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Abstract: The application of machine learning (ML) techniques to otolaryngology remains a topic
of interest and prevalence in the literature, though no previous articles have summarized the cur-
rent state of ML application to management and the diagnosis of lateral skull base (LSB) tumors.
Subsequently, we present a systematic overview of previous applications of ML techniques to the
management of LSB tumors. Independent searches were conducted on PubMed and Web of Science
between August 2020 and February 2021 to identify the literature pertaining to the use of ML tech-
niques in LSB tumor surgery written in the English language. All articles were assessed in regard to
their application task, ML methodology, and their outcomes. A total of 32 articles were examined. The
number of articles involving applications of ML techniques to LSB tumor surgeries has significantly
increased since the first article relevant to this field was published in 1994. The most commonly
employed ML category was tree-based algorithms. Most articles were included in the category of
surgical management (13; 40.6%), followed by those in disease classification (8; 25%). Overall, the
application of ML techniques to the management of LSB tumor has evolved rapidly over the past two
decades, and the anticipated growth in the future could significantly augment the surgical outcomes
and management of LSB tumors.

Keywords: lateral skull base surgery; machine learning; artificial intelligence

1. Introduction

The application of machine learning (ML) in medicine has significantly grown over
the past decade due to the increase in available annotated medical data and computational
power [1]. Some of the most prominent studies in the field have included cancer diagnosis
and disease predictions [2–5]. ML has also succeeded in capturing meaningful features from
images used for classifying pathology slide images, radiographic images, and other clinical
imaging modalities for automatic diagnoses [6–10]. Accordingly, the application of ML to
medicine will continue to accelerate, with health economists predicting a 10-fold growth in
health artificial intelligence (AI) within the next 5 years, saving an annual 150 billion USD
for United States healthcare by 2026 [11].

Otolaryngology covers a broad spectrum of subspecialties, presenting unique opportu-
nities to incorporate such ML techniques. For instance, recent advancements have allowed
for the automatic detection of abnormalities on tympanic membrane images, recognition of
head and neck cancer, and enhancement of cochlear implant performance [10,12–17]. The
investigation of various ML applications in otolaryngology remains a topic of interest in
the literature [13,14], and this trend is likely to increase in the future.

Previous review articles have summarized the current state of ML application to oto-
laryngology [13,17,18]. However, the application of ML in the management and diagnosis
of lateral skull base (LSB) tumors is yet to be explored. Specifically, these tumors are
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related to disorders of hearing, balance, skull base, and facial/vestibulocochlear nerves
and constitute a major field within otolaryngology [19,20]. Hence, the application of novel
computational techniques to this subspecialty is of great interest. Given such context, this
article systematically reviews the published articles regarding ML applications for the
diagnosis and management of LSB tumors, along with comments on the future of this field.

2. Materials and Methods

Independent searches were conducted on PubMed and Web of Science between August
2020 and February 2021. A unique combination of search terms was devised to identify
the relevant literature (Supplemental Table S1). Study inclusion and data extraction are in
accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines (Figure 1) [21]. A total of 53 unique articles were found. Articles
deemed nonrelevant on the basis of target pathology and type of technology utilized and
those without an available full text were manually eliminated, leaving 32 final articles for
inclusion. Articles were categorized into the following categories: MRI tumor segmentation,
surgical management, disease classification, and other clinical applications. All articles
were evaluated regarding their application task, ML methodology, their outcomes, and
potential implications.
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3. Results
3.1. Topic Trends

The number of articles pertaining to the application of ML to LSB tumor surgeries has
significantly increased since the first article in the field was published in 1994 (Figure 2).
Most articles were included in the category of surgical management (13; 40.6%), followed
by those in disease classification (8; 25%), MRI tumor segmentation (8; 25%), and others (3;
9.4%). The most commonly employed ML category was tree-based algorithms (Figure 3).
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3.2. Surgical Management

LSB tumor surgeries can be associated with major complications and should be pur-
sued after careful consideration of alternative management strategies [22]. In one of the
earliest uses of ML regarding the management of LSB tumors, Telian identified the prob-
ability of vestibular schwannoma (VS) enlargement via a decision tree algorithm [23].
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Furthermore, when pursuing surgery, identifying at-risk patients and optimizing the pre-,
peri-, and post-operative parameters is important. Hence, many studies have applied ML
for predicting surgical management-related factors, including post-surgery complications
and mortality (Table 1).

Table 1. Summary of manuscripts with machine learning applications for surgical management.

Author, Year,
References Aim Algorithm(s) Outcomes

Abouzari et al.,
2020 [24]

Predicting the recurrence of vestibular
schwannoma using artificial neural network

compared to logistic regression.
Artificial neural network

Artificial neural network was superior to
logistic regression in predicting the recurrence

of vestibular schwannoma with an accuracy
of 0.70.

Claudia et al.,
2019 [25]

Using machine-learning radiomics to predict
response to CyberKnife treatment of

vestibular schwannoma.

Decision tree
Random forest

XGBoost

Machine-learning radiomics predicted response
to CyberKnife treatment of vestibular
schwannoma with an accuracy of 0.92.

D’Amico et al.,
2018 [26]

Computing quantitative biomarkers from
MRI to predict CyberKnife treatment
response on vestibular schwannoma.

Decision tree
Treatment response was predicted with an
accuracy of 0.85 using a machine-learning

based radiomic pipeline.

Cha et al., 2020 [27]
Predicting hearing preservation following

surgery in patients with
vestibular schwannoma.

Support vector machine
Gradient boosting machine

Deep neural network
Random forest

Hearing preservation was predicted with most
accurately by deep neural network with an

accuracy of 0.9

Dang et al., 2021 [28]
Elucidation of risk factors contributing to
increased length of stay after vestibular

schwannoma surgery.
Random forest

Preoperative tumor volume and dimensions,
coronary artery disease, hypertension, major

complications, and operative time were
significant predictive factors for prolonged

length of stay

George-Jones et al.,
2020 [29]

Predicting post-stereotactic surgery
enlargement of vestibular schwannoma. Support vector machine Enlargement was predicted with an overall

AUC of 0.75.

Langenhuizen et al.,
2020 [30]

Prediction of tumor progression after
stereotactic surgery of vestibular
schwannoma using MRI texture.

Support vector machine
Machine learning achieved an AUC of 0.93 and

an accuracy of 0.77 for prediction of
tumor progression.

Langenhuizen et al.,
2020 [31]

Prediction of transient tumor enlargement
after vestibular schwannoma radiosurgery

using MRI textures.
Support vector machine

A maximum AUC of 0.95, sensitivity of 0.82,
and specificity of 0.89 were achieved

for prediction.

Langenhuizen et al.,
2019 [32]

Predicting the influence of dose distribution
on the treatment response of gamma knife
radiosurgery on vestibular schwannoma.

Support vector machine

3D histogram of oriented gradients features
correlate with treatment outcomes (AUC = 0.79,

TPR = 0.80, TNR = 0.75, with support
vector machine)

Langenhuizen et al.,
2018 [33]

Using MRI texture feature analysis to predict
vestibular schwannoma gamma knife

radiosurgery treatment outcomes.

Support vector machine
Decision tree

Treatment outcomes were predicted with an
accuracy of 0.85 using machine learning.

Lee et al., 2016 [34]

Predicting risk factors leading to
communicating hydrocephalus following
gamma knife radiosurgery for vestibular

schwannoma.

K-nearest neighbors classifier
Support vector machine

Decision tree
Random forest

AdaBoost
Naïve bayes

Linear discriminant analysis
Gradient boosting machine

Age, tumor volume, and tumor origin are
significant predictors of communicating

hydrocephalus. Developing communicating
HCP following gamma knife radiosurgery is

most likely if the tumor was of vestibular origin
and had a volume ≥13.65 cm3.

Telian et al., 1994 [23] Management of vestibular schwannoma
between 5–15 mm Decision tree

Most important factor in determining to
proceed with surgery is the probability of

tumor growth.

Yang et al., 2020 [35]
Prediction of progression/outcome of

vestibular schwannoma after gamma knife
radiosurgery using MRI data

Support vector machine
Machine learning predicted long-term outcome

and transient pseudoprogression with an
accuracy of 0.88 and 0.85, respectively.

One major complication of VS surgery is hearing loss, and in order to improve patient
outcomes, ML has recently been explored as a method to predict the rate of hearing
preservation after VS surgery. Notably, Cha et al. compared support vector machine (SVM),
gradient boosting machine (GBM), deep neural network (DNN), and diffuse random forest
algorithms to predict hearing preservation following VS surgery [27]. DNN showed the
greatest promise, achieving an accuracy of 90% and a sensitivity and specificity of 93% and
86%, respectively. ML has been utilized to identify the major risk factors associated with
developing communicating hydrocephalus (HCP) following gamma knife radiosurgery
(GKRS) of VS. In a cohort of 702 patients, Lee et al. identified that a vestibular nerve origin
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tumor with a volume ≥13.65 cm3 is a major risk factor of developing communicating HCP
following GKRS of VS using several ML classifiers, most of which performed with an
accuracy above 94% for the classification tasks [34]. In order to predict the recurrence of
VS, Abouzari et al. compared the use of an artificial neural network (ANN) and logistic
regression on 789 patients [24]. ANN showed a superior performance with an accuracy of
70%, sensitivity of 61%, and specificity of 81% compared to an accuracy of 56%, sensitivity
of 44%, and specificity of 69% for the logistic regression statistical model. Dang et al.
elucidated risk factors for predicting an increased length of stay after the resection of
VS [28]. Using a random forest model, they found that the preoperative tumor volume and
dimensions, coronary artery disease, hypertension, major complications, and operative
time were significant predictive factors for prolonged length of stay after surgery.

Recent studies have shown the efficacy of inputting magnetic resonance imaging (MRI)
characteristics into ML algorithms in predicting surgical outcomes. Langenhuizen et al.
investigated the application of ML in GKRS of VS in three studies [30,32,33]. Particularly,
they investigated cases with significant tumor regression within one year following GKRS
compared to cases with continued tumor progression following the intervention. Utilizing
SVM, Langenhuizen et al. classified these two classes with an accuracy of 85% and a
maximum area under the curve (AUC) of 0.95. Langenhuizen et al. also used MRI texture
features in predicting tumor progression after stereotactic radiosurgery [31]. MRI texture
information was used to train an SVM, achieving an AUC of 0.93 and accuracy of 77%.
Similarly, George-Jones et al. input MRI texture and shape features from 53 patients into a
SVM to predict the post-stereotactic surgery enlargement of VS, achieving an overall AUC
of 0.75 [29].

Yang et al. utilized radiomic analysis on pre-radiosurgical MRI data to predict the
pseudoprogression and long-term outcome of VS after GKRS [35]. The raw dataset con-
sisted of pre-GKRS MRI data for 336 patients and a median follow-up period of 65 months.
After radiomic features were generated in a two-level binary classification model, a SVM
was trained based on the selected features to classify the data into three response groups
(tumor non-response, tumor regression with no pseudoprogression, and tumor regression
with pseudoprogression). The trained model predicted the long-term outcome with an ac-
curacy of 88.4% and transient pseudoprogression with an accuracy of 85.0%. D’Amico et al.
explored the use of ML to predict the response to CyberKnife treatment of VS in 38 patients
using various approaches [25,26]. Notably, biomarker quantifications extracted from pa-
tient MR images were used as the input to the algorithms. Among the algorithms explored,
the decision tree showed the greatest promise, achieving a 92% accuracy.

3.3. Disease Classification

The emerging shortage of otolaryngology expertise worldwide can significantly impact
the appropriate diagnosis and management of LSB tumors [36]. Accordingly, ML has
been applied to classify various neurotologic diseases based on patient presentations
(Table 2). Nouraei et al. developed a Gaussian Process Ordinal Regression Classifier, a
type of Bayesian classifier, for identifying true vs. suspicious VS cases [37]. Clinical and
audiometric information were input into the model, which ultimately achieved an AUC
of 0.80.

A research team based at the University of Tampere and Helsinki University Hos-
pital published seven articles aimed to classify VS, benign positional vertigo, Meniere’s
disease, sudden deafness, traumatic vertigo, and vestibular neuritis [38–44]. Miettinen et al.
and Juhola et al. utilized the Bayesian probabilistic model, k-nearest neighbors classifier,
discriminant analysis, Naïve Bayesian decision rule, k-means clustering, decision trees,
neural networks, and Kohonen networks [38,39,43]. The inputs consisted of 38 otology and
neurotology attributes, and the Bayesian probabilistic model attained the best performance
with an accuracy of 97%. Laurikkala et al. and Kentala et al. performed this classification
task using genetic algorithm-based ML systems, attaining an accuracy of above 90% and
80% for detecting the correct pathologies, respectively [41,42]. Kentala et al. and Viikki et al.
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used decision trees to classify the aforementioned six disease processes, and the accuracy
for detecting each pathology was above 90% for both studies [40,44].

Table 2. Summary of the manuscripts with machine learning applications for disease classification.

Author, Year,
References Aim Algorithm(s) Outcomes

Juhola et al., 2008 [38]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

K-nearest neighbors classifier
Discriminant analysis

Naïve bayes
K-means clustering

Decision trees
Neural networks

Kohonen networks

Discriminant analysis performed the
best with an average accuracy of 0.96.

Juhola et al., 2001 [39]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

Kohonen networks
The model attained a maximum

accuracy of 0.98 for classification of
overrepresented pathologies.

Kentala et al., 2000 [40]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

Decision tree
The decision tree achieved an
accuracy between 0.94 and 1

according to different pathologies.

Kentala et al., 1999 [41]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

Genetic algorithm The genetic algorithm attained an
accuracy of 0.80.

Laurikkala et al., 2001 [42]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

Genetic algorithm The machine learning model attained
an accuracy of 0.90.

Miettinen et al., 2008 [43]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

Bayesian classifier The Bayesian classifier attained an
accuracy of 0.97.

Viikki et al., 1999 [44]

Classification of otoneurological diseases
including vestibular schwannoma, benign

positional vertigo, Menière’s disease, sudden
deafness, traumatic vertigo, and vestibular

neuritis given patient attributes.

Decision tree An average accuracy of over 0.95
was achieved.

Nouraei et al., 2007 [37] Identification of vestibular schwannoma cases
from a population suspected to harbor the tumor. Bayesian classifier

The machine learning algorithm
achieved an AUC of 0.80

for classification.

3.4. Tumor Segmentation

Radiographic images constitute a key component of LSB tumor management. MRIs in
particular are useful for a diagnosis, surgical planning, and follow-up of such tumors [45].
Consequently, many image-based ML studies have focused on detecting tumors on MRI
scans (Table 3), with Dickson et al. publishing the first paper in 1997 [46]. An ANN was
trained and tested on MRI scans from 50 patients for the detection of VS, achieving an
overall false-negative rate of 0% and false positive rate of 8.6%. Lee et al. developed
a two-pathway U-Net model for the automatic delineation of VS from multiparametric
MRI scans [47]. The model was trained on T1-weighted (T1W), T2-weighted (T2W), and
T1W with contrast (T1W/C) MRI scans from 516 patients, achieving an average dice
score of 0.90 ± 0.05. Similarly, George-Jones et al. trained a U-Net on 130 T1W/C MRI
scans from 65 patients for the segmentation of VS [48]. The segmentation algorithm
was compared to manual segmentation constructed by a clinician, yielding an interclass
correlation coefficient of 0.99. The algorithm was further used to detect the growth of
tumors after at least 5 months since the initial scan. CNN performed superior to the
greatest linear dimension for growth detection in terms of sensitivity, specificity, and AUC.
Furthermore, Shapey et al. developed a CNN for segmentation of VS on T2W and T1W/C
MRI scans [49]. The algorithm contained a computational attention module that enables the
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CNN to focus more on the target region of interest. The dice score for segmentation was 0.93
and 0.94 for T1W/C and T2W, respectively. Lee at al. used a U-Net-based dual-pathway
model for the segmentation of VS from MRI scans of 861 patients who underwent GKRS,
which performed with an average dice score of 0.90 [50]. They further utilized this model
to demonstrate its viability in measuring tumor growth or regression longitudinally.

Table 3. Summary of the manuscripts with machine learning applications for MRI/CT tumor segmentation.

Author, Year,
References Aim Algorithm(s) Outcomes

Dickson et al., 1997 [46] Detection of vestibular schwannoma on
MRI scans. Artificial neural network The neural network attained a false negative

rate of 0 and false positive rate of 0.086.

George-Jones et al., 2020 [29] Segmentation of vestibular schwannoma
from T1W with contrast MRI scans. U-Net The model achieved an interclass correlation

coefficient of 0.99.

Lee et al., 2021 [50] Segmentation of vestibular schwannoma
from MRI scans. U-Net The model performed with an average dice

score of 0.90.

Lee et al., 2020 [47] Segmentation of vestibular schwannoma
from multiparametric MRI scans. U-Net The U-Net delineated vestibular schwannoma

with a dice score of 0.90 ± 0.05.

Neves et al., 2021 [51] Segmentation of temporal bone structures
from CT scans.

AH-Net
U-Net
ResNet

The model’s performed with dice scores of 0.91,
0.85, 0.75, and 0.86 for inner ear, ossicles, facial

nerve, and the sigmoid sinus, respectively.

Shapey et al., 2021 [49] Segmentation of vestibular schwannoma
from T2W and T1W with contrast MRI scans. Convolutional neural network

By employing a computational attention
module, the algorithm attained a dice score of
0.93 and 0.94 for T1W and T2W, respectively.

Uetani et al., 2020 [52]

Denoising of MRI for high spatial
resolution-MR cisternography for

cerebellopontine angle legions via deep
learning-based reconstruction.

Convolutional neural network

Images reconstructed with deep learning-based
reconstruction had higher image quality

(p < 0.001) due to reduced image noise while
maintaining contrast and sharpness.

Windisch et al., 2020 [53]

Segmentation of vestibular schwannoma or
glioblastoma from T1W, T2W, and T1W with

contrast MRI scans with a focus on
the explainability.

Convolutional neural network
The model achieved an accuracy of 0.93 while

the Grad-CAM software also showed it
correctly focused on tumor loci.

A commonly cited issue regarding automation of clinical technology is its low trans-
parency. Aiming to alleviate this issue, Windisch et al. focused on the explainability of
ML algorithms [53]. The study trained a CNN on T1W, T2W, and T1W/C MRI scans from
1223 patients who either had VS or glioblastoma. Grad-CAM, a software that highlights
segments of an image deemed important by a classification algorithm, was used simultane-
ously. The model achieved an accuracy of 93%, while Grad-Cam showed that the model
was focusing correctly on the tumor for making predictions.

Uetani et al. evaluated the efficacy of deep learning-based reconstruction (DLR) for
denoising MRI scans for high spatial resolution (HR)-MR cisternography for cerebello-
pontine angle lesions [52]. Compared to ordinary frequency-based models, DLR with a
separate path for high-frequency components that are processed as feature maps in the
feature conversion layers is able to learn the CNN parameters to reduce noise without
sacrificing spatial resolution. In the retrospective study of 35 patients who underwent
HR-MR cisternography, images reconstructed with and without DLR were compared based
on the signal-to-noise ratio (SNR) and contrast of cerebrospinal fluid and pons; the sharp-
ness of the normal-side trigeminal nerve using full width at half maximum (FWHM); and
a qualitative score of noise quality, sharpness, artifacts, and overall image quality. They
found that the image with DLR had a higher image quality (p < 0.001) while maintaining
contrast and sharpness.

In addition to MRIs, computed tomography (CT) scans have been targeted as a mode
for tumor segmentation tasks. Neves et al. developed a ML algorithm based on three CNN
models, including AH-Net, U-Net, and ResNet, for the segmentation of temporal bone
structures [51]. The model’s performance was comparable to manual segmentation by
otology specialists, with a dice score of 0.91, 0.85, 0.75, and 0.86 for the inner ear, ossicles,
facial nerve, and the sigmoid sinus, respectively.
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3.5. Other Clinical Applications

Many studies have applied ML to other unique aspects of LSB tumor management
(Table 4). Surgical pose estimation is the task of extracting the pose, which is defined by the
coordinates, forward angle, projection angle, and depth of the instrument, from an X-ray
image [54]. Kugler et al. created i3PosNet, a CNN-powered instrument pose estimation
method capable of high-precision estimations of poses, specifically for applications in
temporal bone surgery. Three datasets were used to train and evaluate i3PosNet (synthetic
radiographs with medical screws, synthetic radiographs with other instruments, and real
X-ray images of screws) to show that i3PosNet generalizes real X-ray images while only
trained on synthetic data and that it generalizes other instruments. The trained i3PosNet
was found to estimate the pose with an error <0.05 mm on synthetic data, outperforming
other state-of-the-art registration methods. Regardless, the application to real data remained
a challenge due to the unavailability of large representative datasets.

Table 4. Summary of the manuscripts with machine learning applications in other topics.

Author, Year,
References Aim Algorithm(s) Outcomes

Chang et al., 2019 [55]
Prediction of cochlear dead region prevalence

given various sensorineural hearing loss
patient data.

Decision tree
Random forest

The random forest and the classification tree were
capable of predicting cochlear dead regions by an

accuracy of 0.82 and 0.93, respectively, while
illustrating strong predictive factors for cochlear

dead region prevalence.

Rasmussen et al., 2018 [56]
Elucidation of perilymph proteins associated

to vestibular schwannoma related hearing
loss and tumor diameter.

Random forest

A perilymph protein, alpha-2-HS-glycoprotein
(P02765) was determined to be an independent

variable for predicting tumor-associated
hearing loss.

Kügler et al., 2020 [54]

Creation of a convolutional neural
network-powered pose estimation method

capable of high-precision estimation of poses
for application to temporal bone surgery.

Convolutional neural network

The instrument was found to estimate the pose, or
an estimation of location of surgical instrument

using an X-ray image, with an error <0.05 mm on
synthetic data.

Chang et al. used a classification tree and random forest to predict the prevalence of
cochlear dead regions given various sensorineural hearing loss (SNHL) patient data [55].
The random forest and the classification tree predicted cochlear dead regions with an
accuracy of 82% and 93%, respectively, and found that word recognition scores, hearing
thresholds at each frequency, etiology of VS or Meniere’s disease, and frequency parameters
are strong factors for predicting prevalence of cochlear dead regions.

Rasmussen et al. used ML techniques to elucidate the association between perilymph
proteins and VS related hearing loss and tumor diameter [56]. A univariate linear regression
and random forest were used to predict the hearing loss and tumor diameter given the
perilymph proteome levels. Variable importance of each protein was used to illustrate
which perilymph protein is significantly correlated to tumor-associated hearing loss, and
the results showed that Alpha-2-HS-glycoprotein (P02765) was an independent predictor
of tumor-associated hearing loss.

4. Discussion

This systematic review aims to comprehensively investigate studies that apply ML
techniques in managing LSB tumors. Undiagnosed tumors, mismanaged disease process,
and post-treatment adverse outcomes undoubtedly place a mental and physical toll on
patient [57]. It has also been estimated that rehospitalization post-discharge costs 17 billion
USD annually in avoidable Medicare expenditures [58]. Patients with head and neck cancer
have been identified as a high-risk group for readmission, with rates ranging between
6% and 26.5% [59–62]. Many studies have pointed out the likeliness of the Hospital
Readmissions Reduction Program (HRRP) program expanding with the aim to reduce such
avoidable expenditures [63,64]. However, the HRRP has opened doors to controversies
regarding readmission rates and reimbursements among other fields to which it has been
implemented [65]. Developing high-quality predictive models could mitigate these issues
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by enabling physicians to devise a more personalized treatment plan. Consequently, the
results from many of the surgical management studies pertaining to LSB tumors could be
utilized for developing a stratified model in which hospitals could be penalized for cases
that were predicted to have low probability post-surgical incidences.

Similar predictive indices have been considered before, such as the LACE+ index or
the University of Kansas Health Systems and Atrium Health predictive programs [66,67].
These programs analyze the clinical and socioeconomic factors for predicting patients’
probability of readmission and have successfully reduced their readmission rates; however,
neither employed ML techniques. Incorporating the predictive capacity of ML algorithms
into such frameworks could improve the quality of these models by potentially increasing
their predictive capacity while also illuminating clinical variables that may be important
risk factors for readmission.

ML has also led to advancements in basic science, as seen from the study by
Rasmussen et al. [56]. They presented that the Alpha-2-HS-glycoprotein is highly correlated
to the onset of VS-related hearing loss by examining the process by which ML classifies VS
patients with SNHL from those without it. This is fundamentally different from traditional
mass spectrometry studies of the perilymph in that it uncovered an independent predictor
of VS-related hearing loss that is not readily apparent by the quantification and composition
of the perilymph. As such, ML offers a new dimension of utility by which algorithms
classify cases based on their own criteria, uncovering novel independent variables for the
classified cases. This use of ML is only possible because it conducts classification according
to its own unique criteria that is dissimilar to the approach of human researchers. Given
such an approach, combined with the advent of novel algorithms such as AlphaFold for
protein folding predictions, ML is bound to revolutionize how researchers approach basic
science [68].

The ML technology elaborated on within this current study included those that are
prominently utilized among clinical informatics, notably including tree-based algorithms,
neural networks, and SVMs. Tree-based algorithms were most widely utilized among
studies included in the current review, most likely given the relative simplicity of the
algorithm mechanism, along with the capacity for it to easily extract feature importance
when predicting an outcome. ML applications in healthcare require a high-level of trans-
parency, and these advantages of tree-based algorithms may have been a deciding factor
in choosing which algorithms to employ. Furthermore, advancements in neural network
technology have been revolutionary in conducting image classification and segmentation
tasks. Though primitive versions of such technology have existed for many years, their
utility has truly been proven since the successful implementation of graphics processing
units around 2010 that enabled accelerated training, explaining the rapid increase in studies
published between 2016 and 2020, mostly consisting of those utilizing CNNs [69].

However, the technology in this field has been constantly growing, and additional
innovative algorithms have emerged over the past several years. For instance, genera-
tional adversarial networks have been employed for unsupervised image classification
tasks, while transformers have been proven to be useful for natural language processing
tasks [70,71]. While many of the algorithms included in the current study and those not
included as aforementioned are all very effective algorithms, the user must carefully select
the most effective algorithm according to their project’s goals. For instance, CNN has been
successfully applied for image classification tasks, though it may not function well as a
generic classifier for tabular data when compared, for instance, to SVMs. Subsequently,
more discourse regarding different ML algorithms and how they can be applied to different
tasks in healthcare must be held.

While the application of ML shows great promise, its use in clinical management has
several limitations, primarily regarding data accuracy. For instance, many databases that
outline patient characteristics are often subject to errors and could have missing values
or variables [72]. For these to be input into an ML algorithm, the missing data must
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be estimated via various software, and results obtained through such processes must be
interpreted with caution.

Furthermore, Windisch et al. expressed that the explainability of ML algorithms is
critical for the actual translation of such technology into clinics [53]. Techniques such as
Grad-CAM, as used in this study, exist to highlight particular areas of an image considered
important through an image classification process but does not provide a comprehensive
explanation of how each aspect of the image precisely influences the prediction [73]. ML ex-
plainability and interpretation is a topic that is under extensive investigation. McGrath et al.
pointed this out in their study, claiming the limited clinical use of the complete automation
of tumor segmentation on MRI scans due to insufficient validation in a clinical setting and,
in turn, proposed a semi-automated method that leaves a margin for physician control
that still performed significantly better than the manual approach [74]. Consequently, as
much as it is important to develop a novel technology that pushes the forefront of med-
ical informatics, it is also important to consider how such technology can be applied in
clinical practice.

5. Conclusions

This study provides a comprehensive review of studies that apply ML techniques
to various aspects of the diagnosis or management of lateral skull base disease processes.
Emerging studies utilized ML algorithms to investigate surgical treatment, disease classifi-
cation, tumor segmentation, and other clinical applications pertaining to lateral skull base
disease processes. As the number of ML studies in the field of skull base surgery increases,
this study provides a valuable overview of the current literature for the readership.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ohbm3040007/s1: Table S1: Detailed search strategies used to retrieve articles.

Author Contributions: Conceptualization: K.T., S.S.-Z., K.G., H.R.D. and M.A.; methodology: K.T.,
S.S.-Z., P.K., K.G. and M.A.; formal analysis: K.T, S.S.-Z. and P.K. investigation: K.T, S.S.-Z., P.K. and
K.G.; resources: K.T. and S.S.-Z.; writing—original draft preparation: K.T., S.S.-Z., K.G. and M.A.;
writing—review and editing: K.T., S.S.-Z., K.G., H.R.D. and M.A.; supervision: H.R.D. and M.A.; and
project administration: K.T. and M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. Mehdi Abouzari was supported by
the National Center for Research Resources and the National Center for Advancing Translational
Sciences, National Institutes of Health, through Grant TL1TR001415.

References
1. Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [CrossRef]
2. Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332.

[CrossRef]
3. Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and deep learning meet genome-scale metabolic modeling. PLoS

Comput. Biol. 2019, 15, e1007084. [CrossRef]
4. Houy, N.; Le Grand, F. Personalized oncology with artificial intelligence: The case of temozolomide. Artif. Intell. Med. 2019, 99,

101693. [CrossRef]
5. Cruz, J.A.; Wishart, D.S. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Inform. 2006, 2, 59–77.

[CrossRef]
6. Asiri, N.; Hussain, M.; Al Adel, F.; Alzaidi, N. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A

survey. Artif. Intell. Med. 2019, 99, 101701. [CrossRef]
7. Zheng, Y.; Hu, X. Healthcare predictive analytics for disease progression: A longitudinal data fusion approach. J. Intell. Inf. Syst.

2020, 55, 351–369. [CrossRef]

https://www.mdpi.com/article/10.3390/ohbm3040007/s1
https://www.mdpi.com/article/10.3390/ohbm3040007/s1
http://doi.org/10.1161/CIRCULATIONAHA.115.001593
http://doi.org/10.1038/nrg3920
http://doi.org/10.1371/journal.pcbi.1007084
http://doi.org/10.1016/j.artmed.2019.07.001
http://doi.org/10.1177/117693510600200030
http://doi.org/10.1016/j.artmed.2019.07.009
http://doi.org/10.1007/s10844-020-00606-9


J. Otorhinolaryngol. Hear. Balance Med. 2022, 3, 7 11 of 13

8. Jagga, Z.; Gupta, D. Machine learning for biomarker identification in cancer research—developments toward its clinical applica-
tion. Pers. Med. 2015, 12, 371–387. [CrossRef]

9. Chowdhury, N.; Smith, T.L.; Chandra, R.; Turner, J.H. Automated classification of osteomeatal complex inflammation on
computed tomography using convolutional neural networks. Int. Forum Allergy Rhinol. 2018, 9, 46–52. [CrossRef]

10. Bing, D.; Ying, J.; Miao, J.; Lan, L.; Wang, D.; Zhao, L.; Yin, Z.; Yu, L.; Guan, J.; Wang, Q. Predicting the hearing outcome in sudden
sensorineural hearing loss via machine learning models. Clin. Otolaryngol. 2018, 43, 868–874. [CrossRef]

11. ARTIFICIAL INTELLIGENCE: Healthcare’s New Nervous System. Accenture.com. 2017. Available online: https://www.
accenture.com/_acnmedia/pdf-49/accenture-health-artificial-intelligence.pdf (accessed on 24 June 2021).

12. Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.L.; Smith, T.R.; Arnaout, O. Machine Learning
and Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurg. 2018, 109, 476–486.e1. [CrossRef]

13. Crowson, M.G.; Ranisau, J.; Eskander, A.; Babier, A.; Xu, B.; Kahmke, R.R.; Chen, J.M.; Chan, T.C.Y. A contemporary review of
machine learning in otolaryngology–head and neck surgery. Laryngoscope 2019, 130, 45–51. [CrossRef]

14. You, E.; Lin, V.; Mijovic, T.; Eskander, A.; Crowson, M.G. Artificial Intelligence Applications in Otology: A State of the Art Review.
Otolaryngol. Neck Surg. 2020, 163, 1123–1133. [CrossRef]

15. Zacharaki, E.I.; Wang, S.; Chawla, S.; Yoo, D.S.; Wolf, R.; Melhem, E.R.; Davatzikos, C. Classification of brain tumor type and
grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 2009, 62, 1609–1618. [CrossRef]

16. Crowson, M.G.; Dixon, P.; Mahmood, R.; Lee, J.W.; Shipp, D.; Le, T.; Lin, V.; Chen, J.; Chan, T.C.Y. Predicting Postoperative
Cochlear Implant Performance Using Supervised Machine Learning. Otol. Neurotol. 2020, 41, e1013–e1023. [CrossRef]

17. Bur, A.M.; Shew, M.; New, J. Artificial Intelligence for the Otolaryngologist: A State of the Art Review. Otolaryngol. Neck Surg.
2019, 160, 603–611. [CrossRef]

18. Crowson, M.G.; Lin, V.; Chen, J.M.; Chan, T.C.Y. Machine Learning and Cochlear Implantation—A Structured Review of
Opportunities and Challenges. Otol. Neurotol. 2020, 41, e36–e45. [CrossRef]

19. Theunissen, E.A.R.; Bosma, S.C.J.; Zuur, C.L.; Spijker, R.; Van Der Baan, S.; Dreschler, W.A.; De Boer, J.P.; Balm, A.J.M.;
Rasch, C.R.N. Sensorineural hearing loss in patients with head and neck cancer after chemoradiotherapy and radiotherapy: A
systematic review of the literature. Head Neck 2014, 37, 281–292. [CrossRef]

20. Casasola, R. Head and neck cancer. J. R. Coll. Physicians Edinb. 2010, 40, 343–345. [CrossRef]
21. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

22. Ansari, S.F.; Terry, C.; Cohen-Gadol, A.A. Surgery for vestibular schwannomas: A systematic review of complications by approach.
Neurosurg. Focus 2012, 33, E14. [CrossRef] [PubMed]

23. A Telian, S. Management of the small acoustic neuroma: A decision analysis. Am. J. Otol. 1994, 15, 358–365. [PubMed]
24. Abouzari, M.; Bs, K.G.; Sarna, B.; Bs, P.K.; Ms, T.R.; Mostaghni, N.; Lin, H.W.; Djalilian, H.R. Prediction of vestibular schwannoma

recurrence using artificial neural network. Laryngoscope Investig. Otolaryngol. 2020, 5, 278–285. [CrossRef] [PubMed]
25. Claudia, D.N.; Amico, N.; Merone, M.; Sicilia, R.; Cordelli, E.; D’Antoni, F.; Antoni, N.; Zanetti, I.B.; Valbusa, G.; Grossi, E.; et al.

Tackling imbalance radiomics in acoustic neuroma. Int. J. Data Min. Bioinform. 2019, 22, 365. [CrossRef]
26. D’Amico, N.C.; Sicilia, R.; Cordelli, E.; Valbusa, G.; Grossi, E.; Zanetti, I.B.; Beltramo, G.; Fazzini, D.; Scotti, G.; Iannello, G.; et al.

Radiomics for Predicting CyberKnife response in acoustic neuroma: A pilot study. In Proceedings of the 2018 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM, Madrid, Spain, 3–6 December 2018; pp. 847–852. [CrossRef]

27. Cha, D.; Shin, S.H.; Kim, S.H.; Choi, J.Y.; Moon, I.S. Machine learning approach for prediction of hearing preservation in vestibular
schwannoma surgery. Sci. Rep. 2020, 10, 1–6. [CrossRef]

28. Dang, S.; Manzoor, N.F.; Chowdhury, N.; Tittman, S.M.; Yancey, K.L.; Monsour, M.A.; O’Malley, M.R.; Rivas, A.; Haynes, D.S.;
Bennett, M.L. Investigating Predictors of Increased Length of Stay After Resection of Vestibular Schwannoma Using Machine
Learning. Otol. Neurotol. 2021, 42, e584–e592. [CrossRef]

29. George-Jones, N.A.; Wang, K.; Wang, J.; Hunter, J.B. Prediction of Vestibular Schwannoma Enlargement After Radiosurgery Using
Tumor Shape and MRI Texture Features. Otol. Neurotol. 2020, 42, e348–e354. [CrossRef]

30. Langenhuizen, P.P.J.H.; Sebregts, S.H.P.; Zinger, S.; Leenstra, S.; Verheul, J.B.; With, P.H.N. Prediction of transient tumor
enlargement using MRI tumor texture after radiosurgery on vestibular schwannoma. Med Phys. 2020, 47, 1692–1701. [CrossRef]

31. Langenhuizen, P.P.J.H.; Zinger, S.; Leenstra, S.; Kunst, H.P.M.; Mulder, J.J.S.; Hanssens, P.E.J.; de With, P.H.N.; Verheul, J.B.
Radiomics-Based Prediction of Long-Term Treatment Response of Vestibular Schwannomas Following Stereotactic Radiosurgery.
Otol. Neurotol. 2020, 41, e1321–e1327. [CrossRef]

32. Langenhuizen, P.; Van Gorp, H.; Zinger, S.; Verheul, J.; Leenstra, S.; De With, P.H.N. Dose distribution as outcome predictor for
Gamma Knife radiosurgery on vestibular schwannoma. Proc. SPIE 2019, 10950, 109504C. [CrossRef]

33. Langenhuizen, P.P.J.H.; Legters, M.J.W.; Zinger, S.; Verheul, J.; De With, P.N.; Leenstra, S. MRI textures as outcome predictor for
Gamma Knife radiosurgery on vestibular schwannoma. Proc. SPIE 2018, 10575, 105750H. [CrossRef]

34. Lee, S.; Seo, S.-W.; Hwang, J.; Seol, H.J.; Nam, D.-H.; Lee, J.-I.; Kong, D.-S. Analysis of risk factors to predict communicating
hydrocephalus following gamma knife radiosurgery for intracranial schwannoma. Cancer Med. 2016, 5, 3615–3621. [CrossRef]
[PubMed]

http://doi.org/10.2217/pme.15.5
http://doi.org/10.1002/alr.22196
http://doi.org/10.1111/coa.13068
https://www.accenture.com/_acnmedia/pdf-49/accenture-health-artificial-intelligence.pdf
https://www.accenture.com/_acnmedia/pdf-49/accenture-health-artificial-intelligence.pdf
http://doi.org/10.1016/j.wneu.2017.09.149
http://doi.org/10.1002/lary.27850
http://doi.org/10.1177/0194599820931804
http://doi.org/10.1002/mrm.22147
http://doi.org/10.1097/MAO.0000000000002710
http://doi.org/10.1177/0194599819827507
http://doi.org/10.1097/MAO.0000000000002440
http://doi.org/10.1002/hed.23551
http://doi.org/10.4997/JRCPE.2010.423
http://doi.org/10.1136/bmj.n71
http://doi.org/10.3171/2012.6.FOCUS12163
http://www.ncbi.nlm.nih.gov/pubmed/22937848
http://www.ncbi.nlm.nih.gov/pubmed/8579140
http://doi.org/10.1002/lio2.362
http://www.ncbi.nlm.nih.gov/pubmed/32337359
http://doi.org/10.1504/ijdmb.2019.101396
http://doi.org/10.1109/bibm.2018.8621276
http://doi.org/10.1038/s41598-020-64175-1
http://doi.org/10.1097/MAO.0000000000003042
http://doi.org/10.1097/MAO.0000000000002938
http://doi.org/10.1002/mp.14042
http://doi.org/10.1097/MAO.0000000000002886
http://doi.org/10.1117/12.2512472
http://doi.org/10.1117/12.2293464
http://doi.org/10.1002/cam4.955
http://www.ncbi.nlm.nih.gov/pubmed/27882725


J. Otorhinolaryngol. Hear. Balance Med. 2022, 3, 7 12 of 13

35. Yang, H.-C.; Wu, C.-C.; Lee, C.-C.; Huang, H.-E.; Lee, W.-K.; Chung, W.-Y.; Wu, H.-M.; Guo, W.-Y.; Wu, Y.-T.; Lu, C.-F. Prediction of
pseudoprogression and long-term outcome of vestibular schwannoma after Gamma Knife radiosurgery based on preradiosurgical
MR radiomics. Radiother. Oncol. 2020, 155, 123–130. [CrossRef] [PubMed]

36. Ta, N.H. ENT in the context of global health. Ann. R. Coll. Surg. Engl. 2019, 101, 93–96. [CrossRef] [PubMed]
37. Nouraei, S.; Huys, Q.; Chatrath, P.; Powles, J.; Harcourt, J. Screening patients with sensorineural hearing loss for vestibular

schwannoma using a Bayesian classifier. Clin. Otolaryngol. 2007, 32, 248–254. [CrossRef]
38. Juhola, M. On Machine Learning Classification of Otoneurological Data. Stud. Health Technol. Inform. 2008, 136, 211–216.

[CrossRef]
39. Juhola, M.; Laurikkala, J.; Viikki, K.; Kentala, E.; Pyykkö, I. Classification of patients on the basis of otoneurological data by using

Kohonen networks. Acta Otolaryngol. Suppl. 2001, 545, 50–52. [CrossRef]
40. Kentala, E.; Pyykkö, I.; Viikki, K.; Juhola, M. Production of diagnostic rules from a neurotologic database with decision trees. Ann.

Otol. Rhinol. Laryngol. 2000, 109, 170–176. [CrossRef]
41. Kentala, E.; Pyykkö, I.; Laurikkala, J.; Juhola, M. Discovering diagnostic rules from a neurotologic database with genetic

algorithms. Ann. Otol. Rhinol. Laryngol. 1999, 108, 948–954. [CrossRef]
42. Laurikkala, J.P.S.; Kentala, E.L.; Juhola, M.; Pyykkö, I.V. A novel machine learning program applied to discover otological

diagnoses. Scand. Audiol. Suppl. 2001, 52, 100–102. [CrossRef]
43. Miettinen, K.; Juhola, M. Classification of otoneurological cases according to Bayesian probabilistic models. J. Med Syst. 2008, 34,

119–130. [CrossRef] [PubMed]
44. Viikki, E.K.K. Decision tree induction in the diagnosis of otoneurological diseases. Med. Inform. Internet Med. 1999, 24, 277–289.

[CrossRef] [PubMed]
45. Wu, C.-C.; Guo, W.-Y.; Chung, W.-Y.; Wu, H.-M.; Lin, C.-J.; Lee, C.-C.; Liu, K.-D.; Yang, H.-C. Magnetic resonance imaging

characteristics and the prediction of outcome of vestibular schwannomas following Gamma Knife radiosurgery. J. Neurosurg.
2017, 127, 1384–1391. [CrossRef] [PubMed]

46. Dickson, S.; Thomas, B.T.; Goddard, P. Using Neural Networks to Automatically Detect Brain Tumours in MR Images. Int. J.
Neural Syst. 1997, 8, 91–99. [CrossRef] [PubMed]

47. Lee, W.-K.; Wu, C.-C.; Lee, C.-C.; Lu, C.-F.; Yang, H.-C.; Huang, T.-H.; Lin, C.-Y.; Chung, W.-Y.; Wang, P.-S.; Wu, H.-M.; et al.
Combining analysis of multi-parametric MR images into a convolutional neural network: Precise target delineation for vestibular
schwannoma treatment planning. Artif. Intell. Med. 2020, 107, 101911. [CrossRef]

48. Bs, N.A.G.; Wang, K.; Wang, J.; Hunter, J.B. Automated Detection of Vestibular Schwannoma Growth Using a Two-Dimensional
U-Net Convolutional Neural Network. Laryngoscope 2020, 131, E619–E624. [CrossRef]

49. Shapey, J.; Wang, G.; Dorent, R.; Dimitriadis, A.; Li, W.; Paddick, I.; Kitchen, N.; Bisdas, S.; Saeed, S.R.; Ourselin, S.; et al. An
artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced
T1-weighted and high-resolution T2-weighted MRI. J. Neurosurg. 2021, 134, 171–179. [CrossRef]

50. Lee, C.-C.; Lee, W.-K.; Wu, C.-C.; Lu, C.-F.; Yang, H.-C.; Chen, Y.-W.; Chung, W.-Y.; Hu, Y.-S.; Wu, H.-M.; Wu, Y.-T.; et al. Applying
artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery. Sci. Rep. 2021, 11, 1–10.
[CrossRef]

51. Neves, C.A.; Tran, E.D.; Kessler, I.M.; Blevins, N.H. Fully automated preoperative segmentation of temporal bone structures from
clinical CT scans. Sci. Rep. 2021, 11, 1–11. [CrossRef]

52. Uetani, H.; Nakaura, T.; Kitajima, M.; Yamashita, Y.; Hamasaki, T.; Tateishi, M.; Morita, K.; Sasao, A.; Oda, S.; Ikeda, O.; et al.
A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: Usefulness in
high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle. Neuroradiology 2020, 63,
63–71. [CrossRef]

53. Windisch, P.; Weber, P.; Fürweger, C.; Ehret, F.; Kufeld, M.; Zwahlen, D.; Muacevic, A. Implementation of model explainability for
a basic brain tumor detection using convolutional neural networks on MRI slices. Neuroradiology 2020, 62, 1515–1518. [CrossRef]
[PubMed]

54. Kügler, D.; Sehring, J.; Stefanov, A.; Stenin, I.; Kristin, J.; Klenzner, T.; Schipper, J.; Mukhopadhyay, A. i3PosNet: Instrument pose
estimation from X-ray in temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1137–1145. [CrossRef] [PubMed]

55. Chang, Y.-S.; Park, H.; Hong, S.H.; Chung, W.-H.; Cho, Y.-S.; Moon, I.J. Predicting cochlear dead regions in patients with hearing
loss through a machine learning-based approach: A preliminary study. PLoS ONE 2019, 14, e0217790. [CrossRef] [PubMed]

56. Rasmussen, J.E.; Laurell, G.; Rask-Andersen, H.; Bergquist, J.; Eriksson, P.O. The proteome of perilymph in patients with
vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE 2018, 13, e0198442.
[CrossRef]

57. Pinto, A.; Faiz, O.; Davis, R.; Almoudaris, A.; Vincent, C. Surgical complications and their impact on patients’ psychosocial
well-being: A systematic review and meta-analysis. BMJ Open 2016, 6, e007224. [CrossRef]

58. Jencks, S.F.; Williams, M.V.; Coleman, E.A. Rehospitalizations among Patients in the Medicare Fee-for-Service Program. N. Engl. J.
Med. 2009, 360, 1418–1428. [CrossRef]

59. Hernandez-Meza, G.; McKee, S.; Carlton, D.; Yang, A.; Govindaraj, S.; Iloreta, A. Association of Surgical and Hospital Volume
and Patient Characteristics with 30-Day Readmission Rates. JAMA Otolaryngol. Neck Surg. 2019, 145, 328–337. [CrossRef]

http://doi.org/10.1016/j.radonc.2020.10.041
http://www.ncbi.nlm.nih.gov/pubmed/33161011
http://doi.org/10.1308/rcsann.2018.0138
http://www.ncbi.nlm.nih.gov/pubmed/30112952
http://doi.org/10.1111/j.1365-2273.2007.01460.x
http://doi.org/10.3233/978-1-58603-864-9-211
http://doi.org/10.1080/000164801750388108
http://doi.org/10.1177/000348940010900211
http://doi.org/10.1177/000348949910801005
http://doi.org/10.1080/010503901300007218
http://doi.org/10.1007/s10916-008-9223-z
http://www.ncbi.nlm.nih.gov/pubmed/20433050
http://doi.org/10.1080/146392399298302
http://www.ncbi.nlm.nih.gov/pubmed/10674419
http://doi.org/10.3171/2016.9.JNS161510
http://www.ncbi.nlm.nih.gov/pubmed/28186452
http://doi.org/10.1142/S0129065797000124
http://www.ncbi.nlm.nih.gov/pubmed/9228581
http://doi.org/10.1016/j.artmed.2020.101911
http://doi.org/10.1002/lary.28695
http://doi.org/10.3171/2019.9.JNS191949
http://doi.org/10.1038/s41598-021-82665-8
http://doi.org/10.1038/s41598-020-80619-0
http://doi.org/10.1007/s00234-020-02513-w
http://doi.org/10.1007/s00234-020-02465-1
http://www.ncbi.nlm.nih.gov/pubmed/32500277
http://doi.org/10.1007/s11548-020-02157-4
http://www.ncbi.nlm.nih.gov/pubmed/32440956
http://doi.org/10.1371/journal.pone.0217790
http://www.ncbi.nlm.nih.gov/pubmed/31158267
http://doi.org/10.1371/journal.pone.0198442
http://doi.org/10.1136/bmjopen-2014-007224
http://doi.org/10.1056/NEJMsa0803563
http://doi.org/10.1001/jamaoto.2018.4504


J. Otorhinolaryngol. Hear. Balance Med. 2022, 3, 7 13 of 13

60. Graboyes, E.; Yang, Z.; Kallogjeri, D.; Diaz, J.A.; Nussenbaum, B. Patients Undergoing Total Laryngectomy. JAMA Otolaryngol.
Neck Surg. 2014, 140, 1157–1165. [CrossRef]

61. Ferrandino, R.; Garneau, J.; Roof, S.; Pacheco, C.; Poojary, P.; Saha, A.; Chauhan, K.; Miles, B. The national landscape of unplanned
30-day readmissions after total laryngectomy. Laryngoscope 2017, 128, 1842–1850. [CrossRef]

62. Dziegielewski, P.T.; Boyce, B.; Manning, A.; Agrawal, A.; Old, M.; Ozer, E.; Teknos, T.N. Predictors and costs of readmissions at
an academic head and neck surgery service. Head Neck 2015, 38, E502–E510. [CrossRef]

63. Bur, A.; Brant, J.; Mulvey, C.L.; Nicolli, E.A.; Brody, R.M.; Fischer, J.P.; Cannady, S.B.; Newman, J.G. Association of Clinical Risk
Factors and Postoperative Complications With Unplanned Hospital Readmission After Head and Neck Cancer Surgery. JAMA
Otolaryngol. Neck Surg. 2016, 142, 1184–1190. [CrossRef] [PubMed]

64. Goel, A.N.; Raghavan, G.; John, M.A.S.; Long, J.L. Risk Factors, Causes, and Costs of Hospital Readmission After Head and Neck
Cancer Surgery Reconstruction. JAMA Facial Plast. Surg. 2019, 21, 137–145. [CrossRef] [PubMed]

65. Kripalani, S.; Theobald, C.N.; Anctil, B.; Vasilevskis, E.E. Reducing hospital readmission rates: Current strategies and future
directions. Annu. Rev. Med. 2014, 65, 471–485. [CrossRef]

66. van Walraven, C.; Wong, J.; Forster, A.J. LACE+ index: Extension of a validated index to predict early death or urgent read-mission
after hospital discharge using administrative data. Open Med. 2012, 6, 1–11.

67. How Two Health Systems Use Predictive Analytics to Reduce Readmissions | Managed Healthcare Executive. Available
online: https://www.managedhealthcareexecutive.com/view/how-two-health-systems-use-predictive-analytics-reduce-
readmissions (accessed on 18 August 2022).

68. AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 2019, 35, 4862–4865. [CrossRef] [PubMed]
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