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Abstract: The material extrusion of plastics has matured into a lucrative and flexible alternative to
conventional manufacturing. A major downside of this process is the missing quality assurance
caused by the influence of process parameters on part quality. Such parameters—e.g., infill density
and print speed—are selected prior to manufacturing. As a result, the achieved part quality is mostly
unknown, limiting the use of material extrusion and leading to increased material costs and print
times. A promising approach to overcome this drawback are prediction models, especially methods
of machine learning. Yet, a methodology that enables their integration in the manufacturing process
is lacking. This paper provides a methodology based on a lookup approach and calculated safety
factors. The methodology is tested and subsequently applied to two exemplary use cases. The result
empowers users and researchers with a methodology to use prediction models for quality assurance
in their company environment. On the other hand, future improvements and new research results
can be integrated into the methodology to verify its applicability in practice.

Keywords: material extrusion; quality assurance; quality prediction; parameter optimization;
application; neural networks; additive manufacturing

1. Introduction

The material extrusion of plastics (MEX-TRB/P) has matured into a lucrative alter-
native to conventional manufacturing methods due to low machine hour rates, low and
wide-ranged printer prices, and low infrastructural requirements. The additive manufac-
turing process is highly influenced by process parameters—such as infill density, number of
shells, and layer thickness—which are selected in pre-processing, i.e., before manufacturing.
Part properties such as tensile strength and dimensional accuracy depend strongly on
process parameters and do not depend solely on material properties. Thus, the quality of
the finished part is often unknown. This leads to a limited applicability of the material
extrusion (MEX) process for stressed parts and results in high filling densities to ensure the
required strength as well as low print speeds to ensure dimensional accuracy. Prediction
models are a promising approach to overcome the current uncertainty in part quality.
With them, the resulting part quality can be determined according to the selected process
parameters. Such models have been developed in several publications. However, they
are only tested in the research state and a methodology to implement such models in the
business environment is missing.

For this reason, this publication presents a methodology that enables predictive quality
assurance. This paper uses existing prediction models as a basis and connects them to create
a solution space. Based on that and a calculated safety factor, parameter combinations
are found that match the quality requirements of the considered use-case. The novelty of
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the paper lies in the newly developed methodology itself, the consideration of a safety
factor for the specific application, and the testing of the methodology using practical
application examples.

In the following, the current state of quality prediction in MEX is presented. This
includes an introduction of the MEX process and error metrics, the state of the art and
its shortcomings, and a short introduction of the used prediction models. Subsequently,
the used methods and approach are presented. In Section 4, the enabled solution space is
analyzed and the presented methodology is tested as well as applied to two exemplary use
cases. This is followed by a critical appraisal of the results and a conclusion.

2. Current State of Quality Prediction in Material Extrusion

This section serves to present the basic knowledge necessary to understand the devel-
oped determination method and the results of this work. This section provides a current
overview of material extrusion and related prediction models. Particular emphasis is placed
on part-quality prediction in material extrusion, specifically the successes achieved and
the basic structure of such prediction models. In addition, the evaluation of prediction
accuracy is discussed.

2.1. Introducing Material Extrusion

MEX can be defined as an additive manufacturing process that extrudes thermoplastic
materials in a vector-oriented way using a thermal (physical) binding mechanism. The
printer consists of a build platform and a print head with a heated nozzle [1]. A sketch of a
MEX printer is shown in Figure 1. The extrusion head provides the appropriate material
deposition in the X–Y plane according to the contour of the current layer. The used material,
a prefabricated thin plastic wire called the filament, is continuously fed to the extrusion
head. The material is partially melted and extruded through a nozzle which determines
the strand diameter. After application, the paste-like material hardens as a result of heat
conduction into the previously applied layer of the part and forms another solid layer. After
a layer is printed, the Z-distance between the nozzle and print platform is increased, and the
material is applied to the top of the partially finished part. This process is repeated until the
part is completed [2]. The build process may require support structures [1]. The structures
can be printed either in the same or in a different support material, e.g., a water-soluble
material. The printer itself can consist of one up to several print heads, while most printers
process with one or two heads. In addition, there are multi-material applications that allow
the filament to be changed during printing, most often with an associated loss of material.
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2.1.1. Process Flow

The MEX process can be divided into three stages—pre-, in- and post-processing—
based on the norm VDI 3405. In the pre-processing, all operations that precede the actual
manufacturing of a part are carried out. This includes data processing, preparing auxiliary
structures, determining process parameters and the slicing process. The latter is an essential
prefabrication stage. It involves slicing the volume model into several successive layers.
Mostly, this process is performed automatically by the software once the necessary process
parameters have been selected [1]. After pre-processing, a machine code, usually a G-code,
is obtained. This contains the path, process parameter values, and other information. Based
on this, in-processing starts; this focuses on the manufacturing operations performed by
the MEX printer, yet also includes part loading and unloading. Post-processing starts after
removing the part of the printer. Removing support structures is a main part, yet other
steps to obtain the technologically feasible part characteristics are included [1]. Exemplary
steps are vapor smoothing to improve the quality of surfaces [3] or the insertion of threaded
inserts [4].

2.1.2. Process Parameters

The manufacturing process is defined by process parameters selected in pre-processing
(prior manufacturing). The important process parameters influencing the investigated qual-
ity characteristics—in detail, tensile strength, dimensional accuracy and surface roughness—
are introduced in the following.

The build orientation, also called the part orientation, defines how the part is oriented
on the build platform [5]. This work follows the ISO 52,921 standard defining the orientation
based on the length of the part dimensions (see (a) in Figure 2) [6]. A part consists of shells
that can be defined as walls that are exposed to the outside of a part. They are influenced
by the number of outer perimeters, top and bottom layers. The density of a part is highly
influenced by the infill, which is described by the infill pattern—the shape of the infill—and
infill density—the percentage filling level of the internal structure (see (c) in Figure 2). The
height of the deposited layers along the Z-direction is set by the parameter layer thickness
(see (b) in Figure 2). The parameter nozzle temperature, also referred to as extrusion
temperature, determines the temperature used at the nozzle to heat up the material [5].
The parameter print speed mode determines the movement of the print head according to
the location.
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2.2. Error Metrics to Evaluate Prediction Accuracy

In this paper, the performance of prediction models is evaluated using error metrics.
The prediction accuracy is stated by the mean squared error MSE (see Equation (1)),
mean absolute error MAE (see Equation (2)), mean absolute percentage error MAPE (see
Equation (3)) and root mean square error RMSE (see Equation (4)) [7]. This paper focuses
in particular on improving the MAPE, as it is assumed that its percentage output makes
it easier for a user to work with. The metrics are calculated using the predicted value
pi, the measured value xi and the number of samples n. These error metrics can be used
for training and validation—reporting prediction accuracy on data used for training the
model—as well as evaluation—reporting the prediction accuracy on test data that were
not used to train the model. The latter is used to verify the quality of a prediction model.
However, it should be noted that there is no reference value that indicates a satisfactory
prediction accuracy. For this reason, the accuracy of the current state-of-the-art will be
discussed later in this paper.
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2.3. State of the Art

Machine learning is used in several areas of MEX, e.g., in the field of image-based print
error detection. The following subsections will focus on published work that investigated
the prediction of quality characteristics of tensile strength, linear dimensional accuracy and
surface roughness for parts manufactured with MEX.

2.3.1. Tensile Strength

Deshwal et al. [8] used a neural network (NN) to optimize the tensile strength of
polylactic acid (PLA) samples. They found that the NN approach had a better performance
than other tested approaches. This was also stated by a publication of Tura et al. [9]. Several
research publications target the prediction of tensile strength, by varying different param-
eters and investigating different materials. Grozav et al. [10] varied nozzle temperature
and print speed and investigated two materials: PLA and glycol-modified polyethylene
terephthalate (PETG). Bayraktar et al. [11] predicted the tensile strength by varying the noz-
zle temperature, layer thickness and raster orientation with a data volume of 108 samples.
They achieved a MAPE of 3.34% for nine selected samples within their trained parameter
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steps. Yadav et al. predicted the tensile strength of multi-material parts by stacking layers of
acrylonitrile butadiene styrene (ABS) and PETG material. The developed model achieved a
prediction accuracy between 2.5 and 2.6% for three chosen and trained parameter sets [12].
Tura et al. [9] reached a MAPE of 2.21% on validation data for PLA samples by varying
infill density, extrusion temperature and print speed. A test of the prediction accuracy
on test data was not performed. The authors of this work achieved a MAPE of 2.54% on
random test data using a NN approach based on 243 PETG samples [13].

2.3.2. Dimensional Accuracy

Besides prediction approaches, the dimensional accuracy in MEX is investigated using
an experimental research design [14–16].

The prediction of part dimensions according to the deposition angle and layer thick-
ness was presented by Boschetto and Bottini [17]. However, that work did not state the
achieved prediction accuracy with common metrics. Vyavahare et al. [18] predicted the
dimensional accuracy of an outer pyramidal region and an inner conical region of a pyra-
midal part using a regression model. The achieved absolute percentage error ranged
from 2.3% to 15.0%. Yang and Zhang [19] predicted the dimensional accuracy based on
the process parameters of layer thickness, filling speed, extrusion speed, fallback speed
and raster width offset using a NN. An H-shaped sample was used for measuring the
distances. Nevertheless, the prediction accuracy was not stated using common metrics.
Mohamed et al. [20] predicted the dimensional accuracy of the length and diameter of
cylinders using a NN approach. The model achieved a percentage deviation lower than
9.0% by testing three samples. Sharma et al. [21] predicted the dimensional accuracy of
shafts, holes and rectangular slots using a decision tree regression algorithm. The model
was trained with a dataset of 33 samples for the ABS material and 26 samples for the
PLA material, by varying the process parameters of wall thickness, infill density, build
platform temperature, print speed, layer thickness and nozzle temperature. However,
the publication did not provide the accuracy of the algorithm using common metrics or
by stating the differences between predicted and measured values. The authors of that
work predicted the linear dimensional accuracy using a NN approach with 32 samples. A
MAPE of 0.71% or lower was achieved for the linear dimensional accuracy in the X- and
Y-directions. The model achieved a MAPE of 2.21% in the Z-direction [22].

2.3.3. Surface Roughness

Several mathematical approaches were used to predict the surface roughness of MEX
parts [23–25]. Vyavahare et al. [18] used a regression approach to predict the surface
roughness based on layer thickness, wall print speed, build orientation, wall thickness and
extrusion temperature. The approach achieved an absolute percentage error of 4.8–16.3%.

In recent research activities, classification approaches were more often used to de-
termine optimized process parameters. Such approaches use a limit value to separate
the predictions into sufficient and insufficient. Barrios and Romero [26] used a random
forest and random tree approach to classify parts manufactured with PETG material. The
best approach resulted in 86.7% correctly classified parts, by investigating the parameters
of layer thickness, extrusion temperature, print speed, print acceleration and flow rate.
Sohnius et al. [27] achieved a classification accuracy of over 85% for deviation classifications
and over 95% for gap classifications. They varied the maximum feed rate, layer thickness,
infill density and nozzle temperature. A practical application of such approaches was
published by Molero et al. by ensuring the part quality in frame glasses manufacturing [28].
Cerro et al. [29] classified the surface roughness of MEX parts using five variable-input
parameters—layer thickness, print speed, number of perimeters, wall angle and nozzle
temperature. The best algorithm identified used bagging and multilayer perceptron, achiev-
ing a classification accuracy of 96%. However, a classification approach does not facilitate
prediction of the achievable surface roughness according to the process parameters. The
accuracy of classification approaches gives little information about the accuracy of the
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prediction approaches, as parameter sets with a surface roughness that clearly deviate
from the set limit value can be predicted inaccurately and would still be classified cor-
rectly. Additionally, the found research does not provide information on how a change in
limit value would affect the classification accuracy. This leads to a limited application of
classification approaches.

In contrast, several publications target a value prediction of the surface roughness
using NNs. Boschetto et al. [30] aimed to predict the surface roughness of cylinders and
used multiple materials. The work achieved a MAPE of 4.57% yet gave no information
about the used data and solely predicted known data—i.e., it only validated the prediction
accuracy. Vahabli and Rahmati [31,32] used a NN optimized with an imperialist competitive
algorithm. The developed model achieved a MAPE of 7.11% using part orientation and two
layer thicknesses as input parameters. Saad et al. [33] use a NN to determine the optimal
parameter sets to reach a minimal surface roughness for a cuboid part. The best-found NN
reached a MAPE of 11.40%. The authors of that work used a NN approach based on an
random grid search and a genetic algorithm [22]. The NN was trained using 27 samples
and achieved a MAPE of 4.05% for horizontal surfaces and 7.21% for 45-degree build ups.
However, for other surface orientations, the approach leads to a MAPE higher than 10%.
This emphasizes that the achievable prediction accuracy depends on the surface orientation.
However, it has been observed that a better prediction result is obtained by reducing the
scatter of the data. The scatter can be influenced by the printer itself, yet also by other
influences, e.g., external influences.

2.3.4. Shortcomings in the Current Literature

The presented literature verifies the feasibility of quality prediction in MEX through
several test studies. Nevertheless, an applicable methodology using prediction models for
quality assurance is lacking. Thus, users and researchers aiming for an implementation of
such prediction models are currently lacking an adequate procedure. Applications were
solely published in the field of classification approaches focusing on surface roughness.
As a result, users of the MEX process are not currently benefiting from the improvements
that predictive quality assurance could provide. This underlines the open research gap this
paper aims to close by providing an applicable methodology to use prediction models for
quality assurance in pre-processing.

2.4. Short Introduction of the Used Prediction Models

In this work, neural networks are used for the prediction of the resulting part quality.
Artificial NNs are inspired by the function of biological NNs, such as those found in the
human brain [34]. A NN consists of nodes (neurons) and edges (synapses) connecting the
nodes. The neurons are arranged in layers and can be divided into three types. Input units
receive the input data and pass it to the NN. Hidden units are located between the input
and output units and represent the inner layers of a NN. Output units receive the output
data as a result of the calculations of the hidden units. The term “deep” is often used in the
literature, describing a network with multiple hidden layers [35]. However, a more precise
definition is lacking. NNs can have different structures, while most models in the literature
focused on feedforward networks when targeting a prediction of quality characteristics.
In this case, all neurons in one layer are fully connected to all neurons in the following
layer [36]. A schematic illustration is shown in Figure 3.

The learning process itself is strongly influenced by predefined parameters (hyper-
parameters), e.g., the loss function, number of epochs and batch size. Optimizing these
is called hyperparameter tuning, which is an essential part of machine learning [37]. The
hyperparameters considered in this work are shown in Table 1.

The most commonly used hyperparameter tuning approach is the random grid search,
where hyperparameters are combined randomly and the best-found combination is used.
Bergstra and Bengio described random grid search as a natural baseline against which to
measure progress in the development of hyperparameter tuning algorithms [38]. However,
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this approach is based on random selection and does not use optimization approaches
to iteratively find the optimum. Genetic approaches are an alternative; they are inspired
by the reproduction of natural creatures. They use an iterative procedure to approach
an optimum and are based on selection, crossover and mutation. The term evolutionary
algorithm is partly used synonymously in the literature, yet it refers to a somewhat broader
class of heuristics [39]. In this work, both approaches were used for hyperparameter tuning
to find well-performing prediction models.
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Table 1. Considered hyperparameters for tuning.

Parameter Values Parameter Values

Neurons 32, 64, 128 Batch size None, 8, 16, 32
Batch normalization False, True Optimizer Adam, RMSprop, SGD

Dropout None, 0.05, 0.1,
0.5, 0.8 Learning rate 0.01, 0.001, 0.0001,

Epochs 200 Activation function ReLu

The training approach is based on training and validation data. A static splitting
of training and validation data includes the risk of performing well only on the static
validation set. Therefore, cross-validation is used to evaluate the performance of a NN
model more effectively than the traditional static data split [40]. Therefore, in this paper,
the data were split into training data—used for training and validation—and test data (see
Figure 4).
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3. Methods and Approach
3.1. Used Samples and Equipment

This publication measures the linear accuracy, surface roughness and tensile strength
of MEX parts using three samples manufactured with a PETG filament. The samples
were manufactured using a Prusa i3 MK3s+ with the corresponding Slicer PrusaSlicer
version 2.6.1.

The tensile strength is tested using a type A1 sample according to DIN EN ISO 527-1 [41]
and 3167 [42] (see (a) in Figure 5). The sample was placed in a central position with an
XYZ-orientation (see (b) in Figure 5). The samples were tested using an Inspekt 200 from
Hegewald & Peschke Meß- und Prüftechnik GmbH with a load cell of 10 kN, a test speed
of 3 mm/min, a break-off criterion of 75% and a safety criterion of 8 kN. The accuracy of
the traversing measurement was 0.015 µm.
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Figure 5. Tensile strength sample: (a) dimension and (b) central positioning.

The linear dimensional accuracy is measured using a developed sample geometry (see
Figure 6). The sample geometry has already been used for quality prediction and for printer
comparisons [22,43]. The dimensions were measured with an optical microscope VHX-5000
from Keyence, with an accuracy of 0.001 mm. The deviations from the actual dimension
to the targeted dimension were measured by the length of the intervals. The accuracy in
X- and Y-directions was measured using a chain measurement of the nine intervals. The
accuracy in the Z-direction was measured with seven intervals since the sample was gently
cut in the first interval, as the optical focus of the microscope was too small.
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Figure 6. Dimensional accuracy sample.

The surface roughness was measured orthogonally to the deposited strand. It was
evaluated using Ra, based on standard DIN EN ISO 21920 [44]. A parallelepiped was
used as a test sample, allowing the measurement of five different surface orientations—in
detail, the bottom surface (surface 3), the top surface (surface 4), two vertical wall surfaces
in the X-direction (surfaces 2 and 5), a 45-degree overhang (surface 6) and a 45-degree
build-up (surface 1). The sample and the names of the surfaces are shown in Figure 7. The
samples were manufactured in the XYZ-orientation with a centered positioning on the
build platform.

A tactile measuring device (Villingen-Schwenningen, JENOPTIK Industrial Metrology
Germany GmbH, Hommel-Etamic T8000Rc) was used for surface measuring. The stated
machine accuracy was ±0.003 mm for Ra. A diamond tip with a probe tip radius of
0.005 mm was used.
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3.2. Used Prediction Models and Their Accuracies

This publication targets a methodology to implement existing prediction models into
the manufacturing environment to enable a predictive quality assurance. Thus, this work
uses existing prediction models that are based on the same material and printer [13,22].
Therefore, in this section, the prediction models and their training data are shortly in-
troduced. A detailed discussion of the models can be taken from the corresponding
cited publications.

The prediction models are based on NNs using the infill density, layer thickness, nozzle
temperature, number of shells and print speed as input. In the case of surface roughness,
the orientation of the shape is given as additional input; in the case of dimensional accuracy,
the targeted distance and the orientation—X-, Y- or Z-orientation—is used. For each quality
characteristic, a model was trained individually. The training data were based on a full
factorial design using three values—minimum, middle and maximum—in the case of
tensile strength prediction and two values—minimum and maximum—in the case of linear
dimensional accuracy. However, in the case of surface roughness, a Taguchi method was
used to further reduce the training data volume to 27 samples. The values of the process
parameters can be found in Tables 2 and 3. The prediction models were evaluated using
24 samples as a test dataset. These consisted of randomly selected process parameters
within the minimum and maximum values. The achieved prediction accuracies—in detail,
MAPE, MAE and RMSE—are provided in Table 4.

Table 2. Used process parameters.

Parameter
Prusa i3 MK3s

Minimum Middle Maximum

Infill density in % 20 50 80
Layer thickness in mm 0.1 0.2 0.3

Nozzle temperature in ◦C 230 240 250
Number of shells in layers 2 4 6

Print speed mode Quality Medium Speed

Table 3. Used speed modes.

Prusa i3 MK3s
Print Speed at . . . Quality Mode Medium Mode Speed Mode

Contours 45 mm/s 52.5 mm/s 60 mm/s
Thin outer contours 25 mm/s 25 mm/s 25 mm/s

Outer contours 25 mm/s 30 mm/s 35 mm/s
Infill 80 mm/s 140 mm/s 200 mm/s

In addition to quality characteristics, print time and material consumption were
considered. These are accurately calculated within the slicer program. However, an
interface that determines print time and material consumption for several parameter sets
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is missing. This results in a high manual data-collection effort. Thus, this work predicts
material consumption and print time values using the NN prediction approach of the
existing models. These predictions are based on the tensile strength samples and therefore
serve as an estimation for the parameter-selection phase. The prediction models achieved
a MAPE of 2.42% for print time and 0.97% for material consumption on the introduced
random dataset. The prediction accuracies were evaluated as sufficient based on the low
MAPE. By using this procedure, the 12,285 parameter combinations can be determined by
collecting 267 values from the slicer (243 for training and 24 for test data) for print time and
material consumption.

Table 4. Prediction accuracy of used neural network models for each quality characteristic, print time
and material consumption.

Quality Characteristic MAPE MAE RMSE

Tensile strength in XYZ-orientation 2.54% 0.76 N/mm2 1.13 N/mm2

Dimensional accuracy in X-direction 0.69% 39.42 µm 52.06 µm
Dimensional accuracy in Y-direction 0.71% 39.32 µm 51.70 µm
Dimensional accuracy in Z-direction 2.21% 135.31 µm 161.49 µm
Surface roughness for a 45-degree build up 4.05% 0.50 µm 0.61 µm
Surface roughness for a horizontal wall in XY-plane 7.21% 1.32 µm 2.52 µm
Print time 2.42% 1.08 min 1.54 min
Material consumption 0.97% 0.08 g 0.11 g

3.3. Developed Determination Methodology

The presented methodology selects suitable process parameter sets based on specific
use case requirements. It considers part-quality characteristics, print time and material
consumption by using corresponding prediction models. The consideration of part quality
requirements enables us to assure that the needed quality is met by the manufactured part.
With the material consumption, the part weight and material costs can be optimized, while
the consideration of print time enables the optimization of process time. With this, the three
dimensions of the iron triangle—time, costs and quality—are considered, enabling a high
degree of optimization.

The determination is based on a lookup approach. The procedure can be split into
an initial and a determination procedure (see Figure 8). The initial procedure needs to
be performed once to enable the following determination. It starts with the definition
of parameters and their limits. Subsequently, for each parameter, value steps need to be
defined. These determine the possible parameter combinations for the later optimization.
The procedure results in a point-like solution space. The determination is based on list L,
consisting of one column with all parameter combinations and a second column with an ID
for each parameter combination. Subsequently, for each process parameter combination,
the resulting part quality, time and material consumption are determined. This was enabled
through the prediction models. The results are stored in L for the corresponding parameter
set. The prediction models have a degree of inaccuracy. Thus, safety factors are required.
This prevents us from selecting parameter sets that result in parts that do not fulfill the
needed requirements. The safety factors are determined based on the prediction accuracy
of the corresponding prediction model. In this work, the 0.95 percentile of the measured
absolute percentage errors was used as a safety factor. For each characteristic, the safety
factor fs, which is a percentage value, was used to calculate the required limiting value using
the target value t of the model. The limiting value is linked to the optimization direction.
Therefore, an upper limit lu and a lower limit ll are calculated using Equations (5) and (6).
These are then stored to the corresponding parameter set in list L. Finally, the list is stored
and the initial procedure ends.

lu = t (1 + fs) (5)

ll = t (1 − fs) (6)
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The determination of parameter sets can start after the initial procedure. First, the user
provides the requirements of the use case. A quality requirement r can be defined either
using a limiting value or by describing a solution space (see Equation (7)). Additionally, an
optimization factor ropt is needed. Based on this, a preferable parameter set is identified
that matches the requirement and optimizes ropt.

r < lu or r > ll or ll < r < lu (7)

Targeting a determination of process parameters, the algorithm copies the list L under
a new name, Lcopy. With this list, the optimization is performed. First, each parameter
set is eliminated if it does not achieve the requirements of the use case. Subsequently, the
remaining entries of Lcopy are sorted with ropt to identify the best-found parameter set
Sopt. This is then provided to the user. In addition, Lcopy is provided, as these parameter
combinations also achieve the given requirements. In the case that the requirements cannot
be matched with any parameter set, an empty list is provided. This procedure can be
repeated if the requirements change or another use case is targeted.

3.4. Used Value Steps Defining the Solution Space

In the following, the defined value steps for the tests of the methodology and the
subsequent application examples are presented. The print speed was chosen with the
minimum, middle and maximum value, while the layer thickness was increased by 0.1 mm
from 0.1 mm to 0.3 mm. The infill density was increased stepwise by 5% from the minimum
to the maximum value. The data representation is summarized in Table 5. The nozzle
temperature and number of shells were stepwise increased by 1. This results in 12,285 pa-
rameter combinations which are used to find the best matching process parameter set for
the quality requirements of the considered use case. However, the dimensional accuracy
prediction needs a further input defining the targeted distance. This work considered
dimensions from 2500 to 12,500 µm for X- and Y-directions and 2500 to 10,000 µm for the
Z-direction. These are the limits of the training sample. For each direction, a step size of
500 µm was used, resulting in 58 selectable dimensions for optimization.
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Table 5. Representation of process parameters for the determination procedure.

Parameter Minimum Maximum Values Steps Count of
Parameter Values

Infill density 20% 80% 5% 13
Layer thickness 0.1 mm 0.3 mm 0.1mm 3

Nozzle temperature 230 ◦C 250 ◦C 1 ◦C 21
Number of shells 2 layers 6 layers 1 layer 5
Print speed mode Quality Speed 1 middle value 3

4. Results and Discussion

In the following, the results are presented. In an initial step, the enabled solution
space is analyzed according to the quality characteristics. Subsequently, the methodology
is tested with four different exemplary use case requirements. The developed methodology
is then applied to two exemplary use cases. Finally, the results are critically evaluated, and
the limitations of the methodology are discussed.

4.1. Enabled Solution Space

With the described procedure, a solution space is enabled which is influenced by
the considered process parameters, their value representation and the manufacturing
process itself. Thus, in the following, the results of the parameter sets are analyzed to gain
knowledge about the regularities and limitations of the used procedure. In the following,
scatter plots are used. Each prediction of a parameter set is represented by one dot. The
determination methodology selects one of those dots as the best-found parameter set
considering the given use-case requirements.

4.1.1. Tensile Strength

The solution space of the tensile strength is shown in Figure 9. The minimum tensile
strength was 16.44 N/mm2 and the maximum was 45.00 N/mm2. The results show that
with a low print time and a high material consumption, the highest tensile strength was
achieved (see increasing values in Figure 9). The reduction in print time is caused by
the process parameter layer thickness, as higher values reduce print time and increase
tensile strength.
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4.1.2. Linear Dimensional Accuracy

The solution space of the dimensional accuracy differs according to the build orien-
tation and the length of the target dimension. The first can be seen by comparing the
value range of the axes of (a) in Figure 10. The second can be seen by comparing the value
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range of (a) and (b) in Figure 10. The shapes of the dots of (a) and (b) in Figure 10 differ.
Thus, the distribution of the predicted absolute deviations differs according to the targeted
dimension. This effect is consistent with the observed length- and orientation-dependent
parameter influences in the corresponding publication that investigated the prediction
model in more detail [22].
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distance of (a) 2500 µm and (b) 8000 µm.

4.1.3. Surface Roughness

In the case of vertical surfaces, the minimum surface roughness of the solution space
was found to be 7.87 µm, while the maximum was 22.89 µm. For surfaces with a 45◦-degree
build up, a higher minimum (11.52 µm) and maximum surface roughness (35.43 µm) were
found. The solution space has three separated clusters (see (a) in Figure 11). This clustering
effect can be attributed to the significant influence of the layer thickness. This can be
seen in (b) in Figure 11, where the clusters are separated by the layer thickness values. In
contrast, other observed parameters had low (below 12.5 µm), medium (12.5 to 20 µm)
and high (above 20 µm) values at each process parameter step. This stepwise behavior has
a direct impact on the optimization freedom, as some values are not achievable with the
considered parameters (free space between clustered dots). In addition, optimizing the
surface roughness may limit the optimization for the other quality characteristics, since
low values can only be achieved with a layer thickness of 0.1 mm.
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4.2. Testing of the Developed Methodology

In the following, the determination procedure is tested using four exemplary param-
eter sets. For testing, the samples of Section 3.1 were used to measure if the procedure
resulted in satisfying results. They were determined by the exemplary use-case require-
ments given in Table 6. In T1, specifications of tensile strength and surface roughness
were determined, and an optimization of the print time was targeted. In T2, dimensional
accuracy requirements were applied and the requirements of tensile strength and surface
roughness were changed. In T3, only requirements in the X- and Y-direction were applied.
Material consumption was selected as the optimization factor in both cases. T4 deviates
from the aforementioned quality requirements. First, the tensile strength was used as an
optimization factor. This should result in a parameter set that fulfills the quality require-
ments and optimizes the strength of the resulting part. Additionally, the use-case targets
dimensions with a value of 5000 µm or lower, simulating a use-case of a small part. The
determined parameter sets are given in Table 7.

Table 6. Used exemplary quality requirements and optimization factor.

Test ID Tensile Strength
in N/mm2

Surface Roughness in µm Linear Absolute Deviation in
Percent of Target Dimension Material

Consumption Print Time
Surface 1 Surface 2

and 5
X- and Y-
Direction Z-Direction

T1 >23 <14 <10 n.spec. n.spec. n.spec. ropt
T2 >30 <15 <15 5% 5% ropt n.spec.
T3 >18 <30 <12 6% n.spec. ropt n.spec.
T4 ropt <22 <24 4% * 4% * n.spec. n.spec.

ropt—optimization factor; n.spec.—no specification; * requirement only for values ≤ 5000 µm.

Table 7. Determined parameter sets from developed methodology.

Parameter T1 T2 T3 T4

Infill density in % 20 20 20 40
Layer thickness in mm 0.1 0.1 0.1 0.1

Nozzle temperature in ◦C 232 243 243 249
Number of shells 4 6 3 6
Print speed mode speed speed speed speed

Figure 12 shows the buffer—lowest absolute difference between the measured value
and the target limit (upper or lower limit)—of the results. For the use-case tested, the
tensile strength and surface roughness requirements were successfully met (see (a) and (b)
in Figure 12). The minimum buffer of tensile strength was 2.6 N/mm2, and that of surface
roughness was 0.39 µm. In the case of dimensional accuracy, one negative buffer was found
at T4—i.e., the T4 part did not achieve the quality requirements. A targeted dimension of
2500 µm in the Y-direction resulted in a negative buffer of 39 µm (see (c) in Figure 12). This
indicates that for this parameter combination, the safety factor was not sufficient to absorb
the resulting prediction inaccuracy. This could be caused by a poor prediction of the model
for this specific parameter combination, a print process error caused by the machine (such
as changes in fixed parameters during the print process) or an insufficient measurement.
The latter can be excluded as the measurement was repeated. The other tests successfully
met the requirements. In the case of T4, a tensile strength of 35.56 N/mm2 was achieved.

The result showed that the chosen safety factor (0.95 percentile) on one side enabled
a high optimization degree. On the counter side, one negative buffer was observed. This
indicates that the used safety factor is sufficient if slight undercuts of the values are accept-
able. If not, a more conservative safety factor should be chosen, e.g., the 0.99 percentile.
Nevertheless, this would reduce the optimization freedom. It should be noted that the
prediction models tend to have inaccuracies at the minimum and maximum values of the
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training data. In the tests, the buffer was exceeded at a distance of 2.5 mm (lowest distance
of sample). Thus, it is recommended to use the presented methodology for dimensions that
do not correspond to the limiting values.
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dimensional accuracy.

4.3. Application Example of Developed Methodology

After successful testing, the developed methodology is applied to two use cases of
the Additive Design and Manufacturing Lab (Karlsruhe University of Applied Sciences,
Karlsruhe, Germany) as part of its service activities. The parts are a stencil for accurate la-
beling and a holder for electronics implemented in a robot (see Figure 13). For this purpose,
the quality requirements were recorded with the clients, in this case solely dimensional
requirements. In addition, for the stencil, the print time was optimized, and for the holder,
the material consumption was optimized. The requirements are summarized in Table 8.
The parts were manufactured with PETG material using a Prusa i3MK3S+ (Prag, Czech
republic, Prusa Research) as in testing.

A suitable parameter set was determined using the presented methodology. Subse-
quently, the samples were printed and measured. In parallel, a parameter set was optimized
by the machine operator—in this use-case, a scientific assistant of the laboratory—based
on the standard parameter sets given by the associated slicer. This parameter set was also
printed and measured. The resulting parts are compared considering dimensional accuracy,
print time and material consumption.
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Figure 13. Parts for process parameter determination: (a) a stencil for labeling and (b) a holder
for electronics.

Table 8. Requirements of the considered use cases.

Part Requirements

Stencil
Squares on the top left and top right ±0.3 mm; 3 mm space holder between
squares ±0.2 mm; distances with 7 and 4 mm ±0.3 mm; print time should be

as short as possible

Holder
Outer walls ±0.3 mm; inner wall ±0.2 mm; holed squares on top and within

the part ±0.5 mm; distance of squares to middle wall ±0.2 mm; material
consumption should be as low as possible (weight reduction)

Table 9 summarizes the results of the different parameter sets. The measured buffers
are given in the Appendix A. In the case of the stencil, both parameter sets achieved the
required quality. However, the prediction-based parameter optimization reduced the print
time by 49% compared to the standard parameter sets. In the case of the holder, the printed
part of the standard parameter sets did not achieve the quality requirements. A 4 mm
and a 9 mm distance exceeded the tolerance. In contrast, the part of the prediction-based
methodology achieved the quality requirements. The optimized parameter set resulted in a
higher material consumption (+13%).



J. Manuf. Mater. Process. 2024, 8, 51 17 of 20

Table 9. Comparison of the previous and optimized parameter sets for the investigated use cases.

Stencil Holder

Requirements
Parameter Sets Determined by . . .

∆ in %

Parameter Sets Determined by . . .

∆ in %Machine
Operator

Developed
Methodology

Machine
Operator

Developed
Methodology

Sufficient quality? Yes Yes - No Yes -
Print time 177 min 90 min –49% 145 min 61 min –58%

Material consumption 19.5 g 24.9 g +28% 15.6 g 17.7 g +13%

The performed use cases showed that the developed procedure can be applied to en-
sure that the required quality is met by still optimizing print time or material consumption.
In both tested examples the parameter optimization outperformed standard sets, either by
meeting the quality requirements or by reducing the optimization factor.

4.4. Critical Appraisal and Limitations

The presented methodology has its limitations arising from the prediction models,
simplifications and the chosen procedure. These are discussed in the following.

The methodology is widely applicable, yet it is linked to existing prediction models. If
prediction models do not exist for the intended application, models must first be developed.
This depends on the observed quality characteristics and used process parameters, material
and printer of the use-case. The used prediction models have limitations that influence the
determination procedure—e.g., prediction inaccuracies, considered quality characteristics,
considered parameters and chosen parameter limits. Additionally, it is hardly possible
to integrate models with unmatching process parameters into existing models. However,
prediction approaches are widely applicable and transfer learning enables the use of
existing models and their data for similar use cases. Such concepts can encounter the
described downsides.

The methodology itself has limitations separately from the prediction models. First,
the solution space is influenced by the stepwise parameter representation in the lookup
table. This can be excluded by predicting each value, which is possible yet accompanied
by a data increase and a higher data handling effort. In contrast, covering the parameter
space too thinly may lead to poor optimization results. The assurance that the part quality
of the optimized process parameters is within the intended limits depends on the safety
factor. The choice of this factor is a trade-off between the freedom of optimization and the
risk of exceeding the limits. Future research aiming at optimizing the safety factor seems
promising. It is recommended to aim for a buffer that is as small as possible while still
guaranteeing that the predicted quality characteristic is satisfied by the resulting part.

A further limitation is the assumption of the print time and material consumption. It
is based on an exemplary part and not the actual part. This can be eliminated by connecting
the slicer data with the used methodology.

A further limitation is the need for quantified quality requirements. This is not a
basic condition in the current state, since in many cases the best possible part quality is
aimed for, especially in the background of uncertain part quality. Therefore, it is necessary
to quantify the required quality beforehand, in order to yield the full potential of the
presented methodology.

Further limitations of this paper are caused by the research design focusing on MEX,
PETG material and the investigated part-quality characteristics—tensile strength, linear
dimensional accuracy and surface roughness.

However, the methodology is transferable to other materials, quality characteristics
and additive processes, as prediction models exist in these areas. Thus, the developed
methodology is universally applicable, yet there are limiting factors, especially data scarcity.
It is not assumed that these limitations drastically limit the applicability of the methodology,
as the application to two use cases has shown.
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5. Conclusions

In this paper, a methodology was presented to enable predictive quality assurance
in the pre-processing of material extrusion (MEX). The procedure is based on prediction
models and was tested and applied to two use-cases.

Overall, this paper showed that with the results of this work, a MEX process is enabled
that ensures part quality—with a certain amount of trustworthiness—and prevents timely
and costly manufacturing loops. The performed tests and presented use cases showed the
applicability of the methodology for quality assurance in pre-processing. The methodology
can be easily integrated into existing workflows and helps both untrained and skilled
operators to make a well-founded selection of process parameters. Thanks to the developed
methodology, no programming knowledge is required from the operator and the process
can be performed quickly and variably. In addition, the developed methodology can be
easily extended as more models with relevant quality characteristics become available.
Determined parameter sets are optimized based on part quality, print time and material
consumption following the three dimensions of the iron triangle. The trustworthiness of
the prediction depends on the chosen safety factor. In this paper, the 0.95 percentile was
used. This work bridges the gap between research and practice and allows companies to
benefit from the progress of quality prediction in MEX. This work also helps to qualify
MEX for stressed parts.

We plan to further expand the methodology for other quality characteristics. Future
work will focus on the evaluation of alternative safety factors, e.g., fix values or calculations
based on the mean absolute error (MAE). In addition, an investigation of the trade-off
between the optimization freedom and safety factor is planned. Another focus is the
implementation of the presented methodology in industrial practice with the help of
corporate partners. Besides improving the methodology, the authors of this research aim to
predict other quality characteristics in order to expand the capabilities of the methodology.

Author Contributions: Conceptualization and methodology, C.S., R.G., J.T.S. and F.F.; formal analysis,
data curation, writing—original draft preparation, C.S.; writing—review and editing, C.S., R.G.,
J.T.S. and F.F.; visualization, C.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data from this paper are available upon request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.
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