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Abstract: Particle reinforced metal matrix composites (MMCs) offer high strength, low density, and
high stiffness, while maintaining reasonable cost. The damage process in these MMCs starts with
either the fracture of particles or by the de-cohesion of the particle-matrix interfaces. In this study,
the extended finite elements method (XFEM) has been used in conjunction with X-ray synchrotron
tomography to study fracture mechanisms in these materials under tensile loading. The initial 3D
reconstructed microstructure from X-ray tomography has been used as a basis for the XFEM to
simulate the damage in the 20 vol.% SiC particle reinforced 2080 aluminum alloy composite when
tensile loading is applied. The effect of mesh sensitivity on the Weibull probability has been studied
based on a single sphere and several particles with realistic geometries. Additionally, the effect
of shape and volume of particles on the Weibull fracture probability was studied. The evolution
of damage with the applied traction has been evaluated using simulation and compared with the
experimental results obtained from in situ tensile testing.

Keywords: metal matrix composite; extended finite element method; X-ray tomography;
Weibull fracture probability

1. Introduction

Metal matrix composites (MMCs) are attractive for many applications due to their excellent
properties, including high strength and low density [1]. Advances in material processing make it
possible to fabricate advanced composites with customized geometries and multifunctional properties;
however, for material design and optimization, a more thorough understanding of the relationship
between microstructure and properties is needed. Computational simulations can help in revealing and
quantifying the influence of microstructure on properties, such as strength and stiffness. Traditional
finite element and computed aided design software packages, using parametric geometrical descriptions,
are unwieldy and possess great difficulty in handling complex geometries. As a result, the analysis
of particle reinforced MMCs has been largely limited to either two-dimensional models, and/or with
simplified shapes of reinforcing particles, e.g., spheres or ellipsoids [2–5]. Furthermore, while such
idealized microstructural models can be used to predict composite properties that reflect the average
microscopic material response, they are not sufficient to describe phenomena governed by extreme
values. For instance, microscopic stress concentrations that lead to the nucleation of cracks are strongly
influenced by the size, shape, and distribution of reinforcing particles, and, thus, will not be accurately
represented in models with simplified geometry.
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Three-dimensional (3D) characterization methods, such as X-ray synchrotron tomography, can
provide a wealth of data characterizing microstructural features in statistically significant volumes [6].
X-ray tomography has been successfully applied to characterize the microstructures in 3D for materials,
such as metal matrix composites [7–9], Al alloys [10,11], Sn-rich alloys [12] and Magnesium alloys [13].
Due to its non-destructive nature, in situ X-ray synchrotron experiments have also been conducted to
understand the deformation behavior in real-time (4D), such as fatigue [14–16] and stress corrosion
cracking (SCC) [14,17]. Furthermore, these tomography experiments can be paired with the simulations
of the same microstructure in order to calibrate and/or validate models [18,19]. Waton et al. [20],
proposed a finite element method for the simulation of mechanical properties of two phase systems.
However, the complexity of most real material geometries compounded by the immense size of
microstructural data sets pose a significant modeling challenge for the traditional finite element codes,
namely that it becomes increasing difficult to generate high quality meshes where element faces
conform to the material interfaces.

To overcome these challenges, extended finite element method (XFEM) was developed by
Belytschko et al. [21,22] to model crack propagation without the need to remesh as the crack propagates.
The central idea of the XFEM is to enrich the finite element basis with functions that locally represent
the solution, e.g., discontinuous functions are injected to the approximation space along crack
surfaces. The enrichments are introduced by a partition of unity [23], typically using the regular
finite element shape functions to blend the enrichment functions into the approximation of the
solution. Huynh and Belytschko [24] presented further developments in XFEM for fracture problems in
composite materials, where fracture along material interfaces was modeled by combining both strong
and weak discontinuities, i.e., discontinuities in strain and displacement, respectively. Ye et al. [25]
implemented the XFEM within an ABAQUS subroutine to study the influence of reinforcing particles
on the crack propagation behavior in a MMC. Wang et al. [26] investigated the interaction between a
propagating crack and single or multiple particles in a brittle matrix.

Failure strengths of brittle materials vary unpredictably over a wide range from specimen
to specimen even though they are manufactured in the same way and tested under the same
condition [27,28]. Therefore, fracture statistics have to be applied to understand the failure strengths
of brittle reinforced particles in MMCs. The Weibull distribution [29] can be used to evaluate the
failure probability of the brittle reinforced particles. The Weibull distribution has been applied to many
problems, including the study of yield strength of pentagonal silver nanowires [30], the modeling
of thermal inactivation of microbial vegetative cells [31], the fatigue life prediction based on crack
growth data [32], etc. Further, the Weibull distribution has been proven to be a suitable empirical
statistical distribution for cleavage fracture in brittle materials [33–36]. Eckschlager et al. [37] proposed
a finite element based approach for modeling brittle cleavage of the spherical particles on the basis
of Weibull fracture probabilities. Doremus [27] compared normal, Weibull and Type I extreme value
distributions for failure strengths of glass. Lu et al. [28] fitted fracture strength data to Weibull and
normal distributions for three types of brittle materials and showed that the difference between the two
distributions was very small to be clearly distinguished in the case of SiC. Using the fracture toughness
data under both low and high constraint conditions at the crack front, Gao et al. [38] proposed a
new way to calibrate Weibull stress parameters analytically. In another paper by Gao et al. [39], a
new strategy was used to calibrate the Weibull stress model to predict the cleavage fracture in plates
containing surface cracks.

It is clear that adequate visualization and fracture quantification are critical to the understanding
of damage in MMCs. Therefore, in this work, XFEM has been used in combination with in-situ X-ray
synchrotron tomography to understand the fracture of brittle particles in particulate reinforced MMCs
using a Weibull distribution model. A systematic and microstructure-based understanding of damage
and fracture in these materials was obtained and is discussed.
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2. Methodology

2.1. Implicit Geometry Representation

In a heterogeneous material, each three-dimensional phase can be approximated as a set of voxels
contained within the phase as:

υαi jk =

{
1 if xi jk ε Ωα

0 else
(1)

where, Ωα denotes the domain for the α phase. The location of each voxel is described by a 3-tuple of
integers such that:

xi jk = x0 + i ∆x + j ∆y + k ∆z (2)

where, x0 is the origin of the voxel data set. The voxel cell length in three directions is determined by
the lengths of the voxel cell vectors, i.e., ||∆x||,

∣∣∣∣∣∣∆y
∣∣∣∣∣∣, and ||∆z||.

In our previous work [40], we have developed a geometry segmentation algorithm to accurately
identify and separate discrete geometric features. In this algorithm, the betweenness centrality, which
is a measure of the importance of a node with respect to the connectivity of a network, is used to
identify voxels that create spurious bridges. To facilitate the automation of the new algorithm, we
developed a non-dimensional relative centrality metric to allow for the selection of a threshold criteria
that was independent of inclusion shape or volume.

In this work, level sets are employed to represent microstructures implicitly. Level set methods
provided a concise way to describe complex microstructures with consistent mesh quality and level set
fields could be conveniently applied in enrichments. In the earlier studies, level sets have already been
introduced for material interface modeling [41,42] and crack modeling [43,44]. The phase interfaces
are represented by the zero-level set of a continuous level set function as:

f int
α (x) = 0, α = 1 . . . . nint (3)

where, nint is the number of reinforcing phases. For each phase, one level set can represent all interfaces
of that phase. If point x is inside the α phase, f int

α (x) will be negative, otherwise, it will be positive.
Recently, we have presented two methods for level set initialization of complex material interfaces [45].
In the first method, a level set evolution equation was formulated and solved by the Galerkin method.
In the second approach, the distance field was initialized by the fast-marching method [46,47] on
a uniform grid, and then the solution was projected onto the finite element mesh by least squares.
The second approach was found to be superior in speed and accuracy, which is also applied to initialize
the matrix/reinforcement interfaces in the current work.

To represent the crack surface on a fractured particle, a similar level set function is introduced for
each particle as:

f cr
β (x) = 0, β = 1 . . . . . . .npar (4)

where, β is a particle id and npar the total number of particles, and the zero level set gives the crack
surface of the particle. Note that the above level set field defines a surface that spans the entire
simulation domain. In order to restrict the crack surfaces to within the particle, one more level set
function is used to define the location of the crack tip as:

gcr
β (x) < 0, if x is inside the particle β (5)

gcr
β (x) > 0, if x is outside the particle β (6)

gcr
β (x) = 0, if x is at the interface of the particle β (7)

Therefore, the crack surface on the particle β can be represented by the combination of two level
set fields f cr

β (x) = 0 and gcr
β (x) ≤ 0.
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2.2. Formulation of XFEM for Discontinuities

In traditional finite element models, discontinuities must reside along element faces such that
the discontinuities can be represented explicitly in finite element models. However, in XFEM, the
interior discontinuities are represented implicitly by the level set fields and the displacement field
approximates by a discontinuous displacement enrichment [21] based on a local partition of unity [23].
Given a finite element model Ω ∈ R3, partitioned into finite elements, let S be the set of all finite element
nodes, Scr be the set of nodes of elements whose edges are intersected by a crack surface Γcr, and Sint

be the set of nodes of elements intersected by the material interface Γint. The XFEM displacement field
can be expressed by:

uh(x, t) =
∑
IεS

NI(x)uI +
∑
JεScr

φJ(x)bJ +
∑

KεSint

NK(x)ψ(x)qK (8)

where, uI and NI(x) are the nodal displacements and finite element shape functions, respectively.
Additional enriched degrees of freedom bJ and qK are for crack and material interfaces, respectively.
The function φ(x) represents a jump enrichment which introduces a discontinuity in the displacement
at the crack surface. The function ψ(x) represents a kink enrichment, which introduces a discontinuity
in the gradient of the displacement at a material interface. For a strongly-bonded material interface,
the displacement field remains continuous; however, strain can be discontinuous on the interface.
The jump enrichment function for a crack is given by [48]:

φJ(x) = NJ(x)
[
H( f cr(x)) −H

(
f cr

(
xJ

))]
H
(
−gcr

β (x)
)

(9)

where, H(·) is the Heaviside step function given by:

H(x) =
{

1 i f x > 0
0 else

(10)

The simplest kink enrichment function is an absolute value function [41,42,49]. Modeling the
interfaces with the absolute value function is troublesome since it does not vanish at the edges of
the elements intersected by the interfaces. Moës et al. [50] proposed a modified kink enrichment
function to preserve the ridge at the interfaces, but also vanishes at the edges of enriched elements.
This enrichment function is given as:

ψ(x) =
∑

I

∣∣∣ f int(x)
∣∣∣NI(x) −

∣∣∣∣∣∣∣∑I

f int(x)NI(x)

∣∣∣∣∣∣∣ (11)

This enrichment function eliminates the need of blending elements such that only elements
intersected by interfaces are enriched.

2.3. Implementation of Weibull Strength Distribution Model

The damage process in particle reinforced MMCs starts with the initiation of cracks at the locations
of the particles either by the debonding of the matrix/particle interface or by the cleavage fracture
of the particles. This is followed by crack growth in the matrix that leads to the ductile failure of
the matrix ligaments between particles [37,51]. In this work, we focus only on incipient failure, and
thus only the crack initiation by cleavage fracture of particles is considered. Due to the brittleness of
the embedded particles, once a crack initiates, it is assumed to immediately propagate through the
whole particle, leading to total splitting. The Weibull distribution model [29] has been widely used to
predict the fracture probability of brittle particles in a ductile matrix [52,53]. The Weibull distribution
function gives a simple but appropriate mathematical expression that can automatically account for
the particle’s size effect on their failure. The Weibull model is based on the weakest link statistics in
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which the interaction between flaws can be neglected. A particle can be analogous to a chain consisting
of several links and each link is analogous to a flaw in the particle. The chain fails as soon as a single
link fails such that the failure probability of the chain is primarily dominated by the weakest link. If we
want to calculate the probability of failure (Pn) of a chain consisting of n links, and assume that the
links are identical with the probability of failure P, then the probability of the chain not failing (1− Pn)

will be equal to the probability that none of the links fail, i.e., 1− Pn = (1− P)n. The central idea of the
Weibull distribution is to define a distribution function in an exponential form given by [29]:

P(X ≤ x) = 1− e− f (x) (12)

where, f (x) can be any positive, non-decreasing function which should vanish at a value.
The exponential form of the distribution function has intrinsic merits that account for the size
effect since the cumulative failure probability can be easily denoted as:

(X ≤ x) = 1− e−n f (x) (13)

The cumulative Weibull probability can automatically account for the particle size effect. The
critical flaw size decreases and the particle strength increase as the particle volume shrinks [54].
Therefore, the probability of fracture is high when the particle size and the stress acting on the particle
increase [55]. The cumulative Weibull fracture probabilities were evaluated for each particle ’i’ at each
load increment by using the expression [36,53]:

Pi = 1− exp

− 1
Vi

0

∫
ΩPi

(
σ1(x)
σ f

)m

dΩPi

 (14)

where, Vi
0 is the reference volume of particle Pi, σ1 is the maximum principal stress at x, σ f and

m are the characteristic strength and Weibull modulus, respectively. The Weibull modulus is a
measure of the degree of strength dispersion, i.e., large Weibull modulus narrows down the probability
distribution [29]. To create a fracture plane in the particle Pi, an on-plane point (x f ) and the plane
normal direction (n f ) are needed and are given by:

x f =

∫
ΩPi

x · σ1(x) dΩPi∫
ΩPi

σ1(x) dΩPi

n f =

∫
ΩPi

n1 · σ1(x) dΩPi

‖

∫
ΩPi

n1 . σ1(x) dΩPi‖
(15)

XFEM method is accomplished in a C++ program. The overall algorithm can be summarized as
Algorithm 1:
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Algorithm 1. Particle fracture approximation

Identify all Pi
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Algorithm 1 Particle fracture approximation 

----------------------------------------------------------------------------------------------------------------  

Identify all ℙ𝑖  ⸦ ℝ3 as intact particles 

Assign a random critical probability 𝑟𝑖 ∈ [0, 1] to each particle ℙ𝑖  

for Quasi-static load step i = 1 to n do 

Calculate stress field with XFEM algorithm 

if No intact particle left in the domain then 

Continue to next step i = i+1 

for ℙ𝑖  ⸦ ℝ3 do 

Compute Weibull fracture probability 𝑃𝑓
𝑖  

If max(𝑃𝑓
𝑖 − 𝑟𝑖) > 0 then 

Break the particle ℙ𝑖with the max(𝑃𝑓
𝑖 − 𝑟𝑖) 

Create a strong discontinuous plane at x𝑓 with normal direction n𝑓 

R3 as intact particles
Assign a random critical probability ri ∈ [0, 1] to each particle Pi
for Quasi-static load step i = 1 to n do
Calculate stress field with XFEM algorithm
if No intact particle left in the domain then
Continue to next step i = i + 1
for Pi
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3. Fracture of SiC Particle Reinforced 2080 Aluminum Alloy by XFEM

To demonstrate the applicability of our XFEM algorithm for the fracture analysis of particle
reinforced MMCs, in-situ uniaxial tensile testing was performed on the 20 vol.% SiC particle reinforced
2080 aluminum alloy (3.6% Cu, 1.9% Mg, 0.25% Zr) composite using X-ray synchrotron tomography,
as discussed in Williams et al. [7,56]. The composite was prepared by the powder metallurgy process
(Alcoa Inc., Alcoa, PA, USA), details of which has been provided elsewhere [57].

Electro discharge machining (EDM) was used to obtain dog-bone specimens of MMC with a
gage length of 2.5 mm and a 0.75 mm square cross-section. Specimens were machined parallel to the
extrusion axis. In-situ uniaxial tensile tests were carried out on these specimens in the synchrotron
using the loading stage described in [56,58,59]. X-ray tomography was performed at the 2-BM beamline
of the Advanced Photon Source (APS) at Argonne National Laboratory. The details of the tomography
system at 2-BM have been described elsewhere [59,60]. The X-ray beam energy was approximately
24 keV. A LuAG:Ce scintillator screen was coupled with an objective lens and a CoolSnap K4 CCD
camera to achieve a specimen pixel size of about 1.47 µm. 2D projections were collected at angular
increments of 0.125◦ over a range of 180◦. These 2D projections were then reconstructed using filtered
back-projection algorithm.

3.1. Numerical Modeling

The domain dimensions of the specimen gage section were 750 µm× 750 µm× 2500 µm. As shown
in Figure 1, the fractured plane in the experiment was close to one end of the gage section in the
loading direction [56]. The images of the sample before and after fracture can be found elsewhere [56].
Note that the X-ray tomography was performed on a selected volume in the gage section, the position
of which is shown in Figure 1. The selected volume is used as our simulation volume having the
domain dimensions of 190 µm × 100 µm × 370 µm.

The SiC particles were modelled as exhibiting isotropic linear elastic response prior to fracture,
with Young’s modulus and Poisson’s ratio of 410 GPa and 0.19, respectively [56]. A Weibull distribution
(Equation (14)) can be used to estimate the fracture probability of SiC particles. The reference
volume ‘V0’, characteristic strength ‘σ f ’ and Weibull modulus ‘m’ should obey V0σm

f = V0σ
m
f [52].

Gonzalez et al. [61] estimated these three parameters (V0, σ f and m) for Al-SiC composite. The Weibull
modulus ‘m’, characteristic strength σ f and reference volume ‘V0’ (set as average particle volume)
were estimated to be 6, 1323 MPa and 7.53 µm3, respectively. In this work, the average particle volume
is 16,800 µm3, the Weibull modulus is 6, and the characteristic strength is calculated to be 715 MPa
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based on the relationship of the three parameters. The Young’s modulus and Poisson’s ratio of the
aluminum matrix were taken as 74 GPa and 0.33, respectively [56]. The tensile stress-strain curve of
the 2080-T6 aluminum alloy was taken from [62] and fitted according to a nonlinear J2 plastic law as
σy(γ) = C

(
1− e−bγ

)
+ σyo, where σy is the yield stress, γ is the plastic strain, C = 185.1 MPa, b = 23.9

and the initial yield stress σyo is 370 MPa. Figure 2 compares the fitted stress-strain curve with the
experimental data, which shows an excellent agreement between the two.J. Compos. Sci. 2020, 4, 62 7 of 21 
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Figure 1. Location of the simulation domain relative to the gage section and fracture plane in the
experimental specimen. All dimensions are in µm.
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Figure 2. Comparison between the simulated and experimental stress-strain curves of 2080-T6
aluminum alloy.
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3.2. Convergence study of Weibull Probability

The Weibull fracture probability of each particle is calculated by an integration involving the finite
element approximation of the stress field as discretized by the elements inside and partially inside the
particle. Since this is a norm-like measure of stress, one might expect that it should converge similarly
to the energy error norm of the finite element approximation. To verify this hypothesis, we express the
predicted Weibull fracture probability (P) as a summation of an exact probability Pexact and a prediction
error error e(h):

P(h) = Pexact + e(h) (16)

While the predicted Weibull probability and the error vary with the element size ‘h’, the exact
Weibull probability is constant for a particle. Taking the derivative of Equation (16) with respect to
element size, we have:

dP(h)
dh

=
de(h)

dh
(17)

In the limit as the element size decreases to zero, we assume that the error follows a power law,
and thus in a log-log scale, the relationship between the rate at which the predicted failure probability
decreases with element size can be written as:

log
(

dP(h)
dh

)
= β+ α log10(h) = log10

(
10βhα

)
(18)

Which is a linear equation with α and β being the slope and the y-axis intercept, respectively. By
combining Equations (17) and (18), the probability error can be estimated as:

de(h)
dh

= 10βhα (19)

e(h) =
10β

α+ 1
hα+1 (20)

Therefore, the convergence rate of the fracture probability is α + 1, where α is the convergence
rate of the derivative of fracture probability. Four particles with different geometries were used to
study the convergence of dP/dh, the X-Y views of which are shown in Figure 3. Figure 3a shows a
spherical particle (ideal geometry) located at the center of a cube having length of 60 µm. The ratio of
the particle’s radius over the cube length is 0.3 and the particle volume is 24,429 µm3. Figure 3b–d
are three particles with realistic geometries. These three particles are shifted to the center and the
domain lengths are chosen such that the same padding distance of matrix is maintained in the three
orthogonal directions. The volume of the three particles are 27,143, 23,570 and 16,424 µm3, respectively.
For all cases, only rigid body motions are fixed and traction is applied in Y direction. The applied
traction is increased linearly from 0 MPa to 400 MPa in four load steps. Here, oct-tree mesh refinement
is used and elements close to a material interface or inside a particle are refined with a single iteration
of refinement.

Figure 4b shows the fitted convergence rates for the four particles. The convergence rates of dP/dh
are close to 1, indicating that the error in the computed fracture probability decreases quadratically with
respect to the element size, which is one order higher than the optimal, linear rate of convergence of the
energy error norm for 8-node hexahedral elements. Figure 4c shows the relative probability error w.r.t.
the element size used for particles. The relative error is calculated by the ratio of e(P) over the fracture
probability when the element size is 0.5 µm. It is evident that the particles with the realistic geometries
(Figure 4b–d) have higher probability error than the particle with spherical geometry (Figure 4a) with
the same element size. When the element size is close to 1 µm, the probability error is less than 10%.
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3.3. Fracture Analysis of the Simulation Volume

Figure 1 shows the domain size of the simulation volume and its relative position in the
experimental specimen. Since the simulation volume is from the boundary of the gage section,
symmetric boundary conditions have been applied in the fracture analysis and the traction is applied
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on the top surface of the simulation volume, as shown in Figure 1. Quasi-static analysis is performed
and the traction is increased linearly from 0 to 405 MPa in 18 steps. Oct-tree mesh refinement applied
to an initially uniform mesh of 19 × 10 × 37 elements, where elements that are intersected by a material
interface or within particles are split into 8 child elements. After three such refinement iterations, the
simulation volume is discretized using 560,226 elements, with a minimum element size discretizing
the particles and their interface is 1.25 µm. Of the initial 41 SiC particles in the simulation volume, 31
fractured by the final load step. Figure 5a shows the 41 particles embedded within the mesh of the
simulation domain, where the cleavage planes of the fractured particles are shown as black curves on
the particle surfaces. Figure 5b shows the axial stress distribution on the particles, where blue color
stands for zero stress (corresponding to crack surfaces) and the maximum axial stress is scaled to 1 GPa.
The normal direction of fracture surfaces is computed by Equation (15) and the numerical normal
directions are aligned nearly with the loading direction. Figure 5c,d show contours of the effective
strain and axial stress fields on a cut plane of the domain at the end of the final load step, respectively.
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Figure 5. (a) Particle geometries in the oct-tree mesh wireframe. Fractured surfaces are denoted as
black lines, (b) axial stress distribution on the particles, (c) effective strain on a slice parallel to the
loading direction. Note that the traction is applied on left surface and the maximum effective strain
is scaled to 0.008, and (d) axial stress on a slice parallel to the loading direction. The maximum axial
stress is scaled to 1 GPa.

Figure 6 shows the comparative plot of experimental and simulated stress-strain curves of the
composite. In the experiment, the onset of damage in the specimen was observed to begin close to
440 MPa [56]. In the numerical model, the same simulation volume and mesh scheme were used;
however, the traction was increased from 0 to 450 MPa in 20 steps. It is clear from Figure 6 that there is
a good agreement between the simulated and experimental stress-strain curves, however the simulated
stress is slightly larger than the experimentally measurements yielding, which can be attributed to
several assumptions made in the model. First of all, only crack initiation by cleavage fracture of
particles is considered, whereas the particle and matrix are considered to be perfectly bonded and the
matrix is idealized without fracture. However, in the experiment, localized void growth are observed
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which can increase the strain under the same traction [7]. These factors are likely the reason for the
slightly higher traction values in the simulation after yielding.J. Compos. Sci. 2020, 4, 62 12 of 21 
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Figure 6. Comparison of numerical and experimental strain-stress curves for the composite.

There are 41 particles in the simulation volume and the particle volume ranges from 1421 to
36,350 µm3. As the Weibull fracture model can account for the particle size effect automatically, large
particles tend to fracture before small particles. Figure 7 shows the average volume of fractured
particles with the applied traction. It is evident from Figure 7 that the particles start to fracture as
soon as the applied traction reaches to 247.5 MPa. As the applied traction increases, smaller particles
fracture, leading to a decrease in the average volume of the fractured particles (Figure 8).

Figure 7. The average volume of the fractured particles in each load step during simulation.
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Figure 8. Graphical representation of the relative position of centroids of SiC particles on a projected XY
plane when (a) Traction is 337.5 MPa, (b) Traction is 360 MPa, and (c) Traction is 405 MPa. Solid circles
in white represent particle centroids that are not cracked. Green circles and red squares are particle
centroids that are "previously" cracked and "newly" cracked, respectively, relative to the previous
load step.

Although Figure 5a shows all the fractured particles in 3D, it is not straightforward to visualize
their relative positions as one particle can interrupt the view of others. Therefore, in order to distinctly
visualize the relative positions of the fractured particles, the centroids of all the particles were projected
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to a x-y plane, in which the y-direction is along the loading direction. Figure 8 shows the centroid
positions of the fractured particles on a projected X-Y plane under three load steps, i.e., 337.5 MPa
(Figure 8a), 360 MPa (Figure 8b) and 405 MPa (Figure 8c). Note that each marker in Figure 8 corresponds
to the centroid of a single particle and all particles have been split into three categories: (i) intact, i.e.,
particles which are not fractured (white circle), (ii) particles fractured in previous load steps (green
circles), and (iii) particles fractured in the current load step (red square). Although the sequence of
cracking of particles does not appear to follow a straightforward order due to the randomness of
critical fracture probability assigned to each particle, some patterns can still be observed. Particles tend
to fracture in groups and particles adjacent to previously cracked particles are more prone to fracture.
This can be attributed to the redistribution of load in the composite. Once a particle fractures, the stress
field is redistributed in its surrounding region, which results in increased load carried by the near-by
particles, making them more prone to fracture.

In order to study the influence of one cracked particle on others, the change in the fracture
probability (∆P) of the intact particles were calculated before and after the fracture of a single particle.
Figure 9 shows the centroids of particles, along with their ∆P, projected on a XY plane. Figure 9a–d
show the distribution of ∆P of the centroids of un-cracked particles after four different particles have
fractured. Note that the newly cracked particles are denoted as yellow circle with a black line, white
circles are previously cracked particles and rest are un-cracked/intact particles. It is clear from Figure 9
that the fractured particle can influence the fracture probability of the near-by particles. The fracture
probability tends to increase for a particle that are close to the newly cracked particle and are on the
same XZ plane (perpendicular to the loading direction). This tendency is straightforward to understand
because as soon as one particle breaks, the remaining particles on the same XZ plane have to support
extra stress.
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Figure 9. (a–d) Shows the distribution of ∆P of the centroids of un-cracked particles after four different
particles have fractured. Previously cracked particles are denoted in solid white circles. The newly
cracked particle are denoted in a solid yellow circle with a black break surface. Un-cracked particles
are colored by the change of Weibull fracture probability before and after fracture.

While the fracture probability is inclined to decrease on a particle that is not far away to the newly
cracked particle but their relative position is parallel to the loading direction. This tendency is caused
by the change of stress flow before and after fracture. Before fracture, the top and bottom parts of the
particle in the loading direction tend to have higher stress than the middle part. After the fracture, the
stress flows to the crack tip and particles usually break around a cross section in the middle of the
loading direction. Since the stress unloading of the top and bottom parts, the adjacent particles close to
the top and bottom parts tend to withstand more strength.

In order to evaluate the influence of particle geometry on the particle fracture probability, Weibull
fracture probability versus applied traction was studied for different particle geometries (Particle-m,
Particle-n and Particle-p, as shown in Figure 10). In this case also, each particle is shifted to the center
of the simulation volume and the domain sizes are set to maintain a constant fill ratio for all cases.
As shown in Figure 11a, the Weibull probability increases with traction much more rapidly for the real
particles. Further, the three realistic particles exhibit much higher Weibull probability compared with
sphere (ideal particle) when traction is higher than 200 MPa, indicating that the aspect ratio of the
particles plays an important role on their fracture behavior. Note that the Particle-m and spherical
particle exhibit the highest and lowest aspect ratio, respectively. The particle aspect ratio is calculated
by the ratio of the longest Feret distance over the shortest Feret distance. Particle-m has a narrow
volume and its fracture probability is the highest among all the studied particle geometries at the same
traction. The lowest Weibull probability was observed for the spherical particle indicating that the
particles with the smallest aspect ratio (i.e., 1 for sphere) are less prone to fracture. In order to further
understand the influence of particle geometry on the fracture probability, the Weibull probabilities
about one hundred particles, having a range of aspect ratio, were calculated at the applied traction of
400 MPa. The particle volumes range from 5192 µm3 to 28,350 µm3. As shown in Figure 11b, particles
are separated into three groups with equal volume interval. It is clear that larger particles exhibit
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higher fracture probability and the slopes of the fitted curves for the three volume intervals are close to
each other. This is attributed to the higher probability of the presence of the Griffith’s crack in the larger
particles. In addition, SiC particles with larger aspect ratios show higher Weibull probabilities than the
particles with lower Weibull probabilities indicating that the particles exhibiting higher aspect ratios
are more prone to fracture. Overall, the larger particles with higher aspect ratios exhibit higher Weibull
probabilities and are more prone to fracture, which is in complete agreement with the observations
made in experiment [7].
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Figure 10. Particle geometries in mesh wireframe that are used in history plot of fracture probability
(a) Particle-m, (b) Particle-n, and (c) Particle-p. Rigid body motions are fixed.and traction is applied on
both left and right surfaces.
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Figure 11. Characteristic study of the influence of particle geometry on the magnitude of Weibull
fracture probability (a) history plot of fracture probability, (b) fracture probability vs. aspect ratio.

4. Conclusions

In this study, the Weibull strength distribution model has been implemented in the XFEM
algorithm for the modeling of particle fracture in metal matrix composites (MMCs) with realistic
particle geometries initialized from X-ray tomographic data of 20 vol.% SiC particle reinforced 2080
aluminum alloy composite. The simulated tensile stress-strain curve was found to be in good agreement
with the experimental stress-strain curve obtained from in situ tensile testing. The Weibull modulus ‘m’
and characteristic strength ‘σ f ’ were estimated to be 6 and 715 MPa, respectively. The average volume
of the fractured particles was found to decrease with the applied traction. Fracturing of a particle
resulted in an increase in the fracture probability of the neighboring particles on the same plane. In
addition, the Weibull fracture probability was observed to be influenced by both the particle volume
and shape, i.e., larger particles with higher aspect ratios were more prone to fracture.
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