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Abstract: The time taken to exchange a cutting tool and the actual machining time are the components
in a total production cycle time for a part, that affects productivity. Automated plate exchange systems
strive for the simplest possible principles to achieve the shortest possible tool exchange time with
sufficient accuracy. The tool holder in the presented article is based on the principle of a combination
of translational, rotational movement, and stop surfaces by using a single pull–push rod for simple
control. The article provides alternative tool holder designs and turning results of such holders
using Rz-f dependence. The results of the time reduction are satisfactory and give a prerequisite for
using a tool holder for the automated exchange of triangular cutting inserts. Moreover, the article
provides the approach to reduce the mentioned total production cycle time by a reduction in the
actual machining time for a part by use of tooltip radii, not by increasing the cutting speed. The
triangular cutting insert can have three tooltips of three different tooltip radii for roughing and
finishing. In addition, for reduction of the actual machining time, the double cutting tool with both
the small tooltip radius for rouging and the large tooltip radius for finishing is presented. The double
tool holders showed a 2.4-times reduction in the actual machining time for a part with Rz = 20 µm.

Keywords: tool exchange time; machining time; tool holder design; translational and rotational
motion; tooltip; double cutting tool holder

1. Introduction

In the field of manufacturing processes, it is observed that the trend is to produce more
and more fast, efficient parts with high complexity, which involves using a high number of
tools in the machining process [1]. One of the main solutions for high-speed and efficient
manufacturing is based on the full automation of the entire manufacturing process [1].
Moreover, the tool condition monitoring is relevant in machine process condition monitor-
ing based on wireless sensor networks was made as a plan to adopt and adapt IR 4.0 in the
manufacturing industry [2].

An automatic tool changer (ATC) is a device that can automatically perform tool
changes between the spindle and the tool magazine according to the commands given by
the machine control unit. When an ATC with a magazine is equipped in a machining center,
the noncutting time and production costs can obviously be reduced so that productivity can
be increased greatly [1,3]. However, when the ATC fails, massive losses will be experienced
by the users. Of the total failures of a machining center, failures of an ATC account for
about 12%. Thus, the reliability of ATCs plays an important role in machining centers [3,4],
and many researchers have explored the reliability and availability of ATCs [5].

In general, productivity in machining, p, is defined as the number of products pro-
duced within a defined period:

p =
tshift

tc
(1)
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where tshift is the working shift time, and tc is the total production cycle time for a single part.
The efforts of producers are aimed at reducing the machining time. The total production
cycle time tc for one part consists of the following components (according to [6,7]):

tc = th + tm +
tt

N
(2)

where th is the work handling time per part needed to load and unload the part in and out
of the machine and time of interruption of work, tm is the actual machining time per part,
tt is the tool exchange time per part, and N is the number of pieces machined during the
one tool life.

Actual machining time tm depends on the cutting conditions, as follows:

tm =
l

n f
(3)

where l is the length of the tool’s trajectory, f is the feed, and n is the rotational speed.
Moreover, the number of pieces machined during the life of one tool, N, depends on tool
life, T, as follows:

N =
T
tm

(4)

It is a well-known fact that reducing the actual machining time tc can be achieved
by intensifying the cutting conditions. Moreover, it can still be stated that the machining
time value tc is directly proportional to the tool exchange time. Quick tool exchange makes
sense, especially for the numeric control of machine tools. The article does not use the
different, currently available systems related to the active control of tool wear [2,8] to obtain
a signal for tool exchange. It presents and discusses the technical possibilities for improving
the systems of automatic tool exchange by focusing on cutting inserts. Automated tool
exchange can shorten or eliminate the time needed for tool exchange. When increasing
the level of automation within tool exchanges, several principles have been developed for
replacing worn cutting inserts.

The automatic tool-changing device is convenient and simple, and the tool can be
installed on the spindle of the machine tool accurately and quickly [9]. Preferably, automatic
tool exchanger devices perform the whole exchange of the tool’s magazine according to
commands of a machine control unit ([10–12], among others). However, we designed a tool
holder for the automatic exchange of a cutting insert in a turning tool, with the tool holder
staying in the original position while the fresh cutting edge of a cutting insert is changed.

Devices for automatic plate exchange require special cutting inserts with specially
created clamping and handling surfaces. Some designs are focused on the use of commercial
cutting inserts. Since these commercial inserts do not have special clamping surfaces, a
complex kinematic mechanism is necessary. A tool holder eliminates the mentioned
shortcomings with an automatic exchange for mainly commercial triangular cutting inserts.

In Figure 1a, a cutting tool holder for the automated exchange of special cutting inserts
that was developed in [13] can be seen. The cutting tool is provided with a magazine to hold
a supply of cutting inserts and as a means for rejecting a worn insert (more details can be
found in [13]). The magazine is located in a relatively massive holder. A hydraulic–pneumatic
control system enables the worn cutting insert to be ejected from the holder and replaced with
a fresh one. In the tool holder body (1), a groove for the magazine (2) has been designed for
special plates (3). The tool exchange mechanism is based on the movement of the movable
arm (4) that is controlled by the pull–push rod (5). When the pull–push rod (5) moves in
the indicated direction, the movable arm (4) tilts and, thus, is released from contact with
the surface of the body (1). During the next movement, the arm (4) slides into the groove
(6) in the body (1), and its front part in the back position captures the fresh insert from
the magazine (2). At the same time, the inclined surface of the pull–push rod (5) releases
the movable arm (7), which is pivotable around a pin, and the front arm which is firmly
connected to the clamp plate (8). When the pull–push rod (5) and movable arm (4) are
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moved forward, its front part squeezes the fresh insert into the working position, and the
worn insert falls into the chips. In the last phase of the movement, the inclined surface of
the pull–push rod (5) flips the handle (7) again and clamps the new cutting insert. The arm
(4) returns to its original position by flipping in the indicated direction and is fixed on the
inclined surface of the body (1). This solution requires cutting inserts of a special shape
that are adjusted to the conditions of the lamping movement in the magazine and holder.
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cutting insert from the tool holder (6). The movement of this lever is controlled by the 
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rod (10) is spring-loaded in the rolling bearings of the spindle (9). The pinion (8) is 
controlled by a toothed rod (7) and ensures the tightening and loosening of the clamping 
screw. After the ejection of the cutting insert, the whole system turns to the magazine of 

Figure 1. (a) Cutting tool holder with an internal magazine of cutting inserts: 1 is the tool holder
body, 2 is the magazine, 3 is the fresh cutting inserts, 4 is the movable arm, 5 is the pull–push rod to
control, 6 is the groove, 7 is the movable arm pivotable around a pin, 8 is the clamping plate, and 9 is
the cutting insert in the working position; (b) Pavlensky’s design: 1 is the holder body, 2 is the body
of the magazine, 3 is the clamp, 4 is the pull bar, 5 is the stick, 6 is the pneumatic cylinder, 7,9 are the
pins, 8 is the revolving arm, 10 is the cutting plate, and 11 and 12 are the stoppers.

A similar design was presented in [14], which presented a design using commercial
cutting inserts (Figure 1b). The transport of inserts from the magazine is achieved by
rotating the arm (8) by 180◦ around the pin (7). An alternative design in Figure 1b has the
vertically placed magazine in the holder’s body.

Some designs ensure the exchange of cutting inserts in current holders. The me-
chanical principle is shown in Figure 2 (according to [15]). The manipulator consists of a
set of levers (1 and 2). At a specified moment, lever (1) enables the insert of the flexible
mandrel (4) into the clamping hole in the cutting insert and pulls out the unfastened
cutting insert from the tool holder (6). The movement of this lever is controlled by
the piston (3) located in the cylinder in the upper part of the manipulator. The second
lever mechanism makes it possible to flip the entire system into the position shown in
Figure 2. The hexagonal rod (10) is inserted into the hole of the clamping screw (11). The
hexagonal rod (10) is spring-loaded in the rolling bearings of the spindle (9). The pinion
(8) is controlled by a toothed rod (7) and ensures the tightening and loosening of the
clamping screw. After the ejection of the cutting insert, the whole system turns to the
magazine of the cutting inserts in direction A to obtain a new insert. The disadvantage
is that the system’s failure can occur when chips or dirt enter the hole of the clamping
screw during machining. The time required for replacement is longer than in previous
solutions. Since a certain amount of space is required to place the manipulator, the
system can only be used when machining with one tool or with several tools of the same
type that are located in parallel.

The mentioned designs of tool holders for quick exchange of cutting inserts allow
reducing the total production cycle time for one part tc through the reduction of the tool
exchange time. There are approaches to reduce the total production cycle time tc through
the actual machining time tm. Generally, the actual machining time is reduced by increasing
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the cutting speed. However, that approach introduces the issues of extremely short tool
life [16]. To achieve the required machine surface roughness, the tooltip radius is another
parameter allowing the reduction in actual machining time. Moreover, there are concepts
of either a double-tool [17–19] or multi-tool turning [20]. The concept of multi-tool turning
is to use two single-point cutting tools rather than one for turning the same shaft [20]. The
second tool should be mounted on the additional tool post. Compared to the single-tool
turning process, the double-tool turning produces a much better surface finish [21].
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Figure 2. Manipulator for cutting tool insert exchange: 1 is the tilting lever, 2 is the manipulator
second lever, 3 is the cylinder with piston, 4 is the flexible mandrel, 5 is the cutting plate in the
working position, 6 is the tool holder, 7 is the teethed rod, 8 is the pinion, 9 is the spindle, 10 is the
hexagonal rod, and 11 is the clamping screw.

2. Conditions of Experiments

The measurement was aimed at evaluating the accuracy of the tooltip position when
automated changing the cutting insert of the designed tool holder. Moreover, we evaluated
the maximum height of the machined surface roughness Rz considering the ways to
shorten the machining time tm by using the tooltip radius rε as a parameter with respect
to the feed rate f. For the experiments, a conventional TOS SU 50A lathe was used. The
workpiece material was steel C45, a medium carbon steel, e.g., mechanical engineering
and automotive components, and 100Cr6 a high-carbon, chromium-containing low alloy
steel that is through hardening and noted in particular for use as bearings. The cutting
inserts were made of cemented carbide (P20) coated with titanium nitride (TiN). Cutting
conditions and measurement devices were the following:

• Cutting speed vc = 86; 140 m.min−1

• Depth of cut ap = 0.5 mm;
• Feed rates f = 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.6; 0.7; 1 mm
• Tooltip radii rε = 0.2; 1; 2; 3; 5 mm
• Roughness tester ISR-C300 (http://www.insize.com/page-169-265.html; accessed on

3 April 2023).

3. Developed Design for Automatic Exchange of Cutting Insert

The design was focused on creating a system aimed primarily at translational and
rotational movement regarding a blunt triangular cutting insert being moved into the
working position and replaced by a new cutting edge. The basic principle is shown in
Figure 3 [22].

http://www.insize.com/page-169-265.html
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Figure 3. Cross section of a developed tool holder; 1 is the cutting insert, 2 is the base, 3 is the
pull–push rod, 4 is the clamp, 5 is the pull–push rod, 6 is the tool holder, 7 is the triangular ejection
hole, 8 is the magazine, 9 is the protrusion, and 10 is the stop surface.

The cutting insert (1) is placed on the base and is moved to the working position by
the pull–push rod (3). The insert is clamped by the clamp (4), which is controlled by the
pull–push rod (5). In the tool holder body (6), a shaped hole (7) is created, through which
the worn cutting insert falls out. In the back part of the tool holder, the magazine (8) with a
triangular hole is situated. The shape of the magazine’s triangular hole is rotated by 180◦ in
relation to the triangular ejection hole. This ensures that the new cutting insert does not fall
into the ejection hole during its transport from the magazine. The protrusion (9) makes the
cutting insert rotate into the appropriate position, which is ensured by the stop surfaces.

The cutting insert exchange cycle is shown in Figure 4. To be able to watch the
individual phases of the cycle clearer, the black dot is at one corner of the cutting insert
triangle in Figure 4. The system works in the following phases:
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Phase A is the position change from the magazine to the working position (Figure 4a).
Pushing the rod, the cutting insert is moved by a length of l from the magazine to the
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working position while rotating by 60◦ due to contact with the protrusion and then rotating
by 30◦ due to contact with stop surfaces. The first unworn cutting edge of the triangular
insert is prepared to cut.

Phase B exchanges the worn cutting edge with the unworn cutting edge of the same
insert (Figure 4b). Pulling the rod, the first worn cutting edge is taken from the working
position by a distance of l1. The insert stops at protrusion while rotating by 90◦. Then, by
pushing the rod, the cutting insert is moved to the working position while rotating by 30◦.
Thus, the second unworn cutting edge of the triangular insert is prepared for cutting. Phase
B can be repeated when the second cutting edge is worn, and the third unworn cutting
edge is moved to the working position.

Phase C (Figure 4c) is the worn cutting insert rejection. Pulling the rod by a distance
of l2, the worn cutting insert drops out through the ejection hole. Pulling the rod again,
the rod moves to the starting position of the described cycle and the new, unworn cutting
insert from a magazine can be moved to the working position (phase A).

3.1. Alternative Designs

The principle of the translational and rotational movement of a triangular cutting
insert is used for other alternative designs of the tool holder. The design of the above-
mentioned tool exchange mechanism can only be used for triangular cutting inserts with
one cutting edge that is used, and then the worn cutting insert is rejected. The following
alternative designs are intended for use with a single triangular cutting insert with three
cutting edges that are all used before it is exchanged.

3.1.1. Alternative Design 1

Figure 5 presents the individual positions of the cutting insert while replacing the
worn cutting edge with a new one via the rotational and translational movement of the
cutting insert. Figure 5a shows the cutting insert with a worn cutting edge in a working
position. When pulling the rod with the cutting insert on it towards the back (left in
image), the cutting insert hits the middle stop surface and turns by 30◦ counterclockwise
(Figure 5b), and then it turns by another 30◦ counterclockwise by the backstop surface
(Figure 5c). When pushing the rod with the cutting insert, the insert hits the front stop
surface (Figure 5d) and turns 60◦ counterclockwise. Thus, the cutting insert is in a new
working position (Figure 5e) with an unworn cutting edge.
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3.1.2. Alternative Design 2

The alternative design 2 in Figure 6 was developed for a single-cutting insert with
three tooltip radii, rε, with modified stop surface shapes in order to test the roughness
when turning. We intended that, with the introduction of a reliable system for automatic
cutting insert exchange, it might be possible to turn the cutting insert with the tooltip radius
rε1 for roughing and with a larger tooltip radii rε2 and rε3 for finishing while using the
unchanged feed rate.
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Figure 6. (a) Alternative design for turning with a triangular cutting insert with three different tooltip
radii rε1 = 1 mm, rε2 = 2 mm, and rε3 = 3 mm: 1 is the tool holder, 2 is the cutting insert, and 3
is the pull–push rod; (b) Experimental dependences (Rzexp-f ), continuous red, blue, black curves,
vc = 140 m.min−1, cutting tool cemented carbide (P20) coated with titanium nitride (TiN), workpiece
C45, ap = 0.5 mm theoretical dependence (Rztheor-f ) according to Formula (5) for rε = 1 mm, dashed
red curve.

For the experiment, the following radii of the tooltips of the triangular cutting insert
were used: rε1 = 1 mm, rε2 = 2 mm, and rε3 = 3 mm, and the tool holder design is shown in
Figure 6a. The obtained dependences of influencing the maximum height of the machined
surface roughness Rz on the feed f are in Figure 6b.

4. Tooltip Radius rε and the Actual Machining Time for a Part

Tooltip radius rε influences the machined surface roughness parameter Rz inversely
proportional according to Formula (5). To determine parameter Rz theoretically, the follow-
ing well-known theoretical formula is applied [7,23,24]:

Rz =
f 2

8rε
(5)

where f is the feed rate and rε is the tooltip radius. The experimental dependencies Rzexp-f
for the tools with different tooltip radii are shown in Figure 6b (continuous red, blue, black
curves). We can state that the experimental curves do not correspond with the theoretical
ones. The difference is mainly in the area of low and large feed rates. The experimental
curves do not start at zero value as according to theoretical Formula (5). The expectation
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of the high machined surface quality due to low feed rate is just theoretical. In fact, the
roughness parameter Rz increases with feeds less than 0.1 mm.

Moreover, the actual machining time for a part tm in Formula (2) becomes longer with
small values of feed rate. The reason for worsening the machine surface quality with small
feed rates is a phenomenon described as the minimum chip problem. The radius of the
cutting edge rounding rn is very close to the size of the uncut chip thickness. If the uncut
chip thickness is about the size of the cutting-edge radius rn, the workpiece cut material
comes under the cutting tool wedge. It is followed by intensive plastic deformation of the
machined surface and internal material friction and thus the worsening of the machined
surface microgeometry occurs. A numerical analysis of the minimum chip problem was
made in [25], where it is stated that when the depth of cut is 0.16 times the tool edge radius,
the chips begin to produce, in the case of micromachining of pure iron.

The theoretical formula for the roughness parameter Rz can be replaced with a practical
Formula (6). Using the mathematical analysis of the experimental curves in Figure 6b, we
can derive the following Brammetz’s dependency [26]:

Rz =
f 2

8rε
+

hmin

2

(
1 +

rε hmin

f 2

)
(6)

where hmin is the minimal uncut chip thickness when the material is plastically pressed
under the rounded cutting tool edge. A continuous blue curve in Figure 7 is the visual
display of a Formula (6) for rε = 0.8 mm and hmin = 0.01 mm.
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The tool holders in Figures 5 and 6 contribute to reducing the actual machining time
for a part tm. Moreover, if we analyze the relationship of tooltip radius rε, feed rate f, and
roughness parameter Rz, it is possible to reduce the time tm by adjustment of the geometry
of the cutting wedge without increasing the cutting velocity vc. Such an approach is so-
called high-feed turning. It is possible to consider cases when the tooltip is not rounded,
i.e., rε = 0. That limiting case corresponds to the roughing with large feed rates and means
that the roughness of the surface is created by the main and secondary cutting edges. If the
dimension of the tooltip radius is smaller but similar to the feed rate, then the roughness of
the surface is created by the rounded tooltip and sections of the main and secondary cutting
edges. In these cases, the tooltip radius minimally influences machine surface quality.

The tool holders can combine two cutting tools arranged next to each other and each
cutting tool is of individual tooltip radius rε. The tool holder in Figure 8a contains a
classical roughing cutting tool with rε = 0.2 mm, which cuts with a depth of cut ap1. The
second one is a finishing cutting tool with a large tooltip radius rε = 5 mm which takes the
minimum cut thickness ap2 of a slightly larger value than Rz after roughing. Figure 9 shows
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the experimental dependence of the roughness parameter Rz on the feed rate obtained
during turning with the double-cutting tool in Figure 8a. If the required value of Rz is
20 µm, it can be seen in Figure 9 that when using a classical cutting tool, a feed rate lower
than 0.1 mm (f ≤ 0.1 mm) is required. However, the double-cutting tool reaches an Rz
value of 20 µm at a feed of 0.6 mm, which is a significant increase in feed rate and thus a
significant reduction in machining time.
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radii rε of cutting tools for roughing and finishing (b) with cutting tool for roughing and cutting tool
with linear cutting edge (rε = ∞) for finishing.
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Figure 9. Experimental dependence of Rz on feed rate obtained when turning with the tool from
Figure 8a, vc = 86 m.min−1, cutting tool cemented carbide (P20) coated with titanium nitride (TiN),
workpiece 100Cr6.

To achieve a high surface quality, i.e., a low value of roughness parameter Rz, the
tooltip radius must be greater than the feed rate (rε ≥ f ). According to Formulas (5) and (6),
the radius of the tooltip can be increased practically without limit, i.e., up to rε = ∞, which
corresponds to a linear cutting edge. It means that the finishing tool has a linear cutting
edge to achieve a high surface quality at a high feed rate, inclined to the workpiece axis by
the cutting-edge inclination angle λs as shown in Figure 8b. Roughing and finishing take
place in one tool holder with the same feed rate, similarly as in Figure 8a.

According to the above, the actual machining time tm can be reduced by increasing
the feed rate, which, compared to the parameters to increase the cutting speeds, is given
less attention. As the feed increases, the quality of the machined surface worsens sharply,
and it improves as the tooltip rε increases. The relation (3) can be modified by substituting
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for n and using the theoretical relation (5). Thus, the actual machining time for a part tm is
as follows:

tm =
lπD

1000vc f
=

lπD
1000vc

√
8rεRz

(7)

where D is the workpiece diameter, and vc is the cutting speed. This relationship indicates
the dependence of the actual machine time on the tooltip radius and the dimensions of the
workpiece, the cutting speed, and the maximum height of the machined surface roughness Rz.

5. Conclusions

Eliminating the human factor from the operation of machine tools calls for addressing
the technological prerequisites for automation in technological processes. The automated
cutting insert exchange can reduce or completely eliminate tool change time. The rotation
that exchanges the cutting edge of the cutting insert can occur in real time when the tool
is taken out of engagement. The presented tool holder designs can also be applied to
non-automated production conditions, with manual control over the pull–push rod to
exchange the insert cutting edge. The advantage of the tool holders in the article is that they
can be operated with a single pull–push rod; therefore, complex coordinated movements
are not required to operate the mechanism.

The tooltip radius allows the usage of the high-feed turning and the actual machining
time for a part is shortened without increasing the cutting velocity vc. The presented
experiment showed a 2.4 times reduction in the actual machining part with Rz = 20 µm
using the tool holder with double tooltip radii that allow the roughing and finishing in one
tool move.

Combining the principles of the presented automated cutting insert exchanger and
a machine control program would maximally shorten the tool exchange time, especially
when using a sensor to detect the predetermined wear of a cutting insert according to an
invention in [27].
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