with a smaller retarding rate
(smaller κ) a slower orientation evolution is reached. The steady state is unchanged by κ. Tseng et al. [4]
introduced at the same time the retarding principal rate (RPR), modifying the growth rate of the eigenvalue by

λ̇RPR
i = κλ̇i + (1− κ)β(λ̇2

i + λ̇jλ̇k) (28)

ėRPRi = ėi, (29)

with a fine-tuning parameter β. For β = 0 this equals the RSC model equation (22). The differential
equation form (similar to (24) with PRR) can be developed based on equations (28) and (29).
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Figure 3. Influence of the phenomenological parameter κ on fiber orientation evolution. The diffusion
constant is set to CI = 0.01.

The second model approach, added by Phelps and Tucker [5], introduced an anisotropic
rotary diffusion (ARD) term by replacing CI with a rotary diffusion tensor C. This allows spatially
non-uniform rotary diffusion, which makes the rotary diffusion effect a function of the orientation state

Ȧ = Ȧh + ȦARD (30)

ȦARD = γ̇[2C− 2tr(C)A− 5(C ·A + A · C) + 10A : C]. (31)

The different modeling approaches for the anisotropic rotary diffusion are listed below

C = C(D, A) = b1I + b2A + b3A2 +
b4

γ̇
D +

b5

γ̇2 D2. (32)

ARD model [5] with constants bi, i = 1, ..., 5

C = CI

(
I− 4CM

D2

γ̇

)
(33)

iARD model [4] with constants CI, CM

C = CIRA

D1 0 0
0 D2 0
0 0 D3

R>A (34)

pARD model [6] with constants CI, D1, D2, D3.
The eigenmatrix RA is defined by

A = RA

λ1 0 0
0 λ2 0
0 0 λ3

R>A . (35)

Tseng et al. [6] chose
D1 = 1, D2 = c, D3 = 1− c (36)

to reduce the needed amount of parameters. This implies that the rotary diffusion factor in the first
principal fiber orientation direction is defined by CI . The second principal fiber orientation direction
is scaled with c·CI and in the third principal fiber orientation direction the smallest rotary diffusion
factor with (1− c)CI is applied. The influence od D2 is displayed in Figure 4.



J. Compos. Sci. 2020, 4, 69 7 of 21

0 50 100

Total strain

0

0.2

0.4

0.6

0.8

1

O
ri
e
n
ta

ti
o
n
 t
e
n
s
o
r

D
2

decreases

Figure 4. Influence of the phenomenological parameter D2 on fiber orientation evolution. The diffusion
is et to CI = 0.01.

A slightly different approach to add anisotropic rotary diffusion is defined in the MRD model [7].
The rotary diffusion is modeled according to equation (34), but not the full ARD equation (31) is used.
The reduced form is given by

Ȧ = Ȧh + ȦmARD (37)

ȦmARD = 2γ̇(C− tr(C)A). (38)

Recently, Favaloro and Tucker [13] published a framework to compare anisotropic rotary diffusion
approaches and compared the mentioned approaches in shear and elongation flows. They added a
suggestion for a more general but stable model by using equation (34) but making Di a function of λi
or using equation (32) with b4 = b5 = 0 and bi, i = 1, 2, 3 as scalar functions of trA2 and trA3.
Latz et al. [2] added a nematic potential to the Folgar-Tucker model to account for excluded volume
effects. So far, there is no clear dependency of CI on the volume fraction and aspect ratio of the fillers.
Different experiments in different regimes even showed contradictory results [14–16]. Latz et al. [2]
stated that the excluded volume mechanism may be a possible explanation for the observed effects.
The integration of a second constant U0 could decouple this effects and perhaps give a clear dependence
on physical descriptors. The model is defined by

Ȧ = Ȧh + Ȧnem (39)

Ȧnem = (CI(I− 3A) + U0(A ·A−A : A))γ̇, (40)

with one additional constant U0.
In injection molding simulation combination of the methods are used. Combining

Equations (24) and (31) leads to the following (p)ARD-RSC model

Ȧ = ȦRSC + Ȧ(p)ARD−RSC (41)

Ȧ(p)ARD−RSC = γ̇[2[C− (1− κ)M : C]− 2κ(trC)A− 5(C ·A + A · C)

+10[A− (1− κ)(L−M : A)] : C]. (42)
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3.3. Closure Approximations

Since the fourth order orientation tensor is used in all models, closure approximations are needed.
Any fourth order tensors with the symmetric properties stated in equation (13) can be represented by a
6× 6 matrix with at most 36 independent entries [17]

A =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, (43)

where Aαβ = Aijkl for α, β ∈ {1, 2, 3, 4, 5, 6} the indices α and β represent an index pair ij or kl in the
following way:

α, β :



1 → 11
2 → 22
3 → 33
4 → 23
5 → 31
6 → 12.

(44)

The first simple closure approaches have been introduced by Advani and Tucker [8]. The linear
approach [8] is a summation of all products of aij and δij. After applying symmetry and normalization
condition the following linear approximation occurs

Alin
ijkl = − 1

35 (δijδkl + δikδjl + δilδjk)

+ 1
7 (Aijδkl + Aikδjl + Ailδjk + Aklδij + Ajlδik + Ajkδil).

(45)

The quadratic closure [8] omits all linear terms

Aquad
ijkl = AijAkl . (46)

The quadratic closure does not preserve the symmetry of the fourth order tensor (equation (8)),
but applying it to equation (19), it does preserve the symmetry of the second order tensor.

It is also possible to combine both approaches. This leads to the hybrid closure [8]

Ahyb
ijkl = (1− f )Alin

ijkl + fAquad
ijkl (47)

f =
3
2

AijAji −
1
2

. (48)

Another approach to determine the function for the hybrid closure was determined by Advani
and Tucker [9]

f = 1− 27 · det A. (49)

A more advanced approach is the natural closure (NAT). It is based on the relationship A = f (A)

when no diffusion occurs (CI = 0).
Verley and Dupret [18] stated that there exists an exact closure in the case that the orientation

is at one time isotropic and used a numerical approximation in the 3-D case to obtain manageable
computational cost.
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Montgomery-Smith et al. [19] determined the exact formulation in Cartesian coordinates on
the sphere using the Carlson form of elliptic integrals. They used the analytic solution of the Jeffrey
equation presented by Dinh and Armstrong [20]. The approach is based on the assumption of isotropic
orientation at t = 0. Then the second order orientation tensor can be expressed by

A =
∫

S

pp

4π(B : pp)
3
2

dp (50)

B = −B · (W + ξD)− (−W + ξD) · B, B = I at t = 0. (51)

The method presented uses high computational effort, so Montgomery-Smith et al. [19] introduced
the fast exact closure (FEC). The FEC introduced a computationally efficient way to compute the closure.
Instead of computing B by inverting the integral, equations (18) and (51) are solved simultaneously.
If the initial data is not isotropic, B has to be computed for the initial condition.

Later Montgomery-Smith et al. [21] also include the anisotropic rotary diffusion of Phelps
and Tucker [5]. In this case (C 6= 0) the closure is not exact. The key idea is to introduce a matrix B and
define two conversion tensors C and D such that

DA
Dt

= −C :
DB
Dt

,
DB
Dt

= −D :
DA
Dt

. (52)

hold true. The ordinary differential equations (ODEs) are solved simultaneously, which can be
computed very efficiently. The special form used for this approach is

DA
Dt

= −C : F(B) + G(A),
DB
Dt

= F(B)−D : G(A). (53)

They showed that it can also by applied to the reduced strain closure in equation (24) and proved
that the solution stays physical for example, that A stays positive definite with tr A = 1.

A large family of closure are fitted closures. Chung and Kwon [22] stated two ways to
develop fitted closure. The method depends on the coordinate system, global or eigenspace,
and the representation of the approximation, invariants or eigenvalues, of the orientation tensor.
The orthotropic closures use the eigenspace coordinate system and eigenvalues as representatives.
They are the most used family of closures. Cintra and Tucker [23] stated that an objective closure has to
be orthotropic. Orthotropic means that the principal axes must match those of the second order tensor
and each principal fourth order component is a function of just two principal values of the second
order tensor.

The second order orientation tensor can be transformed in the eigenraum representation

Â =

λ1 0 0
0 λ2 0
0 0 λ3

 = RT
AARA, (54)

with non-negative eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ1 + λ2 + λ3 = 1. Figure 5 shows the reference
triangle for orthotropic closures.

Kuzmin [17] showed that regarding all symmetries of the fourth order orientation tensor the
orthotropic representation has the form

Â =



Â11 Â12 Â13 0 0 0
Â12 Â22 Â23 0 0 0
Â13 Â23 Â33 0 0 0

0 0 0 Â44 0 0
0 0 0 0 Â55 0
0 0 0 0 0 Â66


. (55)
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It has been proven by Cintra and Tucker [23] and Kuzmin [17] that the fourth order orientation
tensor can be represented by three independent components. This is due to the orthotropic properties,
the symmetries of the second order tensor, the symmetry with respect to any pair of indices for the
fourth order tensor and the normalization condition. The three components can be expressed as
functions of the two largest eigenvalues of the second order tensor

Â11 = f1(λ1, λ2) (56)

Â22 = f2(λ1, λ2) (57)

Â33 = f3(λ1, λ2). (58)

The remaining entries are defined by symmetry and normalization condition

Â12 = Â66 (59)

Â23 = Â44 (60)

Â13 = Â55 (61)

Â55 + Â66 = λ1 − Â11 (62)

Â44 + Â66 = λ2 − Â22 (63)

Â44 + Â55 = λ3 − Â33. (64)

Cintra and Tucker [23] used the eigenspace coordinate system and eigenvalues as representatives
to fit the closure (EBOF). Complete second order polynomials were used to approximate the
components (ORF). The orthotropic fitted (ORF) closure and the NAT closure are based on identical
assumptions. In conclusion they can be transferred to each other. In fact they are mathematically
equivalent, but the ORF closure is numerically more stable for repeated eigenvalues [19] The three
remaining components are fitted by

Âii = fi(λ1, λ2) = C1
i + C2

i λ1 + C3
i λ2

1 + C4
i λ2 + C5

i λ2
2 + C6

I λ1λ2 (65)

for for i = 1, 2, 3.
The components are fitted with different flow types (simple shear, two shearing/stretching flows,

uniaxial elongation, biaxial elongation) using a least squares routine. The closure approximation shows
good agreement with the distribution function and the NAT and better performance than the hybrid
closure. For small CI the ORF closure shows oscillating behavior.

Chung and Kwon [24] improved the ORF closure to overcome the oscillation for small CI
values and introduced the orthotropic fitted closure approximation for wide interaction coefficients
(OWE) and orthotropic fitted closure approximation for wide interaction coefficients with third order
polynomial approximations (OWE3) closure. The OWE closure is fitted with two additional flow
fields (shear/planar elongation, balanced shear/biaxial elongation) to cover the orientation triangle
K̂ (Figure 5) more closely. Consequently the only difference between the ORF and OWE closure are
the values of the fitted parameters. The OWE3 closure uses the same flows for the parameter fit but
approximates the coefficients values by a third order polynomial expression

Âii = fi(λ1, λ2) = C1
i + C2

i λ1 + C3
i λ2

1 + C4
i λ2 + C5

i λ2
2 + C6

I λ1λ2

+C7
i λ2

1λ2 + C8
i λ1λ2

2 + C9
i λ3

1 + C10
i λ3

2

(66)

for for i = 1, 2, 3. The closures show stable behavior for a wide range of CI but tend to over predict
the orientation.
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Figure 5. Reference triangle for orthotropic closure.

Kuzmin [17] introduced a mathematical concept to develop orthotropic closures. A concept for
planar orientations was developed and extended to the 3D case. In this work only the 3D case is
explained, for the planar case refer to Reference [17] The linear and smooth closures were stated in the
orthotropic state [17]. An orthotropic version of the quadratic closure was developed

Â11 = f1(λ1, λ2) = λ2
1 (67)

Â22 = f2(λ1, λ2) = λ2
2 (68)

Â33 = f3(λ1, λ2) = (1− λ1 − λ2)
2. (69)

Since there does not exist an analytical form of the standard NAT, natural closures based on
extended quadratic and piecewise linear interpolation have been developed.

The extended quadratic fit is fitted on cubic polynomials of the form

Âii = fi(λ1, λ2) = C1
i + C2

i λ1 + C3
i λ2

1 + C4
i λ2 + C5

i λ2
2 + C6

I λ1λ2

+C7
i λ1λ2(1− λ1 − λ2).

(70)

The data points Ui, Bij, i = 1, 2, 3 j = i + 1 for i = 1, 2, j = 1 for i = 3 and T are used, using the
planar natural closure and the triaxial orientation state at T. For extrapolation the extended quadratic
finite element method is used.

For the exact midpoint fit quadratic interpolation polynomials are used

Âii = fi(λ1, λ2) = C1
i + C2

i λ1 + C3
i λ2

1 + C4
i λ2 + C5

i λ2
2 + C6

I λ1λ2. (71)

The values at points U, B, T and the midpoints M1, M2, M3 are validated using the exact closure.
In contrast to all eigenspace based closures, Reference [22] introduced the invariants-based optimal

fitted (IBOF) closure in the global coordinate system with invariants as representatives. This closure is
computational more efficient than the orthotropic closures.

4. Microscopic Fiber Simulation

Simulation methods on the microscopic level can be used to simulate fiber movement for
discretized fibers. In contrast to the phenomenological macroscopic fiber orientation models,
modeling approaches on the microscopic scale enable the approximation of the physical behavior
more accurately. However, they are computationally very expensive and are, in most cases, not suitable
for the simulation of actual parts. Mostly, they are used on reference elements to investigate physical
effects and quantities. Different modeling approaches can be used on the micro level. They can
coarsely be divided in particle based methods, where the polymer matrix and the fibers are treated as
particles for example the smoothed particle hydrodynamics (SPH) and moving particle semi-implicit
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(MPS) method, or element based methods, which treat fibers as particles and the matrix is treated as a
continuous media.

One big advantage of particle based method, is the computationally cheap coupling between fluid
motion and fibers in two ways. Yashiro et al. [25,26] developed a method based on MPS to predict
fiber movement in injection molding. They simulated complex flow fields and investigated orientation
in a T-shaped bifurcation.

The SPH method is also applied to polymer composites. He et al. [27] simulated the 3D injection
molding process for short-fiber reinforced polymers; Bertevas et al. [28] simulated the 3D printing
process of fiber-reinforced polymer and Yamagata and Ichimiya [29] used the method to simulate the
solidification process for injection molded short-fiber reinforced parts.

The SPH method can also be combined with the discrete element method (DEM) [30], or the
element bending group (EBG) method [31,32]. The fluid is then model by the SPH method and the
fibers by the respective method.

Element based methods are mostly developed on the principle of the DEM. In contrast to
particle based methods, which are per se two-way coupled, DEM based simulations are often solved
one-way coupled. The backcoupling from the fiber motion on the fluid is computationally expensive,
but can be integrated in a coarse or refined way. The resulting fluid equation can be solved by multiple
approaches such as the direct numerical simulation (DNS), the Latice-Bolzmann or the particle finite
element analysis (pFEA). In the DEM, fibers are considered as particles and the movement of each
particle is calculated by the solution of the force and torque balance acting on each particle. Fibers
are either discretized as chain of spheres, prolate spheroids or chain of rods. The forces acting on a
fiber are

• hydrodynamic forces
• fiber fiber interaction forces
• elastic and bending forces (intra fiber forces)

Hydrodynamic forces are exerted from the fluid on the fiber. The fluid motion can be considered
undisturbed by the fiber motion or disturbed. In the second case a backcoupling is necessary.
The interaction forces can be divided in two cases: long-range hydrodynamic interaction and short
range interaction. The short range interactions can then be divided in three regimes: short range
lubrication forces, transition and mechanical contact. Fibers can be modeled flexible by using chains of
beads or rods connected by joints. Breaking can also be incorporated at the defined joints. The modeling
of the forces, the discretization of the fibers and the fluid motion varies between the different
approaches and the following Table 1 gives an overview of published approaches, without claim
for completeness. Only inertia free models are considered. Examples for models incorporating inertia
are References [33–35].
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Table 1. Literature overview of element based simulations for fiber reinforced polymers in chronological order.

Discretization
of Fibers

Flow Fields Fluid-Fiber
Interaction

Fiber-Fiber Interaction Flexibility Regarded Quantities

Yamamoto and Matsuoka
1993 [36]

chain of
beads

shear one-way coupled - flexible single fiber movement

Yamamoto and Matsuoka
1994 [37]

chain of
beads

shear one-way coupled - flexible viscosity of dilute solutions

Yamane et al., 1994 [38] rods shear one-way coupled lubrication - semi dilute suspensions,
orientation evolution,
diffusion constant, shear
viscosity

Yamane et al., 1995 [39] rods shear one-way coupled lubrication - semi dilute suspensions,
bounded and unbounded
system

Yamamoto and Matsuoka
1995 [40]

chain of
beads

shear one-way coupled lubrication flexible concentrated suspension,
viscosity, stresses

Thomasset et al., 1997 [41] rigid rods varies flow
fields

one-way coupled lubrication, mechanical and
hydrodynamical contact, no
friction

- 2D,effects of fiber motion and
orientation

Sundararajakumar and
Koch 1997 [42]

rods shear one-way coupled lubrication, mechanical and
hydrodynamical contact, no
friction

- dilute: hydrodynamical
contact most important,
approaching higher
concentration fiber contact

Skjetne et al., 1997 [43] prolate
spheroids

shear one-way coupled - flexible, rigid single fiber movement

Ross and Klingenberg
1997 [44]

prolate
spheroids

shear one-way coupled repulsive interactions flexible and
rigid

single fiber movement,
viscosity

Fan et al., 1998 [45] rods shear one-way coupled lubrication, no friction,
long range hydrodynamic
interactions by slender body
theory

- orientation, viscosity, stresses,
all regimes

Harlen et al., 1999 [46] rods no imposed
flow

- mechanical contact, friction,
long range hydrodynamic
interactions by slender body
theory

- sphere settling through
suspension of neutrally
buoyant fibers, fiber contact
has significant influence
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Table 1. Cont.

Discretization
of Fibers

Flow Fields Fluid-Fiber
Interaction

Fiber-Fiber Interaction Flexibility Regarded Quantities

Phan-Thien et al., [14] rods shear one-way coupled lubrication, no friction,
long range hydrodynamic
interactions by slender body
theory

- FT constant, dilute and semi
dilute

Joung et al., 2001 [47] chain of
spherical
beads

shear and
extensional
flows

one-way coupled lubrication, preventing from
overlapping, long range
hydrodynamic interactions

rigid, flexible viscosity, orientation

Joung et al., 2002 [48] chain of
spherical
beads

shear and
complex
flows

one-way coupled lubrication, preventing from
overlapping, long range
hydrodynamic interactions

rigid, curved viscosity for curved fibers

Joung et al., 2003 [49] chain of
spherical
beads

shear and
complex
flows

one-way coupled lubrication, preventing from
overlapping, long range
hydrodynamic interactions

flexible Jeffrey orbits for rigid and
flexible fibers, relationship
between fiber stiffness, and
bulk viscosity, arbitrary
particle shapes, dilute regime

Switzer and Klingenberg
2003 [50]

chain of rods shear one-way coupled mechanical interaction,
friction

flexible effects of shape, friction,
aspect ratio and stiffness,
yield stress, rheology in
flocculated systems

Kromkamp et al., 2005 [51] rods shear coupled, Lattice
Bolzmann
for fluid
forces,particles
as boundary
surfaces

lubrication
correction,mechanical
interaction, no friction

- 2D, effects of shear rate on
flow behavior and micro
structure, shear-induced self
diffusion

Ausias et al., 2006 [52] rigid prolate
spheroids

shear one-way coupled lubrication and interaction
in normal direction, no
friction,no long range
interactions

- orientation, viscosity, stresses,
up to Φ = 11.5

Wang et al., 2006 [53] rod-chain shear one-way coupled flexible, rigid optimal rod length for
high accuracy and efficient
calculation
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Table 1. Cont.

Discretization
of Fibers

Flow Fields Fluid-Fiber
Interaction

Fiber-Fiber Interaction Flexibility Regarded Quantities

Lindström and Uesaka
2007 [54]

rod-chain
model

shear coarse two-way
coupling

lubrication and interaction in
normal direction, friction

flexible Jeffrey orbits, curvature,
regimes of motions for
flexible fibers

Lindström and Uesaka
2008 [55]

rod-chain
model

shear coarse two-way
coupling

lubrication and interaction in
normal direction, friction

flexible orientation, viscosity, dilute
and semidilute regime,

Lindström and Uesaka
2009 [56]

rod-chain
model

shear coarse two-way
coupling

lubrication and interaction in
normal direction, friction

flexible rheological properties

Yamanoi and Maia
2010 [57]

chain of
beads

shear one-way
coupling

lubrication, mechanical
contact, long range
hydrodynamic interactions

- rheological properties,
orientation

Yamanoi et al., 2010 [58] chain of
beads

shear one-way
coupling

lubrication, mechanical
contact, long range
hydrodynamic interactions

flexible nylon fiber, rheological
properties, orientation, effect
of flexibility

Yamanoi and Maia
2010 [59]

chain of
beads

uniaxel
elongation
flow

one-way
coupling

lubrication, mechanical
contact, long range
hydrodynamic interactions

flexible rheological properties,
orientation, orientation tensor
independent of aspect ratio,
volume fraction

Yamanoi and Maia
2011 [60]

chain of
beads

shear two way
coupling

single fiber rigid and
flexible

hydrodynamic interaction
in single fiber movement in
shear

Andrić et al., 2013 [61] rod-chain
model

turbulent
flow

two way
coupling, DNS
for fluid motion

single fiber rigid and
flexible

fiber-flow interaction for a
single fiber

Andrić et al., 2014 [62] rod-chain
model

shear two way
coupling, DNS
for fluid motion

- rigid and
flexible

dilute solution, no interaction,
rheological properties, orbit
drifts

Do-Quang et al., 2014 [63] rod-chain
model

turbulent
flow

two way
coupling, entropy
lattice Boltzmann
for fluid,external
boundary force
method

lubrication and mechanical
contact

rigid cellulose fibers in water,
accumulation effects



J. Compos. Sci. 2020, 4, 69 16 of 21

Table 1. Cont.

Discretization
of Fibers

Flow Fields Fluid-Fiber
Interaction

Fiber-Fiber Interaction Flexibility Regarded Quantities

Mezher et al., 2015 [64] prolate
spheroids

shear one-way
coupling

lubrication and interaction in
normal direction,no friction,
no long range hydrodynamics

flexible concentrated, orientation,
normalized stresses,
interactions, elastic energy

Mezher et al., 2016[65] prolate
spheroids

shear one-way
coupling

lubrication and interaction in
normal direction,no friction,
no long range hydrodynamics

flexible concentrated Φ = 7− 18.2,
orientation, diffusion
constants, confinement effects

Wang et al., 2016 [66] rod-chain
model

shear one-way coupled - flexible new rod chain model, optimal
rod length

Perez et al., 2016 [67] rod shear one-way
coupling

only wall interaction - dilute, confinement effects

Sasayama and Inagaki
2017 [68]

simplified
bead-chain
model

shear one-way mechanical, lubrication flexible simplified bead-chain
model for hydrodynamic
calculations

Kuhn et al., 2017 [69] rod-chain
model

complex flow
fields

one-way
coupling

mechanical, friction, no
long-range hydrodynamic

flexible fiber matrix separation in
compression molding, LFRT

Kuhn et al., 2018 [70] rod-chain
model

complex flow
fields

one-way
coupling

mechanical, friction, no
long-range hydrodynamic

flexible rib filling

Meirson and Hrymak
2018 [71]

rod-chain
model

squeeze one-way - flexible 2D, fiber orientation and
deformation

Wu et al., 2018 [30] bounded
spheres

complex flow 2-way
coupled,SPH
for fluid motion

linear contact - 2D, fiber orientation,
accumulation during injection
molding

Sasayama and Inagaki
2019 [72]

efficient
bead-chain
model

shear one-way mechanical, lubrication,
friction

flexible efficient bead-chain model for
hydrodynamic calculations

Sasayama et al., 2019
[73]

efficient
bead-chain
mode

shear one-way mechanical, lubrication,
friction

flexible,
breakage

fiber breakage

Laurentcin et al., 2019
[74]

sphero-
cylinder

squeeze flow
(lubricated,
non-lubricated)

one-way - rigid non-Newtonian fluid, dilute
regime, comparison between
numerical analytical and
experimental results
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The listed approaches show, that depending on the evaluated quantities, the matrix and fiber
material and the volume fraction, different modeling approaches show more promising results.
In case of rigid fibers, long range hydrodynamic interactions show the highest influence in semidilute
solution, whereas mechanical interaction gets dominant in the concentrated regime and long-range
hydrodynamic interaction can be neglected [42,46,57]. The backcoupling has neglectable influence
on rigid single fiber movement [60,75]. Once flexibility of the fiber is higher the backcoupling cannot
be neglected [60]. Due to the high computational effort it has not be used in the concentrated regimen.
If there is a significant influence in the concentrated regime can not be answered.

Based on the movement of single fibers, orientation evolution curves can be calculated. With the
discrete position of each fiber the second order orientation tensor can be calculated in each time step by

Aij(t) =
N

∑
n=1

pn,j(t)pn,i(t)
N

, (72)

where N denotes the number of fibers, t the actual time, and pn(t) the position of fiber n at time t.

5. Using Microscopic Models for an Enhanced Prediction on the Macroscopic Scale

A combination of two scales can enhance the prediction on the macroscopic scale, while being
computationally cheap. A straight forward approach is to use the microscopic simulation for
parameter definition of existing macroscopic model. This has been done by many authors, for example
Reference [65,75]. Microscopic fiber orientation evolution results can also lead to new macroscopic
models [67]. A different approach is to create orientation data with a microscopic simulation and use a
machine learning based approach on the macroscopic level [76].

6. Summary

The fiber orientation phenomenon can be simulated either on a macro- or micro-scale by using
current numerical techniques and state-of-the-art modelling approaches. Macroscopic fiber orientation
models are computationally efficient and are the preferred solution for estimating fiber orientation in
large industrial applications. The limitation of those models is their phenomenological nature and the
dependency on a set of fitting parameters. The challenge is typically the correct choice of parameters for
a specific material. On the other hand, microscopic fiber models have a larger physical basis, but since
fibers are explicitly discretized they are not suitable for large-scale simulations, because they are
computational expensive. A combination of the models from the two scales can relieve the individual
shortcomings and provides an interesting numerical solution for the virtual engineering design of
fiber-reinforced polymer parts. One possibility is the prediction of optimal macroscopic parameters by
a microscopic simulation, or the derivation of a macroscopic data-driven model using microscopic
simulation results as input data.
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Abbreviations

The following abbreviations are used in this manuscript:

PDF probability density function
ODE ordinary differential equation
FT Folgar-Tucker



J. Compos. Sci. 2020, 4, 69 18 of 21

nem nematic
SRF strain reduction factor
RSC reduced strain closure
RPR retarding principle rate
ARD anisotropic rotary diffusion
iARD improved anisotropic rotary diffusion
pARD principal anisotropic rotary diffusion
MRD Moldflow rotary diffusion
NAT natural closure
FEC fast exact closure
IBOF invariant-based optimal fitted
EBOF eigenvalue-based optimal fitted
ORF orthotropic fitted
OWE orthotropic fitted closure approximation for wide interaction coefficients

OWE3
orthotropic fitted closure approximation for wide interaction
coefficients with third order polynomial approximation

SPH smoothed particle hydrodynamic
DEM discrete element method
pFEA particle finite element analysis
DNS direct numerical simulation
MPS moving particle semi-implicit
EBG element bending group
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